
Available online at https://ganitjournal.bdmathsociety.org/

GANIT: Journal of Bangladesh Mathematical Society

GANIT J. Bangladesh Math. Soc. 43.2 (2023) 49–64

DOI: https://doi.org/10.3329/ganit.v43i2.70798.

Mathematical Model for Optimal Dubins Path to Intercept a

Stationary Target

M. Akter *a, M. M. Rizvib, and M. Forkana

aDepartment of Mathematics, University of Chittagong, Chittagong-4331, Bangladesh.
bCentre for Smart Analytics (CSA), Institute of Innovation, Science and Sustainability, Federation University Australia

ABSTRACT

This paper presents a comprehensive mathematical model designed to determine the most efficient trajectory for
intercepting a stationary target, with a primary focus on minimizing interception time and resource utilization.
The proposed model incorporates key parameters such as target location, interception speed, and environmental
constraints to formulate a set of differential equations that describe the motion dynamics of both the pursuer
and the target. The objective function is defined to optimize the interception path. The study employs advanced
mathematical techniques, including optimal control theory and numerical optimization algorithms, to solve the
formulated equations and derive the optimal path. The model is adaptable to various scenarios, accounting for
different pursuit vehicle dynamics and target characteristics. Simulation results are presented to validate the
effectiveness of the proposed mathematical model in practical applications.
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1 Introduction

Path planning is becoming more and more important as a result of the rapid improvements in technology that
have led to an increase in the employment of autonomous air vehicles in both military and civilian contexts. We
take into consideration an application in which a stationary target is pursued and intercepted by an autonomous
aerial vehicle. This paper contributes to the field of path planning and interception strategies by providing
a robust mathematical framework that can enhance the efficiency and effectiveness of systems designed for
intercepting a stationary target. Dubins [1] presented the Dubins car model, which is a vehicle with a finite
maximum turn rate and constant speed. He demonstrated that the minimum-time paths for these vehicles
between two points can only be made up of curves (C) that have maximum-rate turns left (L) and right (R)
and combinations of straight lines (S).There demonstrated the existence of such minimum-length paths and
the necessity of their having the forms CSC, CCC, or reduced versions. Since then, Dubins findings have been
expanded upon utilizing nonlinear optimal control theory, specifically Pontryagin’s principle in ([2]-[7]) and
geometry Ayala et al. [8]. Recently, researchers have looked into the challenge of determining a Dubins car’s
minimum-time path from a fixed location to any point on a circle with the final heading tangent to the circle
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([9]-[11]). A comprehensive discussion of optimal search for a stationary target can be found in [12]. In order
to accomplish simultaneous target interception for a team of n pursuers, cooperative geometrical rules and
matching guidance laws, were given and examined in [13]. The topic of optimally guiding an interceptor to a
stationary target in a nonlinear environment is studied in [14]. In [15] a algorithms for nonlinear estimating
and optimal guidance are developed to intercept a stationary target vehicle that has been slowed down by
atmospheric drag. The simultaneous attack problem of many missiles against a stationary target is examined
in [16].
Furthermore, Looker [17] proposes a search algorithm for determining the shortest CS type path to interception
under the assumptions of a pursuer modeled as a Dubins vehicle and of a constant velocity target. Yalcin Kaya
[18] reformulated the Markov-Dubins problem as an optimal control problem while identifying the many forms
of shortest bounded curves that connect two oriented points. Later, the author have extended his work as the
Markov- Dubins interpolation problem, where the problem is also considered as an optimal control problem and
obtain the solution by applying optimal control theory [19]. Zheng [20] was presented with an idea involving
a Minimum-Time Intercept Problem (MTIP), in which a Dubins vehicle is led to intercept a moving object in
the shortest amount of time by starting from a place with a predetermined initial heading angle. More recently,
Forkan et al. [21] introduced an innovative mathematical model to find a minimum path length or minimum
time for touring a finite number of targets by unmanned aerial vehicle (UAV), both the UAV and targets are
at the same altitude. The authors are used arc parameterization technique to determine the optimal path. To
approximate the optimal path for the pursuer to intercept a stationary target, this study is presented through
a geometric interpretation and a mathematical model that is demonstrated in Sections 3 and 4.
In this paper, we present a novel algorithm that makes a significant contribution to generating efficient paths
for pursuers. We formulate mathematical expressions based on geometric principles and subsequently devise
new algorithms aimed at approximating pursuer paths for intercepting stationary targets. Our objective is to
compute feasible paths and determine the most optimal trajectory for pursuers, ultimately optimizing their
paths to intercept the target.
The subsequent sections make up the remainder of this paper. In Section 2 we demonstrate how to reframe the
Dubins problem in the scenario of time-optimal control. Later we state the Pontryagin’s Maximum Principle
for pursuers length functional. A pursuers best path planning for intercepting a stationary target is explained
geometrically in Section 3. The model for determining the pursuers optimal route to intercept a stationary target
is presented in Section 4. We present an algorithm in Section 5 to carry out the suggested model. In Section
6, we present the findings and discussions derived from computational tests that are executed. Presenting the
paper’s conclusion is the final phase.

2 Formulation of Optimal Control Problem and Pontryagin’s Max-
imum Principle

In this section, we formulate the optimal control problem for the intercepting the stationary target by pursuer
and then utilize the Pontryagin’s Maximum Principle [22] to analyze control law. Assuming that ℓ(t) : [t0, tf ] →
R2 be the optimum path of interception. We also assume that the pursuer move only the forward direction
through the Dubins path. Let the kinemetic equations of the pursuers path beẋ(t)ẏ(t)

θ̇(t)

 =

cos θ(t)sin θ(t)
u(t)


where θ(t) denotes the heading angle of the pursuer, which is measured with θ(t) ∈ [0, 2π] and counterclockwise
from the x-axis. It is also considered that the pursuer moves with the unit turning radius of its turning circle
with unit velocity. In order to intercept a stationary target, the pursuer’s minimum path is determined by the
arc length functional as below. ∫ tf

t0

√
ẋ2 + ẏ2 dt =

∫ tf

t0

||ℓ̇(t)|| dt = (tf − t0), (2.1)

The curvature at each point along the path is determined by b = |θ̇(t)|. The sign of the quantity θ̇(t) indicates
whether it is positive or negative. When θ̇(t) > 0, the pursuer turns left (L) i.e. proceeds counterclockwise.
Additionally, if θ̇(t) < 0, the pursuer goes in a clockwise direction (making turns right (R)) and also the pursuer
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moves in a straight line (S) if θ̇(t) = 0. Here, the control variable is defined as u(t) = θ̇(t). Let us consider that
the pursuers initial location is P (xP

0 , y
P
0 ) with heading angles at θP0 . Hence the optimal control problem for the

pursuer can be formulated as follows,

min f =

∫ tf

t0

dt = (tf − t0).

subject to

ẋP (t) = cos θP (t), xP (t0) = xP
0 , x

P (tf ) = xP
f

ẏP (t) = sin θP (t), yP (t0) = yP0 , y
P (tf ) = yPf

θ̇P (t) = u(t), θP (t0) = θP0

|u(t)| ≤ b.

(2.2)

2.1 Pontryagin’s Maximum Principle

The essential conditions of optimality under Pontryagin’s maximum principle [22] for Problem (2.2) will be
stated in this subsection in order to determine the best path for a pursuer to intercept a stationar target.
Now set up the following definition of the Hamiltonian function for the problem (2.2).

H(xP (t), yP (t), θP (t), ν0, ν1(t), ν2(t), ν3(t), u(t)) =

ν0 + ν1(t) cos θ
P (t) + ν2(t) sin θ

P (t) + ν3(t)u(t) ,
(2.3)

where ν0 is a scalar parameter and νi : [t0, tf ] ∈ R, i = 1, 2, 3, are the costate variables.
The costate variables are required to satisfy

ν̇1(t) = −HxP (t) = 0, (2.4)

ν̇2(t) = −HyP (t) = 0, (2.5)

ν̇3(t) = −HθP (t) = ν1(t) sin θ
P (t)− ν2(t) cos θ

P (t). (2.6)

In addition to (2.4)-(2.6), there are state differential relations ẋP (t) = Hν1(t), ẏ
P (t) = Hν2(t), θ̇

P (t) = Hν3(t).
From (2.4) and (2.5), we have ν1(t) = ν̄1, ν2(t) = ν̄2 for all t ∈ [t0, tf ], where ν̄1 and ν̄2 are constants.
Suppose,

ν1(t) = ν̄1 = ρ cosϕ (2.7)

ν2(t) = ν̄2 = ρ sinϕ (2.8)

Now squaring and adding (2.7) and (2.8) we get,

ν̄21 + ν̄22 = ρ2 cos2 ϕ+ ρ2 sin2 ϕ,

Therefore, ρ =
√
ν̄21 + ν̄22 and tanϕ =

ν̄2
ν̄1

.

Using (2.7) and (2.8) we can rewrite the equation (2.3), we get,

H = ν0 + ρ cosϕ cos θP (t) + ρ sinϕ sin θP (t) + ν3(t)u(t) ,

which implies,
H = ν0 + ρ cos(θP (t)− ϕ) + ν3(t)u(t) (2.9)

Using (2.7) and (2.8) we can rewrite the equation (2.6), we get,

ν̇3(t) = ρ cosϕ sin θP (t)− ρ sinϕ cos θP (t),

which implies,
ν̇3(t) = ρ sin(θP (t)− ϕ) (2.10)
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The following criteria are met in addition to the state differential equations and other restrictions provided in
(2.2), as well as the adjoint differential equations (2.4), (2.5), and (2.10):

u(t) ∈ argmin
||w||≤b

H(xP (t), yP (t), θP (t), ν0, ν1(t), ν2(t), ν3(t), w), (2.11)

H(t) = 0. (2.12)

Thus, using (2.3), equation (2.11) can be written more simply as,

u(t) ∈ argmin
||w||≤b

ν3(t)w, (2.13)

therefore minimizing the Hamiltonian function yields the following control law.

u(t) =


b, if ν3(t) < 0

−b, if ν3(t) > 0

undetermined, if ν3(t) = 0.

(2.14)

Now from the equation (2.9) and (2.12) we can write the following equation,

ν0 + ρ cos(θP (t)− ϕ) + ν3(t)u(t) = 0 (2.15)

3 Geometrical Representation of the Interception of a Stationary
Target

Figure 3.1: Feasible optimal paths of interception of a stationary target and a pursuer.

This section shows the optimal path planning for a pursuer to intercept a stationary target in two dimensions.
The following illustrates the geometric interpretation for constructing a pursuers possible paths to intercept
a stationary target. Let the pursuer start its journey with unit velocity from the points P (xP

0 , y
P
0 , θ

P
0 ) and
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the position of the stationary target is T (xT , yT ) and the pursuer eventually crosses the target after a specific
period. The pursuer may turn left or right to optimize its trajectory by adhering to a minimum turning radius
while following Dubins path. Figure (3.1) shows that the pursuer can move through a circular trajectory by
taking either path PX1 or PX2. Then, depending on the orientation in which it turns, the pursuer proceeds in
a straight line, either X1X3 or X2X3, in an attempt to intersect the target. Since the pursuer and the target
coincide at the interception point i.e X3 = T . This generates two probable pathways of type CS which are as
follows:

CS ≡

{
LS ≡ arc PX1 + st. line X1X3 or,

RS ≡ arc PX2 + st. line X2X3,
(3.1)

4 Mathematical Model for Intercepting a Stationary Target

In this section, we propose a mathematical model that shows how to find the most optimal path for a pursuer to
take in order to intercept a stationary target. We present mathematical expressions to compute the concatenated
lengths in accordance with the geometrical interpretation presented in Section 3. The sub-path CS types are
composed of these lengths. Moreover, the most appropriate plan for proceeding to intercept a stationary target
belongs to one of the two special situations described in the set addressed in (3.1) below.

{LS,RS} . (4.1)

Assuming that the pursuer has an initial time of t0 = 0 and a final time of tf = t3, we may define the length of
each sub-path as ζi = ti − ti−1, for i = 1, 2, 3, and the time at which the pursuer intercepts it as tf = t3. Now
we solve the ordinary differential equations given in (2.2) for xP (t), yP (t), θP (t) with the interval ti−1 ≤ t ≤ ti,
i = 1, 2, 3 yields, ∫ ti

ti−1

ẋP (t) dt =

∫ ti

ti−1

cos θP (t) dt,∫ ti

ti−1

ẏP (t) dt =

∫ ti

ti−1

sin θP (t) dt,∫ ti

ti−1

θ̇P (t) dt =

∫ ti

ti−1

u(t) dt.

(4.2)

The location (xP (ti), y
P (ti)), i = 1, 2 along the turning curve (C) is obtained from (4.2).

xP (ti) = xP (ti−1) + (sin θP (ti)− sin θP (ti−1))/θ̇
P (t),

yP (ti) = yP (ti−1)− (cos θP (ti)− cos θP (ti−1))/θ̇
P (t),

(4.3)

where

θ̇P (t) =


b if θ̇P (t) > 0

−b if θ̇P (t) < 0

0 if θ̇P (t) = 0.

(4.4)

When the pursuer intercepts the stationary target along a straight line (S) at point (xP (ti), y
P (ti)), with i = 3,

it can be expressed as

xP (ti) = xP (ti−1) + cos θP (ti−1)(ti − ti−1),

yP (ti) = yP (ti−1) + sin θP (ti−1)(ti − ti−1),
(4.5)

which yields,
xP (ti) = xP (ti−1) + ζi cos θ

P (ti−1),

yP (ti) = yP (ti−1) + ζi sin θ
P (ti−1),

(4.6)
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and pursuers heading angles along the straight line (S) and curve (C) can be found as

θP (ti) = θP (ti−1) + θ̇P (t)(ti − ti−1), i = 1, 2, (4.7)

where the left-turn circular arc is represented by θ̇P (t) = b, the right-turn circular arc by θ̇P (t) = −b, and the
straight line by θ̇P (t) = 0.
The following equations represents the optimum path CS of the pursuer over the time interval from t0 to t3
using (4.3), (4.4), and (4.6).

xP (t3)− xP (t0) =
1

b
(− sin θP (t0) + 2 sin θP (t1)− sin θP (t2)) + ζ3 cos θ

P (t2), (4.8)

and

yP (t3)− yP (t0) =
1

b
(cos θP (t0)− 2 cos θP (t1) + cos θP (t2)) + ζ3 sin θ

P (t2). (4.9)

It should be noted that when a pursuer intercepts a stationary target, their locations meet up. Stated otherwise,
at the point of interception, (xP (t3), y

P (t3)) = (xT , yT ). Now we write,

xT − xP (t0)−
1

b
(− sin θP (t0) + 2 sin θP (t1)− sin θP (t2))− ζ3 cos θ

P (t2) = 0, (4.10)

and

yT − yP (t0)−
1

b
(cos θP (t0)− 2 cos θP (t1) + cos θP (t2))− ζ3 sin θ

P (t2) = 0. (4.11)

Consequently, the pursuer follows a straight line with the preceding heading angle, θP (t2) = θP (t3), after leaving
the turning circle.
Hence, we can now create the following mathematical model for intercepting a stationary by taking into account
equations (4.7), (4.10), and (4.11).

min f =

3∑
i=1

ζi

subject to

xT − xP (t0)−
1

b
(− sin θP (t0) + 2 sin θP (t1)− sin θP (t2))− ζ3 cos θ

P (t2) = 0, ,

yT − yP (t0)−
1

b
(cos θP (t0)− 2 cos θP (t1) + cos θP (t2))− ζ3 sin θ

P (t2) = 0,

ζi ≥ 0, i = 1, 2, 3,

(4.12)

where
θP1 = θP0 + bζ1, θP2 = θP1 − bζ2.

5 Proposed Optimal Path Algorithm

The possible pathways that are described in (4.12) for intersecting a stationary target satisfy the feasible optimal
path criteria. We now use mathematical techniques to develop the model that determines the optimal path for
the pursuer to take in order to intercept a stationary target that is described as follows.

6 Results and Analysis of Numerical Experiments

The numerical experiments of our suggested model (4.12) are presented in this part through multiple numerical
experiments. In test problems 1-4, we consider the turning radius of the pursuer turning circle to be one with
the unit velocity. As the length of the optimum path differs for different turning radii, we present our model
for this situation for the same position of pursuer and target in test problem 5. The efficiency of the algorithm
has been evaluated using Test problems 1-5. The results clearly demonstrate the algorithm’s effectiveness in
calculating pursuer path routes and recommending the best possible trajectory to intercept the target. These
are demonstrated in Figures (6.1–6.5) and detailed in Tables (6.1-6.5).
We have used default settings of many solvers, including Ipopt [23] and KNITRO [24], to solve the problems
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Step 1 (Input)
Set the initial position of the pursuer P (xP

0 , y
P
0 , θ

P
0 ) and the target at T (xT , yT ). Set turning radius

R = 1, curvature b =
1

R
. Define the variables for arc length are ζi, i = 1, 2, 3.

Step 2 (Determine the trajectory of the pursuers path)
Let the angle of left turn θP (t1) = θP (t0) + bζ1,
and angle of right turn θP (t2) = θP (t1)− bζ2.

Step 3 (Determine the length of the pursuers initial position to intercept position)

Set Curve-St.Line := CS.
Find CS := ζ1 + ζ2 + ζ3 such that
Left turn:
ζ2 = 0 and CS := ζ1 + ζ3,
Or
Right Turn:
ζ1 = 0 and CS := ζ2 + ζ3.

Step 4 (Find total optimum length)

Find ζ := (ζ1, ζ2, ζ3) that solves model (4.12) and f =

3∑
i=1

ζi.

in the tests. We have implemented Algorithm (1) writing programs in AMPL [25]. In addressing our problem,
nearly every solution demonstrated a high rate of convergence. MATLAB is used to simulate the acquired solu-
tions in the numerical experiments as test problems. To simulate our experimental results we use HP ProBook
440 G6 laptop with 8GB RAM and 4.6 GHz Core i7 processor.

Test Problem 1

We considered that the initial position of the pursuer is P (0, 0, 2π/3) and fix the target at T (10, 5). As-
suming the turning radius is one for the turning curve of the pursuer. After testing the model (4.12) we
observed that the pursuer takes the right turn to find the optimum path and takes a turn left for the feasible
path. The total optimum length found by the test is 11.87 with the solving time 0.031 seconds, while the feasible
length is 16.88 by AMPL is taken approximately 0.047 seconds. The comparable path results of the optimum
and feasible path are shown in Table (6.1) and the figure of both possible paths is demonstrated in Figure (6.1)

Table 6.1: Experimental Solutions for Optimum and Feasible Path generations

Positions Length

P (0, 0, 2π/3) Left Right St. Total
T (10, 5) turn turn line value
R = 1 ζ1 ζ2 ζ3 f

Optimal Path 0 1.74 10.13 11.87

Feasible Path 4.74 0 12.14 16.88
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(b) Feasible path.

Figure 6.1: Interception path of the pursuer position P (0, 0) with a heading angle of θP = 2π/3 and target T (10, 5).

Test Problem 2

Now we assume the target position is left side of the pursuer. Let the initial position of the pursuer is
P (0, 0, 2π/3) and the target at T (−6, 3). Assuming the pursuer moves with a turning radius of one. After
testing the model (4.12) we observed that the pursuer takes a left turn to find the optimum path and takes a
turn right for the feasible path. The total optimum length found by the test is 6.74 with the solve time 0.047
seconds while the feasible length is 12.96 by AMPL is taken approximately 0.016 seconds. The comparable
path results of the optimum and feasible path are shown in Table (6.2) and the figure of both possible paths is
demonstrated in Figure (6.2).
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Table 6.2: Experimental Solutions for Optimum and Feasible Path generations

Positions Length

P (0, 0, 2π/3) Left Right St. Total
T (−6, 3) turn turn line value
R = 1 ζ1 ζ2 ζ3 f

Optimal Path 0.61 0 6.13 6.74

Feasible Path 0 5.72 7.24 12.96
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(a) Optimal path.
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2

3

4

(b) Feasible path.

Figure 6.2: Interception path of the pursuer position P (0, 0) with a heading angle of θP = 2π/3 and target T (−6, 3).

Test Problem 3

In this problem we fixed the target position is upside of the pursuer. Let the target position be at T (−1, 5).
Assuming the pursuer moves from P (0, 0) with heading angle π/3 along a turning radius one. Now we observed
that the pursuer takes a left turn to find the optimum path and takes a turn right for the feasible path. The
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total optimum length found by the test is 5.17 with the solving time 0.016 seconds while the feasible length
is 11.33 by AMPL is taken approximately 0.031 seconds. The comparable path results of the optimum and
feasible path are shown in Table (6.3) and the figure of both possible paths is demonstrated in Figure (6.3).

Table 6.3: Experimental Solutions for Optimum and Feasible Path generations

Positions Length

P (0, 0, π/3) Left Right St. Total
T (−1, 5) turn turn line value
R = 1 ζ1 ζ2 ζ3 f

Optimal Path 0.79 0 4.39 5.17

Feasible Path 0 5.61 5.72 11.33



Akter et. al. / GANIT J. Bangladesh Math. Soc. 43.2 (2023) 49–64 59

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

5

(a) Optimal path.

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

3

4

5
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Figure 6.3: Interception path of the pursuer position P (0, 0) with a heading angle of θP = π/3 and target T (−1, 5).

Test Problem 4

Now we locate the target is another location which is below the pursuer position. Assume the target po-
sition be at T (−2,−5). Assuming the pursuer moves from P (0, 0) with heading angle π/3 along a turning
radius one. After testing the problem we find that the pursuer takes a right turn to find the optimum path
and takes a left right for the feasible path to intercept the target. The total optimum length in the interception
found by the test is 8.61 with the solving time 0.031 seconds while the feasible path length is 9.17 by AMPL is
taken approximately 0.047 seconds. The comparable path results of the optimum and feasible path are shown
in Table (6.4) and the figure of both possible paths is demonstrated in Figure (6.4).
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Table 6.4: Experimental Solutions for Optimum and Feasible Path generations

Positions Length

P (0, 0, π/3) Left Right St. Total
T (−2,−5) turn turn line value

R = 1 ζ1 ζ2 ζ3 f

Optimal Path 0 3.38 5.24 8.61

Feasible Path 3.64 0 5.53 9.17
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(b) Feasible path.

Figure 6.4: Interception path of the pursuer position P (0, 0) with a heading angle of θP = π/3 and target T (−2,−5).
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Test Problem 5

In this problem, we show that how can effect the variation of turning radius on the path length. We demon-
strate our model for three different turning radii of the pursuer turning curve while the initial position and the
target position remain constant. Let the initial position of the pursuer is P (0, 0, 2π/3) and the target position
be at T (−80, 20). First, we take the pursuer turning radius is 10. After performing our model (4.12), we find
that the pursuer takes a left turn to find the optimum path and takes a right turn for the feasible path to
intercept the target. The total optimum length in the interception found by the test is 83.36 with the solve time
0.047 seconds.Again we test the same problem with another two turning radius 5 and 25. The comparable path
results for different turning radii are shown in Table (6.5) and the figure of both possible paths is demonstrated
in Figure (6.5).

Table 6.5: Experimental Solutions for Different Turning Radii

Positions Length

P (0, 0, 2π/3) Left Right St. Total
T (−80, 20) turn turn line value

R = 1/|θ̇(t)| ζ1 ζ2 ζ3 f

R = 25 23.01 0 61.91 84.92

R = 10 8.43 0 74.92 83.36

R = 5 4.11 0 78.79 82.89
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Figure 6.5: Interception path of the pursuer position P (0, 0) with a heading angle of θP = 2π/3 and target T (−80, 20).

The model provides solutions for both Dubin path LS (Left turn and straight) and RS (Right turn and straight),
as discussed in the geometric principles (3.1). Additionally, it is important to note that the heading angle of
the pursuer’s movement ranges within the interval of 0 ≤ θP ≤ 2π. Within this range, the model has been
extensively tested and verified through various test problems (specifically, Test Problems 1-5). The efficiency
of the solutions within this specified interval has been thoroughly justified.

7 Conclusion

In this paper, our research offered a reliable and effective method for finding the shortest route for a pursuer
to intercept a stationary target. The proposed mathematical model integrated segments of straight lines and
circular curves using the ideas of Dubin’s path to minimise the lengths of the pursuer’s path. We tested our
model in various positions of the target and pursuer with different heading angles. We observed a significant rate
of convergence to approximate solutions of the proposed model. In summary, the mathematical model serves to
optimize path planning for unmanned aerial vehicles (UAV), addressing key challenges in dynamic environments
and advancing the capabilities of autonomous vehicles. The developed model opens avenues for further research
and development in pursuit of optimal path-planning solutions in dynamic and complex environments.
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