
GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 37 (2017) 93-98 

A NOTE ON -MULTIPLIERS OF PRIME RINGS 
 

Kyung Ho Kim 
Department of Mathematics, Korea National University of Transportation 

Chungju 380-702, Korea 
E-mail: ghkim@ut.ac.kr 

 
Received 09.04.2017               Accepted 30.07.2017 

 
 

ABSTRACT 

In this paper, we investigate the commutativity of prime rings admitting -multipliers of R 

satisfying certain identities and some related results have also been discussed. 
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1. Introduction 

An additive mapping d:	R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R.  Over the last few decades, several authors have investigated the relationship between the 

commutativity of the ring R and certain specific types of derivations of R. The first result in this 

direction is due to E. C. Posner [9] who proved that if a ring R admits a nonzero derivation d such 

that [d(x), x] 	∈ 	Z(R) for all x ∈ R, then R is commutative. This result was subsequently, refined 

and extended by a number of authors. In [7], Bresar and Vuckman showed that a prime ring must 

be commutative if it admits a nonzero left derivation. Recently, many authors have obtained 

commutativity theorems for prime and semiprime rings admitting derivation, generalized 

derivation. Many considerable works have been done on left (right) multipliers in prime and 

semiprime rings during the last couple of decades ([10-12]). In this paper, we investigate the 

commutativity of prime rings admitting α-multipliers of R satisfying certain identities and some 

related results have also been discussed. 

 

2. Preliminaries 

Throughout R will represent an associative ring with center Z(R). For all x, y ∈ R, as a usual 

commutator, we shall write [x, y] = xy − yx, and	x ∘ y = xy + yx. Also, we make use of the 

following two basic identities without any specific mention:  x ∘ (yz) = (x ∘ y)z − y[x, z] = y(x ∘ z) + [x, y]z	(xy) ∘ z = x(y ∘ z) − [x, z]y = (x ∘ z)y + x[y, z]	[xy, z] = x[y, z] + [x, z]y	and	[x, yz] = y[x, z] + [x, y]z.	
Let R is a ring. An additive mapping F ∶ 	R → R is called a left multiplier if F(xy) = F(x)y holds 

for every x, y ∈ R. Similarly, an additive mapping F ∶ 	R → R is called a right multiplier if F(xy) 	=
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	xF(y) holds for every x, y ∈ R. If F is both a left and a right multiplier of R, then it is called a 

multiplier of R. An additive 

mapping F ∶ 	R → R is called a generalized derivation if there exists a derivation d:	R → R such 

that F(xy) = F(x)y + xd(y) holds for all x, y ∈ R, and d is called the associated derivation of F. 
Obviously, a generalized derivation with d = 0 covers the concept of left multipliers. It is easy to 

see that F ∶ 	R → R is a generalized derivation if and only if F is of the form F	 = 	d + H, where d 

is a derivation and H is a left multiplier. An additive mapping F ∶ 	R → R is called an α-multiplier 

if F(xy) = F(x)α(y) = α(x)F(y) holds for every x, y ∈ R, where α:	R → R is a mapping.  
Lemma 2.1 Let R be a prime ring. If F is a nonzero α-multiplier of R associated with an onto map 

α, then F(x) ∈ Z(R) for all x ∈ Z(R). 
Proof. Let z ∈ Z(R). By definition of F, we have 

F(xz) = α(x)F(z) = F(z)α(x) = F(zx) 
for every x ∈ R. Since α is onto, we have xF(z) = F(z)x for all x ∈ R, and so F(z) ∈ Z(R). 
Lemma 2.2 ([3]) Let R be a prime ring. If z ∈ Z(R) − {0} and xz ∈ Z(R), then x ∈ Z(R). 
 

3.  -multipliers of prime rings 

Theorem 3.1 Let R be a prime ring and let α be an automorphism of R. If F ∶ 	R → R is a nonzero 

α -multiplier of R and F(R) ⊆ Z(R), then R is commutative. 

Proof. Assume that F(x) ∈ Z(R) for all x ∈ R. Then we have 

F(xy)α(t) = α(t)F(xy), ∀	x, y, t ∈ R,	                          (1) 

which implies that F(x)α(y)α(t) = α(t)F(x)α(y) for all x, y, t ∈ R. Hence 

F(x)α(y)α(t) = F(x)α(t)α(y)∀	x, y, t ∈ R,                        (2) 

That is, F(x)[α(y), α(t)] = 0 for all x, y, t ∈ R. Replacing y by yx in this relation, we have 

F(x)α(y)[α(x), α(t)] = 0 for all x, y, t ∈ R. This implies that F(x)R[α(x), α(t)] = {0} for all 

x, t ∈ R. Since R is prime, we have F(x) = 0 or [α(x), α(t)] = 0 for all x, t ∈ R. Let K ={x ∈ R	|	F(x) = 0} and L = {x ∈ R	|	[α(x), α(y)] = 0, ∀	y ∈ R}. Then K and L are both additive 

subgroups and K ∪ L = R,	but (R, +) is not union of two its proper subgroups, which implies that 

either K = R or L = R. In the former case, we have F = 0, contradiction, and so L = R, that is, [α(x), α(y)] = 0 for all x, y ∈ R. Since α is onto, we have [x, y] = 0 for all x, y ∈ R, which 

implies that R is commutative. 
 

Theorem 3.2 Let R be a prime ring and let α be an automorphism of R and F ∶ 	R → R be an α-

multiplier of R. If F(xy) = F(x)F(y) for all x, y ∈ R and F(x) ≠ x for all x ∈ R, then F	 = 	0. 
Proof. By hypothesis, we have  
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F(xy) = F(x)α(y) = F(x)F(y), ∀	x ∈ R.                         (3) 

Replacing x by xw in (3), we have F(xw)α(y) = F(xw)F(y), that is, F(x)α(w)α(y) =
F(x)α(w)F(y) for all x, y, w ∈ R. This implies that F(x)α(w)(α(y) − F(y)) = 0 for all x, y,w ∈
R. Taking α 1(w) instead of w in this relation, we have F(x)w(α(y) − F(y)) = 0, and so 

F(x)R α(y) − F(y) = {0}. Since α is onto, we have F(x)R y− F(y) = {0}. Since R is prime, 

we have F(x) = 0 for all x ∈ R or y − F(y) = 0 for all y ∈ R. But F(x) 	≠ x for all x ∈ R, and so 

F(x) 	= 	0 for all x ∈ R. 
 

Theorem 3.3 Let R be a prime ring and let α be an onto mapping on R. If F is a nonzero α-

multiplier of R such that F([x, y]) ∈ Z(R) for all x, y ∈ R and F(Z(R)) ≠ 0, then R is 

commutative. 

Proof. By hypothesis, we have 

F([x, y]) ∈ Z(R), ∀	x, y ∈ R.                                  (4) 

Since F(Z(R)) ≠ 0, there exists z ∈ Z(R) such that F(z) ≠ 0. Thus F(z) ∈ Z(R) by Lemma 2.1. 

Replacing x by zx in (4), 

F(z[x, y]) ∈ Z(R), ∀	x, y, z ∈ R,                                (5) 

which implies that F(z)α([x, y]) ∈ Z(R) for all x, y, z ∈ R. Since R is prime and F(z) ≠ 0, we 

have α([x, y]) ∈ Z(R) for all x, y ∈ R. Using the fact that α is onto, we get [x, y] ∈ Z(R) for all 

x, y ∈ R. This implies that 

r, [x, y] = 0, ∀	x, y, r ∈ R.	                                  (6) 

Taking yx instead of y in the relation (6), we have [y, x][r, x] = 0 for all x, y, r ∈ R. 
Again, replacing r by rs in the last relation, we have [y, x]R[s, x] = {0} for all x, y, s ∈ R. Since R is 

prime, we have either [y, x] = 0 or [s, x] = 0 for all x, y ∈ R. Let K = {x ∈ R	|	[y, x] = 0}	and	L ={x	|	[s, x] = 	0}. Then K and L are both additive subgroups and K ∪ L = R, but	(R, +) is not union 

of two its proper subgroups, which implies that either K = R or L = R. That is, In both cases, R is 

commutative. 
 

Theorem 3.4 Let R be a prime ring and let α be an onto map on R. If F is a nonzero α-multiplier of 

R such that F(x ∘ y) ∈ Z(R) for all x, y ∈ R and F(Z(R)) ≠ 0, then R is commutative. 

Proof. By hypothesis, we have 

F(x ∘ y) ∈ Z(R), ∀	x, y ∈ R.                                 (7) 

Since F(Z(R)) ≠ 0, there exists z ∈ Z(R) such that F(z) ≠ 0. Thus F(z) ∈ Z(R) by Lemma 2.1. 

Replacing x by zx in (7), we have 

F z(x ∘ y) ∈ Z(R), ∀	x, y, z ∈ R,                              (8) 
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which implies that F(z)α(x ∘ y) ∈ Z(R) for all x, y, z ∈ R. Since R is prime and F(z) ≠ 0, we 

have α(x ∘ y) ∈ Z(R) for all x, y ∈ R. Using the fact that α is onto, we get x ∘ y ∈ Z(R) for all 

x, y ∈ R. Replacing x by xz in the last relation and using the fact that yx = −xy, we obtain 

x[z, y] = 0 for all x, y, z ∈ R. That is, R[z, y] = {0}. This implies that xR[z, y] = {0} for 0 ≠ x ∈ R. 
Since R is prime, we have [z, y] = 0 for all y, z ∈ R, which means that R is commutative. 

 

Theorem 3.5 Let R be a prime ring and let α be an onto map on R. If F is a nonzero α-multiplier of 

R such that x ∘ F(y) ∈ Z(R) for all x, y ∈ R and F(Z(R)) ≠ 0, then R is commutative. 

Proof. By hypothesis, we have 

x ∘ F(y) ∈ Z(R), ∀	x, y ∈ R.                                (9) 

Since F(Z(R)) ≠ 0, there exists z ∈ Z(R) such that F(z) ≠ 0. Thus F(z) ∈ Z(R) by Lemma 2.1. 

Replacing y by zy in (9), we have F(z)(x	 ∘ 	α(y)) ∈ Z(R) for all x, y ∈ R. Since R is prime and 

F(z) ≠ 0, we have x	 ∘ 	α(y) ∈ Z(R) for all x, y ∈ R. Using the fact that α is onto, we get x	 ∘ 	y ∈
Z(R) for all x, y ∈ R. Using the same argument of the last part of proof of Theorem 3.4, we get 

the required result. 
 

Theorem 3.6 Let R be a prime ring and let α be an onto map on R. If F is a nonzero α-multiplier of 

R such that [x,F(y)] ∈ Z(R) for all x, y ∈ R and F(Z(R)) ≠ 0, then R is commutative. 

Proof. By hypothesis, we have [x,F(y)] ∈ Z(R), ∀	x, y ∈ R.                               (10) 

Since F(Z(R)) ≠ 0, there exists z ∈ Z(R) such that F(z) ≠ 0. Thus F(z) ∈ Z(R) by Lemma 2.1 

Replacing y by zy in (10), we have F(z)[x, α(y)] + [x,F(z)]α(y) ∈ Z(R) for all x, y ∈ R, which 

implies that F(z)[x, α(y)] ∈ Z(R) for all x, y ∈ R. Since R is prime and F(z) ≠ 0, we have [x, α(y)] ∈ Z(R) for all x, y ∈ R. Using the fact that α is onto, we get [x, y] ∈ Z(R) for all 

x, y ∈ R. Using the same argument of the last part of proof of Theorem 3.3, we get the required 

result. 
 

Theorem 3.7 Let R be a prime ring and let α be an onto map on R. If F is a nonzero α-multiplier of 

R such that [F(x),F(y)] ∈ Z(R) for all x, y ∈ R and F(Z(R)) ≠ 0, then R is commutative. 

Proof. By hypothesis, we have [F(x),F(y)] ∈ Z(R), ∀	x, y ∈ R.                             (11) 

Since F(Z(R)) ≠ 0, there exists z ∈ Z(R) such that F(z) ≠ 0. Thus F(z) ∈ Z(R) by Lemma 2.1. 

Replacing y by zy in (11), we have F(z)[F(x), α(y)] + [F(x), F(z)]α(y) ∈ Z(R) for all x, y ∈ R, 
which implies that F(z)[F(x), α(y)] ∈ Z(R) for all x, y ∈ R. Since R is prime and F(z) ≠ 0, we 

have [F(x), α(y)] ∈ Z(R) for all x, y ∈ R. Using the fact that α is onto, we get [F(x), y] ∈ Z(R) for 

all x, y ∈ R. By the Theorem 3.6, we get the required result.  
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Theorem 3.8 Let R be a prime ring and let α be an onto map on R. If F is a nonzero α-multiplier of 

R such that F(x) 	 ∘ 	F(y) ∈ Z(R) for all x, y ∈ R and F(Z(R)) ≠ 0, then R is commutative. 

Proof. By hypothesis, we have 

F(x) ∘ F(y) ∈ Z(R), ∀	x, y ∈ R.                             (12) 

Since F(Z(R)) ≠ 0, there exists z ∈ Z(R) such that F(z) ≠ 0. Thus F(z) ∈ Z(R) by Lemma 2.1. 

Replacing y by zy in (12), we have F(z)(F(x) 	 ∘ 	α(y)) + [F(x),F(z)]α(y) ∈ Z(R) for all x, y ∈
R, which implies that F(z)(F(x) 	∘ 	α(y)) ∈ Z(R) for all x, y ∈ 	R. Since R is prime and F(z) ≠ 0, 
we have F(x) 	∘ 	α(y) ∈ Z(R) 
for all x, y ∈ R. Using the fact that α is onto, we get F(x) 	∘ 	y ∈ Z(R) for all x, y	 ∈ R. By the 

Theorem 3.5, we get the required result. 
 

Theorem 3.9 Let R be a prime ring and let α be an onto map on R. If F is a nonzero α-multiplier of 

R such that [F(x), y] − [x, y] ∈ Z(R) for all x, y ∈ R and F Z(R) ≠ 0	and		F(x) ≠ x	for	all	x ∈
R	, then R is commutative. 

Proof. By hypothesis, we have [F(x), y] − [x, y] ∈ Z(R), ∀	x, y ∈ R.                           (13) 

Since F(Z(R)) ≠ 0, there exists z ∈ Z(R) such that F(z) ≠ 0. Thus F(z) ∈ 	Z(R) by Lemma 2.1. 

Replacing x by zx in (13), we have F(z)[�(x), y] − z[x, y] ∈ Z(R) for all x, y ∈ R. Since α is 

onto, we have 

F(z)[x,			y] − z[x, y] = (F(z) − z)[x, y] ∈ Z(R), ∀		x, y ∈ R.                             (14) 

Since R is prime and F(z) − z ≠ 0, we have [x, y] ∈ Z(R) for all x, y ∈ R. This implies that R is 

commutative. 
 

Theorem 3.10 Let R be a prime ring and let α be an onto map on R. If F is a nonzero α-multiplier 

of R such that F(x) ∘ y − (x	 ∘ 	y) ∈ Z(R) for all x, y ∈ 	R and F Z(R) ≠ 0	and		F(x) ≠
x	for	all	x ∈ R, then R is commutative. 

Proof. By hypothesis, we have 

F(x) ∘ y − (x	 ∘ 	y) ∈ Z(R), ∀	x, y ∈ R.                           (15) 

Since F(Z(R)) ≠ 0, there exists z ∈ Z(R) such that F(z) ≠ 0. Thus F(z) ∈ Z(R) by Lemma 2.1. 

Replacing x by zx in (15), we have F(z)(α(x) ∘ y) − z(x	 ∘ 	y) ∈ Z(R) for all x, y, z ∈ R. Since α 

is onto, we have  

F(z)(α(y) ∘ y	) − z(x	 ∘ 	y	) = (F(z) − z)(x	 ∘ 	y) ∈ Z(R), ∀	x, y ∈ R.                          (16) 

Since R is prime and F(z) − z ≠ 0, we have x	 ∘ 	y ∈ Z(R) for all x, y ∈ R. Using the same 

argument of the last part of proof of Theorem 3.4 we get the required result.  
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Theorem 3.11 Let R be a prime ring and let α be an onto map on R. If F is a nonzero α-multiplier 

of R such that [F(x), F(y)] − [x, y] ∈ Z(R) for all x, y ∈ R and F(Z(R)) ≠ 0, then R is 

commutative. 

Proof. By hypothesis, we have [F(x),F(y)] − [x, y] ∈ Z(R), ∀	x, y ∈ R.                          (17) 

Since F(Z(R)) ≠ 0, there exists z ∈ Z(R) such that F(z) ≠ 0. Thus F(z) ∈ Z(R) by Lemma 2.1. 

Replacing x by zx in (17), we have F(z)[α(x),F(y)] − z[x, y] ∈ Z(R) for all x, y, z ∈ R. Taking y 

instead of x in the last relation, we have 

F(z)[α(y),F(y) ∈ Z(R), ∀	y, z ∈ R.                            (18) 

Since R is prime and F(z) ≠ 0, we have [α(y),F(y)] ∈ Z(R) for all y ∈ R. Since 

α	is	onto,we	have	[y,F(y)] ∈ Z(R)	for	all	y ∈ R	 By Theorem 3.6, we get the required result. 
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