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ABSTRACT

In this research, we study the dynamics of ecological models governed by differential equations. Ecology provides
insight into the interaction between forest organisms, and interrelated processes regarding flora, fauna, and
numerous other species. In particular, the results support population thresholds necessary for survival in some
instances. Subsequently, we explore the response of mangroves of different regions to natural calamities and
man-made disasters. A reaction-diffusion model has been developed to see the dynamics of the tidal woods and
wetlands. Sundarbans, the largest mangrove of Bangladesh, are victim to a vast amount of hazardous events.
This mathematical study of mangroves is unprecedented in such a manner. Furthermore, we continue the study
of a forest ecosystem governed by an age-structured parabolic-ordinary system. We study some properties of
an abstract parabolic equation, the dynamical system, and the limit sets. The model demonstrates a Lyapunov
function which denotes some vital properties of the limit sets.
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1 Introduction

Ecology provides insight into the interaction between forest organisms, and interrelated processes regarding
flora, fauna, and numerous other species [1, 2, 3, 4, 5, 6]. Over the past couple of decades, due to the present
threats of climate change and global warming, there has been extensive literature and research on theoretical
ecology. The study combine pioneer research works in the field of forest ecosystems and theoretical ecology
[7, 8, 9, 10]. Forest ecosystems are resilient in nature, nonetheless hazards at time occur at such massive
immensity it goes beyond the capacity of the forest species leading to loss of vital functionality of ecosystem
[11, 12, 13]. While some ecosystems have reacted slowly to disturbances, drastic changes were observed in
others.

Reaction-diffusion’s systems are of growing interest to explore the nature of various habitat fragments in
nature. One study demonstrated the effects of two distribution functions when two species are distributed with
their corresponding resource function [14, 15, 16, 17]. If the diffusion rate is sufficiently large trajectories of
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this study tend to be uniformly promulgated, whereas nonuniform distribution leads to questionable conse-
quences [18, 19, 20]. The discrepancy between the directed and regular diffusion strategy for the multi-species
competition model was considered in [14, 21, 22].

In this study, we consider an age-structured forest partial differential equation model with two age groups
and involve seed dynamics with a diffusion equation. A simpler version of this model has been introduced in
which a cross-diffusion term was considered. Ecological mechanisms regarding wavefront propagation and the
existence of solutions for forest areas were studied in this research [23]. In [24] an age structured reaction-
diffusion-advection model has been taken into account. The advection equation governs atmospheric moisture
dynamics over forested areas to emphasis examples such as the Amazon forest. Water resource and evapotran-
spiration plays a vital role regarding the good health of the forest. It is worth noting that, discrepancy between
techniques aids to better estimates of moisture conservation in a specific area [11].

This paper main objectives are:

1. Create an age-structured reaction-diffusion model that integrates the influences of atmospheric moisture
transport and water resources.

2. The first goal is to provide some analytical results based on different diffusion rates. It also provides the
local stability analysis, and global asymptotic stability.

3. To focus on the stability of a particular stationary solution.

We consider the following PDE model to describe the forest dynamics [25, 26, 27, 28]:

∂p(t, x)

∂t
= bηs− k(q)p− ωp, in Ω× (0,∞),

∂q(t, x)

∂t
= ωp− γq, in Ω× (0,∞),

∂s(t, x)

∂t
= D∆s− ηs+ µq, in Ω× (0,∞),

∂s

∂n
= 0, in ∂Ω× (0,∞).

(1.1)

With initial conditions, p(x, 0) = p0(x), q(x, 0) = q0(x), and s(x, 0) = s0(x) in a two-dimensional bounded do-
main Ω. In this study, the functions p(t, x) denote young age trees such as saplings, shrubs, q(t, x) demonstrates
mature plantation and the seed density is given by s(t, x). The dynamics of seed density includes diffusion rate
D which plays a vital role in this forest kinematic model. The seed production rate and establishment rate
is denoted by b and η. The competition between old trees and saplings are given by the quadratic function
k(q) = α(q − h)2 + z, which is dependent on old tree density. Moreover, the growth rate of old trees is ω, with
mortality rate is γ.

2 Cauchy Problem

We rewrite the system (1.1) as the following Cauchy problem for an abstract evolution equation,
dP

dt
+AP = F (P ), 0 < t <∞

P (0) = P0,
(2.1)

for X defined as,

X =


pq
q

 ; p, q ∈ L∞(Ω), s ∈ L2(Ω)

 (2.2)

Furthermore, the initial function space is given by,

I =


pq
q

 ; 0 ⩽ p, q ∈ L∞(Ω), 0 ⩽ s ∈ L2(Ω)

 (2.3)
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A is the sectorial operator of the product space X defined on the domain D(A) as a diagonal matrix,

A =


ω 0 0
0 γ 0
0 0 b

 ; p, q ∈ L∞(Ω), s ∈ L2(Ω)

 (2.4)

b is a positive definite self-adjoint operator defined as b = −D∆ + η in L2(Ω) equipped with homogeneou

H2
N (Ω)s Neumann boundary conditions

∂s

∂n
on ∂Ω with domain H2

N (Ω), where H2
N (Ω) is a closed subspace of

H2(Ω) consisting of functions satisfying the boundary conditions [7]. Now, domain for Λ is,

D(Λθ) =

{
H2θ(Ω), 0 ⩽ θ < 3/4,

H2θ
N (Ω), 3/4 < θ ⩽ 1.

(2.5)

The nonlinear operator F is defined as, D(Aν) for 1/2 < ν < 1,

F (P ) =

bηs− k(q)p
ωp
µq

 , P =

pq
s

 ∈ D(Aν). (2.6)

3 Global Solutions

Let us consider the local solution of the system (2.1) on [0, TU ] in the function space,{
0 ⩽ p, q ∈ C([0, TU ];L∞(Ω)) ∩ C1((0, TU ];L∞(Ω)),

0 ⩽ s ∈ C([0, TU ];L2(Ω)) ∩ C((0, TU ];H2
N ∩ C1([0, TU ];L2(Ω)).

(3.1)

Then the priori estimates for local solutions can be established [25],

Proposition 1. In the function space (3.1) then for a constant C > 0 and exponent r > 0 the following
inequality holds for any local solution U.

∥P (t)∥X⩽ C[e−rt∥P0∥X+1], 0 ⩽ t ⩽ TU , (3.2)

Considering the priori estimates for the local solutions of the equation (3.2) from the Proposition 1 with
initial conditions P0 ∈ I, we state the next theorem.

Theorem 1. [25] The system (2.1) has a unique global solution P = (p, q, s) in the function space,{
0 ⩽ p, q ∈ C([0,∞);L∞(Ω)) ∩ C1((0,∞);L∞(Ω)),

0 ⩽ s ∈ C([0,∞);H2
N (Ω) ∩ C((0,∞);L2(Ω)) ∩ C1((0,∞) ∩ L2(Ω)).

(3.3)

The first and second equation of the model (1.1) satisfy the equations,

p(t) = e−
∫ t
0
[k(q)q(v)+ω]dvp0 + bη

∫ t

0

e−
∫ t
v
[k(q)q(τ)+ω]dτs(v)dv, 0 ⩽ t <∞, (3.4)

q(t) = e−tΛq0 + ω

∫ t

0

e−(t−v)γp(v)dv, 0 ⩽ t <∞. (3.5)

For the seed density equation of the model (1.1) the solution satisfies the integral equation,

s(t) = e−tΛs0 + µ

∫ t

0

e−(t−v)Λq(v)dv, 0 ⩽ t <∞, (3.6)

Here, e−tΛ denotes the linear semigroup by Λ.

Proposition 2. Let, P (t) = (p(t), q(t), s(t)) be the global solution to the system (2.1) with P0 ∈ I, then the
following estimates hold for a continuously increasing function, f(.).

∥p(t)∥L∞⩽ f(∥P0∥X), 0 ⩽ t <∞, (3.7)

∥q(t)∥L∞⩽ f(∥P0∥X), 0 ⩽ t <∞, (3.8)

∥s(t)∥L2⩽ f(∥P0∥X), 0 ⩽ t <∞. (3.9)
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Proof. It is known that,
∥P (t)∥L2

⩽ f(∥P0∥L2
), 0 ⩽ t <∞.

It follows from equation (3.6),

∥s(t)∥H2ν ⩽ C

{
∥Λνe−tΛs0∥+

∫ t

0

∥Λνe−(−t−v)Λp(v)∥L2dv

}
⩽ C

(
1 + t−ν

)
e−bt∥s0∥L2

+f∥P0∥L2

∫ t

0

(
1 + (t− v)−ν

)
e−ω(t−v)dv

⩽ C
(
1 + t−ν

)
f (∥P0∥L2) , 0 < t <∞.

Since ∥s(t)∥L∞< C∥s(t)∥H2ν , we obtain the desired result,

∥s(t)∥L∞⩽ (1 + t−ν)f∥P0∥L2
, 0 < t <∞. (3.10)

Now, we use equation (3.4) to obtain,

∥p(t)∥L∞⩽ ∥p0∥L∞+

∫ t

0

e−ω(t−v)(1 + v−ν)dvf∥P0∥L2⩽ f∥P0∥X , 0 ⩽ t <∞. (3.11)

Similarly, we can obtain inequalities (3.7) and (3.8).

Proposition 3. For the derivative P ′(t) = (p′(t), q′(t), s′(t)),

∥p′(t)∥L∞⩽ (1 + t−ν)f1(∥P0∥X), 0 < t <∞, (3.12)

∥q′(t)∥L∞⩽ f1(∥P0∥X), 0 < t <∞, (3.13)

∥s′(t)∥L∞+∥s(t)∥H2⩽ (1 + t−1)f1(∥P0∥X), 0 < t <∞. (3.14)

where f1(.) is an appropriate continuously increasing function.

Proposition 4. For the second order derivative P ′′(t) = (p′′(t), q′′(t), s′′(t)),

∥p′′(t)∥L∞⩽ (1 + t−1−ν)f2(∥P0∥X), 0 < t <∞, (3.15)

∥q′′(t)∥L∞⩽ (1 + t−ν)f2(∥P0∥X), 0 < t <∞, (3.16)

∥s′′(t)∥L∞+∥s′(t)∥H2⩽ (1 + t−2)f2(∥P0∥X), 0 < t <∞. (3.17)

where f2(.) is an appropriate continuously increasing function.

4 Dynamical System

Let P (t) = P (t, P0) be the global solution of (2.1) for any P0 ∈ I in the space (3.3). Then, from (3.2), the
following is obtained,

∥P (t, P0)∥X⩽ C[e−rt∥P0∥X+1], 0 ⩽ t ⩽ ∞, P0 ∈ I. (4.1)

Since, Now, let G(t)P0 = P (t, P0) for 0 ⩽ t < ∞, where G(t) is a nonlinear semigroup on the initial condition
space I. Since the semigroup is continuous on I and equation (4.1) satisfies the system it can be concluded
that system (2.1) is a dynamical system (G(t), I, X) [7, 8].

4.1 Lyapunov Function

Here, we develop a Lyapunov function V (P ) for a dynamical system (G(t), I, X) and let G(t)P0 = P (t, P0).
Let,

χ(t) = ωp− γq

⇒ ∂χ(t)

∂t
= ω

∂p

∂t
− γ

∂q

∂t

⇒ ∂χ(t)

∂t
= ω[bηs− k(q)p− ωp]− γ[ωp− γq]
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⇒ ∂χ(t)

∂t
= ωbηs− [k(q) + ω + γ]χ− γ[k(q) + ω]q. (4.2)

We multiply (4.2) by χ(t) =
∂q
∂t

and then integrate over Ω∫
Ω

χ(t)
∂χ(t)

∂t
dx =

∫
Ω

[
ωbηs

∂q

∂t
− [k(q) + ω + γ]χ2 − γ[k(q) + ω]q

∂q

∂t

]
dx

⇒ 1

2

d

dt

∫
Ω

χ2dx+ γ
d

dt

∫
Ω

Γ(q)dx− ωbη

∫
Ω

∂q

∂t
sdx = −

∫
Ω

[k(q) + ω + γ]

(
∂q

∂t

)2

dx, (4.3)

where Γ(q) =
∫ q

0
[k(q)q + ωq]dq .

Now, we multiply the equation of s in (2.1) by ∂s
∂t and integrate the product over Ω and obtain,

−
∫
Ω

(
∂s

∂t

)2

dx =
d

2

d

dt

∫
Ω

(|∇s|)2dx+
b

2

d

dt

∫
Ω

s2dx− µ

∫
Ω

q
∂s

∂t
dx. (4.4)

Equating equation (4.3) and (4.4)

d

dt

∫
Ω

[
µ

2
χ2 +

dωbη

2
|∇s|2 + γµΓ(q) +

ωb2η

2
s2 − (ωµbη)qs

]
dx

= −
∫
Ω

{
µ[k(q) + ωγ]

(
∂q

∂t

)2

+ ωbη

(
∂s

∂t

)2
}
dx ≤ 0. (4.5)

Here, we note that,

µ

2
(ωp− γq)2 + µΓ(q) +

ωb2η

2
s2 − (ωµbk)qs ≥ C, for all q, s ≥ 0,

with some constant C > 0. So, the functional given by

V (P ) =

∫
Ω

[
µ

2
(ωp− γq)2 +

fωbη

2
|∇s|2 + γµΓ(q) +

ωb2Γ

2
s2 − (ωµbη)qs

]
dx, (4.6)

becomes a Lyapunov function for the dynamical system (G(t), I, X), where P ∈ D(A1/2) [25]. The Lyapunov
function provides the following two propositions.

Proposition 5. For any solution G(t)P0 = P (t), the following inequality holds,∫ ∞

1

∥∥∥∥dPdt (t)
∥∥∥∥2
L2

dt <∞.

Proof. Integrating both sides of eqref on the interval [1, T ],∫ T

1

∫
Ω

{
µ[k(q) + ω + γ]

(
∂q

∂t

)2

+ ωbη

(
∂s

∂t

)2
}
dxdt ⩽∫

Ω

[
µ

2
χ(1)2 +

Dωbη

2
|δs(1)|2+γµΓ(q(1)) + ωb2η

2
s(1)2 + ωµbηq(T )s(T )

]
dx. (4.7)

Utilizing equation (3.2) we have,∫ T

1

∫
Ω

{
µ[k(q) + ω + γ]

(
∂q

∂t

)2

+ ωbη

(
∂s

∂t

)2
}
dxdt ⩽ ∞. (4.8)

Differentiating the equation of p from (1.1) with respect to t, we get,

∂2p

∂t2
= bη

∂s

∂t
− k′(q)

∂q

∂t
− [k(q) + ω]

∂p

∂t
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⇒∂2p

∂t2
= bη

∂s

∂t
− 2ap(q − b)

∂q

∂t
− [k(q) + ω]

∂p

∂t
. (4.9)

We multiply equation (4.9) by
∂p

∂t
and integrate the product over ω. Then,

1

2

d

dt

∫
Ω

(
∂p

∂t

)2

dx =

∫
Ω

(
bη
∂s

∂t
− k′(q)p

∂q

∂t

)
∂p

∂t
dx−

∫
Ω

(k(q) + ω)

(
∂p

∂t

)2

dx

⩽ C(∥P0∥X+1)

∫
Ω

[(
∂q

∂t

)2

+

(
∂s

∂t

)2
]
dx− ω

2

∫
Ω

(
∂p

∂t

)2

dx. (4.10)

Integrating the above inequality over [1, T ], we get

ω

2

∫ T

1

∫
Ω

(
∂p

∂t

)2

dxdt ⩽
1

2

∫
Ω

(
∂p

∂t
(1)

)2

dx+ C(∥P0∥X+1)

∫
Ω

[(
∂q

∂t

)2

+

(
∂s

∂t

)2
]
dxdt.

Using equation (4.8), we conclude that
ω

2

∫ ∞

1

∫
Ω

(
∂p

∂t

)2

dxdt <∞, completing our proof.

Theorem 2. For any solution G(t)P0 = P (t), as t→ ∞ the derivative dP
dt (t) → 0 in the L2 topology.

Proof. Let us consider that as t→ ∞ the derivative
dP

dt
(t) does not tend to 0 in the L2(Ω). Then, there exists,

ϵ > 0 and a time sequence tn → ∞ such that,∥∥∥∥dPdt (tn)
∥∥∥∥2
L2

⩾ ϵ, n = 1, 2, 3, . . .

Using propostion 3 and 4, we have,∣∣∣∣∣ ddt
∥∥∥∥dPdt (t)

∥∥∥∥2
L2

∣∣∣∣∣ = 2

∣∣∣∣∣
(
d2P

dt2
(t),

dP

dt
(t)

)
L2

∣∣∣∣∣ ⩽M, 1 ⩽<∞.

Where M is some constant. Furthermore, by mean-value theorem,∥∥∥∥dPdt (tn)
∥∥∥∥2
L2

⩾

M
(
1− tn + ϵ

M

)
, tn − ϵ

M ⩽ t < tn,

−M
(
1− tn − ϵ

M

)
, tn ⩽ t < tn + ϵ

M ,
(4.11)

Which is a contradiction to the fact that
∥∥∥dPdt (tn)∥∥∥2L2

is integrable in (1,∞).

4.2 Limit Sets

In the study of dynamical systems, a limit set is the state a dynamical system reaches after an infinite
amount of time has passed, by either going forward or backwards in time. In this study, limit sets will be
denoted by, W and defined by,

W(P0) =
⋂
t⩾0

{G(t)P0; t < τ <∞}.

Now, if there exists a time sequence {tn} → ∞ such that G(tn)P0 → P if and only if P ∈ W(P0). Since, there
exists a solution that despite starting from continuous initial conditions converges to a discontinuous stationary
solution the limit set W(P0) = ∅.We now define the L2 limit set, L2 −W(P0). A sequence {(pn, qn, sn)} ∈ X
converges to {(p0, q0, s0)} ∈ X as n→ ∞, if

pn → p0 strongly in L2(Ω),

qn → q0 strongly in L2(Ω),

sn → s0 strongly in L2(Ω).
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To define the s∗ − W− limit set of G(t)P0, P0 ∈ I, we define the weak topology for L∞(Ω). A sequence
{(pn, qn, sn)} ∈ X converges to {(p0, q0, s0)} ∈ X as n→ ∞, if

pn → p0 strongly in L∞(Ω),

qn → q0 strongly in L∞(Ω),

sn → s0 strongly in L2(Ω).

The limit set, s∗ −W is given by,

s∗ −W(P0) =
⋂
t⩾0

{G(t)P0; t < τ <∞}.

Where the above set is the closure in the weak topology of X.

Theorem 3. For each P0 ∈ I,W(P0) ⊂ L2 −W ⊂ s∗ −W(P0) is nonempty.

Proof. By definition, the first relation W(P0) ⊂ L2 − W(P0) is true. Now, let, P = (p, q, s) ∈ L2 − W(P0).
Then, there exists a sequence {tn} → ∞ such that, P (tn)P0 = (p(tn), q(tn), s(tn)) → P in the L2 topoligy of
X. Let ψ ∈ L1(Ω). For any g ∈ L2(Ω),∣∣∣∣∫

Ω

ψ{p(tn)− p}dx
∣∣∣∣ ⩽ ∥ψ − g∥L1

∥p(tn)− p∥L∞+

∣∣∣∣∫
Ω

g{p(tn)− p}dx
∣∣∣∣ .

Since, L2(Ω) is dense in L1(Ω0) and equation (3.7) holds, as t→ ∞,∣∣∣∣∫
Ω

ψ{p(tn)− p}dx
∣∣∣∣ → 0.

Thus, in the weak topology of L∞(Ω), p(tn) → p holds. Similarly it can be shown that, q(tn) → q is true. Thus,
P ∈ s∗ −W(P0).

Theorem 4. For P0 ∈ I, let there exists a time sequence {tn} → ∞ such that G(tn)P0 → (p(tn), q(tn), s(tn))
converges to the function P = (p, q, s) ∈ X almost everywhere in Ω . Then, P ∈ L2 −W(P0).

Proof. Since equation (3.7), (3.8), and (3.10) are true and the almost everywhere convergence implies the
convergence of L2 for each sequence (p(tn), q(tn), and s(tn). Therefore, P ∈ L2 −W(P0) holds.

Proposition 6. For each P0 ∈ I, L2 −W(P0) is an invariant set of G(t), i.e.,

G(t)(L2 −W(P0)) ⊂ L2 −W(P0), 0 < t <∞.

Proof. Firstly, it is important to show that G(t) is continuous from I into itself in the L2 topology. Let,
(p1(t), q1(t), s1(t)) and (p2(t), q2(t), s2(t)) be the solutions to the cauchy problem (2.1) with initial conditions
P01 = (p01, q01, s01) and P02 = (p02, q02, s02) in I respectively. Let, T > 0. Then, from (3.4),

pi(t) = e−
∫ t
0
[k(qi)+ω]dvp01 + bη

∫ t

0

e−
∫ t
v
[k(qi)+ω]dτsi(τ)dτ, 0 ⩽ t <∞.

Subsequently,

p2(t)− p1(t) =e
−

∫ t
0
[k(q1)+ω]dv(e−

∫ t
0
[k(q2)−k(q1)dv − 1)p01+

e−
∫ t
0
[k(q2)+ω]dv(p02 − p01) + bη

∫ t

0

e−
∫ t
0
[k(q2)+ω]dv(s2(τ)− s1(τ))dτ+

bη

∫ t

0

e−
∫ t
τ
[k(q1)+ω]dv(e−

∫ t
τ
[k(q2)−k(q1)]dv − 1)s1(τ)dτ.

Considering (3.7), (3.8), and (3.9) it can be shown,

∥p2(t)− p1(t)∥L2⩽∥L2+Cf(∥P01∥X+∥P02∥X) ∗ [∥e−
∫ t
0
[k(q2)−k(q1)]dv − 1∥L2
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+

∫ t

0

∥s2(τ)− s1(τ)∥L2
dτ +

∫ t

0

∥e−
∫ t
0
[k(q2)−k(q1)]dv − 1∥L2

(1 + τ−ν)dτ ],

0 ⩽ t ⩽ T. (4.12)

For any R, there exists a constant CR > 0 such that |eξ − 1|⩽ CR|ξ| holds for all |ξ|⩽ R. Using this estimate,
it can be verified,

∥e−
∫ t
0
[k(q2)−k(q1)]dv − 1∥L2

⩽ Cf (∥P01∥X+∥P02∥X)

∫ t

0

∥q2(τ)− q1(τ)∥L2
dτ.

Similarly, ∫ t

0

∥e−
∫ t
0
[k(q2)−k(q1)]dv − 1∥L2τ

−(1+ϵ)/2dτ

⩽ Cf (∥P01∥X+∥P02∥X)

∫ t

0

∫ t

τ

∥q2(u)− q1(u)∥L2τ
−(1+ϵ)/2dudτ

⩽ Cf (∥P01∥X+∥P02∥X)

∫ t

0

∫ t

τ

∥q2(u)− q1(u)∥L2
du.

Hence, we obtain,

∥p2(t)− p1(t)∥L2
⩽ ∥p02 − p01∥L2

+Cf (∥P01∥X+∥P02∥X) ∗∫ t

0

{∥q2(τ)− q1(τ)∥L2
+∥s2(τ)− s1(τ)∥L2

} dτ, 0 ⩽ t ⩽ T. (4.13)

Similarly, from (3.5) it can be shown that,

∥q2(t)− q1(t)∥L2
⩽ ∥q02 − q01∥L2

+C

∫ t

0

∥p2(τ)− p1(τ)∥L2
dτ, 0 ⩽ t ⩽ T. (4.14)

Finally, from (3.6), we have,

∥s2(t)− s1(t)∥L2
⩽ ∥s02 − s01∥L2

+µ

∫ t

0

e−(t−τ){q2(τ)− q1(τ)}dτ

∥s2(t)− s1(t)∥L2
⩽ ∥s02 − s01∥L2

+µ

∫ t

0

∥q2(τ)− q1(τ)∥L2
dτ, 0 ⩽ t ⩽ T. (4.15)

Adding equations (4.13), (4.14), and (4.15) and applying Gronwall’s inequality, we can conclude,

∥p2(t)− p1(t)∥L2
+∥q2(t)− q1(t)∥L2

+∥s2(t)− s1(t)∥L2

⩽ ∥P02 − P01∥L2
e(Cf∥P01∥X+∥P02∥X)t, 0 ⩽ t ⩽ T. (4.16)

Theorem 5. For any P0 ∈ I, L2 −W(P0) consists of equilibrium of the dynamical system.

Proof. Let, P = (p, q, s) ∈ L2 −W(P0). Then there exists a time sequence {tn} → ∞ such that G(tn)P0 → P
in the L2 topology. Since s(tn) is a bounded sequence in H2(Ω), we can take a subsequence {s′(tn)} of {s(tn)}
such that {s′(tn)} → s′ strongly in H1(Ω), thus s′(tn) = s′. Also, since (3.7) and (3.8) holds it implies, in any
Lp topology with 2 ⩽ p <∞, the following are also true.

p(tn) → p, and q(tn) → q.

These facts lead to the conclusion that the Lyapunov function V (P (t′n)) given by equation (4.6) is convergent
to V (P ) as t′n → ∞.

V (P ) = lim
n′→∞

V (P (t′n)) = inf
0⩽t<∞

V (G(t)P0) ≡ V∞.
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This implies that, V (P ) ≡ V∞ for all vectors, P ∈ L2 −W(P0). Since, G(t)P ∈ L2 −W(P0) for every t > 0,
using Proposition 6 we have,

V (G(t)P ) ≡ V∞, 0 < t <∞, P ∈ L2 −W(P0).

Subsequently, let G(t)P = P (t) = (p(t), q(t), s(t)). Then, using equation (4.5), we obtain,

d

dt
V (P (t)) = −

∫
Ω

[
µ{k(q) + ω + γ}

(
∂q

∂t

)
+ ωbη

(
∂s

∂t

)]
dx ≡ 0, 0 < t <∞.

Hence,
∂q

∂t
≡ ∂s

∂t
≡ 0 for 0 < t < ∞. Furthermore the second equation of the system (1.1) it follows,

ωp(t) ≡ γq(t). Thus,
∂p

∂t
≡ 0 for 0 < t < ∞. Thus, the proof is complete as G(t)P ≡ P and P must be an

equilibrium of the system.

5 Conclusion

In this study, an abstract reaction-diffusion model has been studied for age-structured class of trees. A
dynamical system was introduced for the reaction-diffusion model. Due to lack of smoothing of solutions of the
young trees, p and old trees, q the underlying spaces were chosen cautiously. We study three kinds of W− limit
sets for each point P0 of the dynamical system. We construct a Lyapunov function for the system and utilize it to
show that L2−W(P0) consists of stationary solutions. In theoretical ecology, there are numerous mathematical
models governing the growth and decay of individual trees, interaction between multiple species in a forest even
other vital elements of nature have been considered. Theoretical results regarding reaction-diffusion models
along with numerical illustrations have been developed in a number of studies [29, 30, 31, 32, 33].

We have considered a mathematical model to represent forest ecology while concentrating on mangroves.
Some scenarios have resulted in the extinction of the forest ecosystem due to excessive predation, while in other
cases the forest persisted. We did a rigorous theoretical analysis of a reaction-diffusion model. The dynamical
behavior of this model is interesting as at the time the trajectories converge to discontinuous stationary solutions.
However, the use of Lyapunov function is utilized to study limit sets of the model. The outcomes depict
important characteristics of forest ecology and resemble real-life issues, thus playing a vital role in mathematical
ecology and dynamical systems.

Here, we discuss some future opportunities for further development and research as open problems.

� We can formulate the model using time-dependent parameters, which will increase the accuracy of pre-
diction

� Harvesting rate can be considered a function that is not proportional to the intrinsic growth rate.

� For the PDE model, we consider the Neumann boundary conditions, Dirichlet or mixed boundary condi-
tions can be studied.

� This study can be extended for multiple species with harvesting. In the case of n-species competitions,
the monotone dynamical systems theory is applicable, and all outcomes can be studied using principal
eigenvalue analysis.

� In this study, we have considered logistic growth law, which can be studied for other growth laws such as
the Gompertz model, Gilpin-Ayala model, Smith’s model, etc.
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