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ABSTRACT 

In this paper we derive the formulation of one dimensional linear and nonlinear system of second 

order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residual 

method. Here we use Bernstein and Legendre polynomials as basis functions. The proposed method 

is tested on several examples and reasonable accuracy is found. Finally, the approximate solutions 

are compared with the exact solutions and also with the solutions of the existing methods. 
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1. Introduction 

Ordinary differential systems have been focused in many studies due to their frequent appearance 

in various applications in physics, engineering, biology and other fields. Wazwaz [1] applied the 

Adomian decomposition method to solve singular initial value problems in the second order 

ordinary differential equations, Ramos [2] proposed linearization techniques for solving singular 

initial value problems (IVPs) of ordinary differential equations, and there are other papers [7 – 9] 

for solving second order IVPs. However, many classical numerical methods used to solve second-

order IVPs that cannot be applied to second order BVPs. For a nonlinear system of second order 

BVPs [3], there are few valid methods to obtain the numerical solutions. Many authors [10, 11] 

discussed the existence of solutions to second order systems, including the approximation of 

solutions via finite difference method. Lu [4] proposed the variational iteration method for solving 

a nonlinear system of second order BVPs. Since piecewise polynomials can be differentiated and 

integrated easily and can be approximated to any function of any accuracy desired. Hence 

Bernstein polynomials have been used by many authors. Very recently, Bhatti and Bracken [5] 

used Bernstein polynomials for solving two point second order BVP, but it is limited only to first 

order nonlinear IVP. Besides spline functions and Bernstein polynomials, there are another type of 

piecewise continuous polynomials, namely Legendre polynomials [6].  
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Therefore, the purpose of this paper is devoted to use two kinds of piecewise polynomials: 

Bernstein and Legendre polynomials widely for solving system of linear and nonlinear second 

order BVP exploiting Galerkin weighted residual method. 

 

2. Some Special Polynomials 

In this section we give a short description on Bernstein [5] and Legendre [6] polynomials which 

are used in this paper. 

(a) Bernstein polynomials 

The general form of the Bernstein polynomials of nth degree over the interval [ , ] is defined by 

[6] 											 , ( ) = ( − ) ( − )( − ) , ≤ ≤ 																	 = 0,1,2, ………… . , 	
Note that each of these + 1 polynomials having degree  satisfies the following properties:	

i. , ( ) = 0,                                              if < 0 or >  , 

ii. ∑ , ( ) = 1 

iii. , ( ) = , ( ) = 0,                               1 ≤ ≤  

The first 11 Bernstein polynomials of degree ten over the interval [0,1] , are given below: 

i. , ( ) = (1 − )  

ii. , ( ) = 10(1 − )  

iii. , ( ) = 45(1 − )  

iv. , ( ) = 120(1 − )  

v. , ( ) = 210(1 − )  

vi. , ( ) = 252(1 − )  

vii. , ( ) = 210(1 − )  

viii. , ( ) = 120(1 − )  

ix. , ( ) = 45(1 − )  

x. , ( ) = 10(1 − )  

xi. , =  

All these polynomial will satisfy the corresponding homogeneous form of the essential boundary 

conditions in the Galerkin method to solve a BVP. 

(b) Legendre Polynomials 

The general form of the Legendre polynomials [6] over the interval [1, −1] is defined by 

						 ( ) = (−1) (2 − 2 )!2 	 ! ( − )! ( − 2 )!  
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where =  for  even and =   for    odd. 

The first ten Legendre polynomials are given below 				 ( ) =   				 ( ) = (3 − 1)  				 ( ) = (5 − 3 )  				 ( ) = (35 − 30 + 3)  				 ( ) = (63 − 70 + 15 )  				 ( ) = (231 − 315 + 105 − 5)  				 ( ) = (429 − 693 + 315 − 35 )  				 ( ) = (6435 − 1201 + 6903 − 1260 − 35)  				 ( ) = (12155 − 25740 + 18018 − 4620 + 315 )  				 ( ) = 1256 (46189 − 109395 + 90090 − 30030 + 3465 − 63) 
 

3. System of Second Order Differential Equations 

General linear system of two second-order differential equations in two unknowns functions ( ) 
and ( ), is a system of the form [2] 

			 ( ) + ( ) + ( ) + ( ) + ( ) + ( ) = ( )( ) + ( ) + ( ) + ( ) + ( ) + ( ) = ( ) 						 
where ( ), ( ), ( ), ( ) are given functions, and ( ), ( )	are continuous, 

 = 1,2,3,4,5,6 

And general nonlinear system of two second-order differential equations in two unknowns 

functions ( ) and ( ), is a system of the form [4] ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + , ) = ( )( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( , ) = ( )  

where ( ), ( ), ( ), ( ) are given functions, ,  are nonlinear functions and ( ), ( )	are continuous, = 1,2,3,4,5,6 
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4. Formulation of Second Order BVP 

Let us consider the one dimensional system of second order differential equations [3] 						− ( ) + ( ) ( ) + ( ) ( ) = ( )− ( ) + ( ) ( ) + ( ) ( ) = ( )  (1) 
for the pair of functions ( ) and ( ) in 0 < < 1. Since each equation is of second order, two 

boundary conditions are required to specify each of the solution components ( ) and ( ) 
uniquely. For convenience, we assume homogeneous Dirichlet data at the ends as boundary 

conditions 

   (0) = (1) = (0) = (1) = 0                       (2)                                 
The data include the prescribed functions , , , ,  and , which are assumed to be bounded and 

sufficiently smooth to ensure subsequent variational integrals are well defined and the problem is 

“well posed”.  

Let us consider two trial approximate solutions for the pair of functions ( ) and ( ) of system 

(1) given by 				 ( ) = ∑ ( ), ≥ 1( ) = ∑ ( ), ≥ 1   (3) 

where  and  are parameter, ( ) are co-ordinate functions (here Bernstein and Legendre 

polynomials) which satisfy boundary conditions (2). 

Now apply Galerkin Method [1] in system (1) we get weighted residual system of equations 

					 (− ( ) + ( ) ( ) + ( ) ( )) ( ) = ( ) ( )(− ( ) + ( ) ( ) + ( ) ( )) ( ) = ( ) ( )  (4) 

Integrating by parts and setting ( ) = 0 at the boundary = 0 and = 1, then we obtain system 

of weighted residual equations 

				 ( ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( )) = ( ) ( )( ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( )) = ( ) ( )  (5) 

Now putting the representation (3) into (5) we get 

				 ( ′( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( ))
= ( ) ( )  
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					 ( ′( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( ))
= ( ) ( )  

We can write above equation as 

					 ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( )
= ( ) ( )  

				 ( ) ( ) + ( ) ( ) ( ) + ( ) ( ) ( )
= ( ) ( )  

= 1,2,3, … ,  

Equivalently, 

								 , + , =
, + , = 																																																																																																															(6) 

         = 1,2,3, … ,  

where, 								 , = [ ( ) ( ) + ( ( ) ( ) ( ))]  

								 , = ( ( ) ( ) ( ))  

								 = ( ) ( )  

								 , = [ ( ) ( ) + ( ( ) ( ) ( ))]  

								 , = ( ( ) ( ) ( ))  									 = ( ) ( )     

        , = 1,2,3, … ,      



166 Rupa & Islam 

For = 1, 2, … ,  we get system of linear equations, which involve parameter  and  which can 

be obtained by solving system (6). System (6) can be assembled by element matrix contribution [3]. Since there is no direct method to solve nonlinear BVPs, so we describe the proposed method 

for nonlinear BVPs through numerical examples in the next section.  

 

5. Numerical Examples 

In this study, we use three BVPs; two linear and one nonlinear, which are available in the existing 

literature [4], the Dirichlet boundary conditions are considered to verify the effectiveness of the 

derived formulations. For each case we find the approximate solutions using different number of 

parameters with Bernstein and Legendre polynomials, and we compare these solutions with the 

exact solutions, and graphically which are shown in the same diagram. 

Example 1 

Consider the following system of equations [4]  			 ( ) + 	 ( ) + 	 ( ) = 2					 ( ) + 2 	 ( ) + 2 	 ( ) = −2 																																																																																																			(7)  
subject to the boundary conditions (0) = (1) = 0, (0) = (1) = 0																																																																																																			(8) 
where 0 < < 1. The exact solution of (7) are ( ) = −  and ( ) = − . 

Solutions using Bernstein polynomials: 

We use Bernstein polynomials as trial solution to solve the system (7). Consider trial approximate 

solutions be 

								 ( ) = , ( )
( ) = , ( ) 																																																																																																																									(9) 

where  and  are parameter and , ( ) are co-ordinate functions of Bernstein polynomials 

which satisfy conditions (8). 

Using the method illustrated in section 4, finally we get, 

− , ( )	 , ( ) + 	 , ( )	 , ( ) + 	 , ( )	 , ( )
= ( ) , ( ) 																																																																																																																																	10( ) 
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	 − , ( )	 , ( ) + 2 	 , ( )	 , ( ) + 2 	 , ( )	 , ( )
= ( ) , ( ) 																																																																																																																																	10( ) = 1,2, … ,   

The above equations are equivalent to the matrix form                                           						 , + , =  

						 , + , =  

where, 				 , = [ − , ( ) , ( ) + ( 	 , ( ) , ( ))]  

			 , = ( 	 , ( ) , ( ))  

			 = 2	( ) , ( )  

				 , = [ − , ( ) , ( ) + (2 	 , ( ) , ( ))]  

				 , = (2 	 , ( ) , ( ))  			 = −2	 , ( )    , = 1,2, … ,  

Similarly, we can derive the equation (10) using Legendre polynomials. 

 
Table 1: Results of ŭ(x) of equation (7) in Example 1 
 

 

 

 
Exact value 

Approximate  
Solution ( ) Absolute error Approximate  

Solution ( ) Absolute error Absolute error 
[4] 

Legendre polynomial n=2 Bernstein polynomial n=9  . 	 0.0000000000	 0.0000000000	 0.0000000000 0.000000000 0.0000000000 . 	. 	 −0.0900000000	 −0.0900000000 6.9388939 × 10 −0.09000000 2.8008740130 × 10  . 	. 	 −0.1600000000	 −0.1600000000 2.7755575 × 10 −0.16000000 3.6821549280 × 10  . 	. 	 −0.2100000000	 −0.2100000000 0.0000000000 −0.21000000 6.2091685960 × 10  . 	. 	 −0.2400000000	 −0.2400000000 0.0000000000 −0.24000000 1.0877099220 × 10  . 	. 	 −0.2500000000	 −0.2500000000 0.0000000000 −0.25000000 1.3281251100 × 10  . 	. 	 −0.2400000000	 −0.2400000000 0.0000000000 −0.24000000 1.0877088120 × 10  . 	. 	 −0.2100000000	 −0.2100000000 0.0000000000 −0.16000000 6.2091748410 × 10  . 	. 	 −0.1600000000	 −0.1600000000 0.0000000000 −0.16000000 3.6821518060 × 10  . 	. 	 −0.0900000000	 −0.0900000000 0.0000000000 −0.09000000 2.8008692590 × 10  . 	. 	 0.0000000000	 0.0000000000	 0.0000000000 0.000000000 0.0000000000 . 	
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			 ( ) = ( )
( ) = ( ) 																																																																																																																																(15) 

where  and  are parameter ( ) are co-ordinate functions of Legendre polynomials which 

satisfy conditions (14). 

Using the method illustrated in section 4, finally we get 

		 − ( )	 ( ) + ( 	 ( )	 ′ ( ) + cos( )	 ′ ( )	 ( ) 				
= ( ) ( ) 																																																																																																		16( ) 

	 − ( )	 ( ) + 	 ( )	 ( ) + 	 ( ) ( )
= ( ) ( ) 																			 , = 1,2, , ……… , 																																																																											16( ) 
The above equations are equivalent to the matrix form 											 , + , = 																																																																																																															17( ) 
										 , + ( , + , ) = 																																																																																																	17( ) 
where, 								 , = − ( ) ( ) + (( 	 ′ ( ) ( ))  

							 , = (cos( )	 ′ ( ) ( ))  

							 = (sin( ) + ( − + 2) cos( ) + (1 − 2 ) cos( )) ( )  

						 , = − ( ) ( )  

							 , = ( 	 ( ) ′ ( ))  

						 , = ( 	 ( ) ( ))  
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					 = (−2 + sin( ) + ( − 1) sin ( ) + ( − ) cos( )) ( )  

     , = 1,2, ……… , . 
The initial values of these coefficients  are obtained by applying Galerkin method to the BVP 

neglecting the nonlinear term in ( ). That is, to find initial coefficients we will solve the 

system 

																											 , + , = 	
																						 , + , = 																																																																																												17( ) 

 whose matrices are constructed from 								 , = − ( ) ( ) + (( 	 ( ) ( ))  

								 , = cos( )	 ( ) ( )  

									 = (sin( ) + ( − + 2) cos( ) + (1 − 2 ) cos( )) ( )  

 
Table 5: Results of ŭ(x) of equation (13) 
 

x  

Exact value 

Approximate  
Solution v(x) 

Absolute error Approximate  
Solution v(x) 

Absolute error 

 

Absolute error 

[4] 

Legendre polynomial n=2 Bernstein polynomial n=9 

0.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

0.1 –0.0898500750 0.0000000000 1.421902218×10–3 -0.0898555699 5.494900000×10–6 3.00000×10–4 

0.2 –0.1589354646 –0.0912719772 7.683689640×10–4 –0.1589352157 2.489000000×10–7 2.50000×10–3 

0.3 –0.206641447 –0.1597038336 6.095282628×10–4 –0.2068641998 5.51000000×10–8 7.80000×10–3 

0.4 –0.2336510054 –02062546164 1.767632585×10–3 –0.2336500057 9.9970000×10–7 1.66000×10–2 
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0.9 –0.0783326910 –0.1443590784 1.430719837×10–3 –0.0783311456 1.54540000×10–6 3.09000×10–2 

1.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 

									 , = − ( ) ( )  



Num

 
Tab
 

x 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Onc

sub

con

fina

 

Con

We

resi

of t

fun

resu

merical Solution


1
0, (D ji

  1
0 (Dj

i,j = 1, 2,

Figure 5: G

ble 6: Results of ν

 

Exact value 

0 0.0000000000

1 0.0900000000

2 0.1600000000

3 0.2100000000

4 0.2400000000

5 0.2500000000

6 0.2400000000

7 0.2100000000

8 0.1600000000

9 0.0900000000

0 0.0000000000

ce the initial 

stituted into eq

ntinues until th

al values of the

nclusions 

e have derived, 

idual method. T

the problem. I

ctions in the a

ults but also on

s of System of S

 ))()(( dxLxxL ij

 )sin(2 xx

, ..., n. 

raphical represe

ν (x) of equatio

Approximate 
Solution v(x) 

Legendr

0 0.0000000000

0 0.0891388543

0 1.1593721549

0 0.2103612466

0 0.2417674742

0 0.2532521825

0 0.2444767162

0 0.2151024200

0 0.1647906387

0 0.0932027171

0 0.0000000000

values of the

quation 17(b) t

he converged v

e parameters in

in details, the 

This method en

In this method

approximation.

n the formulatio

Second Order Bo

dx  

 22 (sin)1(xx

ntation of exact 

on (13) using 

 Absolute erro

re polynomial n=2 

0 0.000000000

3 8.61145740×1

9 6.27845120×1

6 3.61246620×1

2 1.76747424×1

5 3.25218250×1

2 4.47671616×1

0 5.10241998×1

7 4.79063872×1

1 3.20271714×1

0 0.000000000

e coefficients

to obtain new 

values of the 

nto (14), we obt

formulation of

nables us to ap

d, we have use

. The concentr

ons.  

oundary Value

 2 co)()( xxx

and approximat

or Approxim
Solution v

Ber

00 0.0000000

10–4 0.0899952

10–4 0.1600002

10–4 0.21009999

10–2 0.23999999

10–3 0.2511119

10–2 0.2400001

10–2 0.2099999

10–3 0.1599879

10–3 0.0900501

00 0.0000000

ai are obtain

estimates for t

unknown para

tain an approxi

f system of sec

pproximate the 

ed Legendre a

ration has give

)())os( dxxLx j

te solutions of u(

mate  
v(x) 

Absolu

rnstein polynomial n=

0000 0.00000

2168 4.783200

2894 2.894000

9877 9.998770

9998 2.000000

9953 9.953000

1511 1.511000

9899 1.010000

9652 1.203480

1123 5.011230

0000 0.00000

ned from the 

the values of a

ameters are ob

imate solution 

cond order BVP

solutions at ev

and Bernstein p

en not only on

(x) of equation (

ute error 

 

Abs

=9 

000000 0.00

000×10–6 0.00

000×10–7 0.00

000×10–5 0.00

00×10–10 0.00

000×10–7 0.00

000×10–7 0.00

000×10–8 0.00

000×10–5 0.00

000×10–5 0.00

000000 0.00

system 17(c),

ai. This iteratio

btained. Substi

of the BVP (1

Ps by Galerkin

very point of th

polynomials a

n the performan

173 

 

13) 

solute error 

[4] 

000000000 

000000000 

000000000 

000000000 

000000000 

000000000 

000000000 

000000000 

000000000 

000000000 

000000000 

 they are 

on process 

ituting the 

3). 

n weighted 

he domain 

as the trial 

nce of the 



174 

We

to s

des

com

app

 

RE

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[10]

[11]

Figure 6: G

e may notice th

solve for BVP.

ired formulati

mpared with th

plied for higher

FERENCES

M. Wazwaz
differential e

J.I. Ramos, 
equations, A

Eric B. Beck
I, Prentice-H

Jungfeng Lu
value proble

M.I. Bhatti a
Comput. App

Md. Shafiqu
numerical so
33(2013) 53

Gear, C.W.
Englewood 

S.O. Fatunl
Academic P

L. Lustman 
hypercube, C

] H.B. Thomp
for second o

] Xiyon Chen
differential s

Graphical represe

hat the formula

 Some linear a

ons whose an

he exact soluti

r order BVPs to

z, A new meth
equations, Appl. 

Linearization 
Appl. Math. Comp

ker, Graham F, C
Hall, Inc (1981). 

u, Variational Ite
ems, Computer M

and P. Bracken,
pl. Math. 205 (2

ul Islam, Md. 
olutions of fourt
3-64.  

. Numerical ini
Cliffs, NJ (1971

a, Numerical M
ress, Boston (19

B. Neta, W. G
Computer Mathe

pson, C. Tisdell, 
order systems of 

ng, Chengkui Z
system, J. Math.

entation of exact 

ations of this st

and nonlinear e

nalytical soluti

ions and we h

o get the desire

hod for solving 
Math. Comput.

techniques for 
put. 161 (2005) 

Carey and J. Tin

eration Method f
Mathematics wit

 Solutions of Di
2007), 272-280.

Bellal Hossain,
th order boundar

itial value prob
). 

Methods for Init
988). 

Gragg, Solution o
ematics with App

Systems of diff
ordinary differe

Zhong, Existen
 Anal. Appl. 312

and approximat

tudy are easy to

examples are t

ons are not av

have found a g

ed accuracy. 

singular initial
128 (2002) 45-5

singular initial 
525-542. 

nsley Oden, FIN

for Solving a no
th Applications, 5

ifferential Equat

, On the use o
ry value problem

blems in ordin

tial Value Prob

of ordinary diff
plications, 23 (1

ference equation
ential equations, 

nce of positive 
2 (2005) 14-23.

 

te solutions of v(

o understand a

tested to verify

vailable. The 

good agreemen

l problems in t
57. 

value problem

NITE ELEMENTS

onlinear System 
54(2007), 1133-

tions in a Bernst

of piecewise sta
ms, GANIT Jn. B

nary differential 

blems in Ordina

ferential initial v
992), 65-72. 

s associated with
J. Math. Anal. A

solutions for 

Ru

(x) of equation (

and may be imp

y the effectiven

computed solu

nt. This metho

the second orde

ms of ordinary 

TS An Introductio

of Second-order
-1138. 

tein Polynomials

andard polynom
Bangladesh Math

 equations, Pre

ary Differential 

value problems 

h boundary valu
Appl. 248 (2000)

a second orde

upa & Islam 

 

13) 

plemented 

ness of the 

utions are 

od may be 

er ordinary 

differential 

on, Volume 

r Boundary 

s Basis, Jn. 

mials in the 
h. Soc. Vol. 

entice-Hall, 

Equations, 

on an intel 

ue problems 
) 333-347.  

er ordinary 


