JORDAN DERIVATIONS ON LIE IDEALS OF σ-PRIME RINGS

Akhil Chandra Paul¹ and Md. Mizanor Rahman^{2,*}

¹Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh. ²Department of Mathematics, Jagannath University, Dhaka-1100, Bangladesh. ^{*}Corresponding author: mizanorrahman@gmail.com

Received 03.03.2015 Accepted 10.11.2015

ABSTRACT

In this paper we prove that, if U is a σ -square closed Lie ideal of a 2-torsion free σ -prime ring R and d: R(R) is an additive mapping satisfying $d(u^2) = d(u)u + ud(u)$, for all $u \in U$ then d(uv) = d(u)v + u d(v) holds for all $u, v \in U$.

Keywords: Lie ideal, σ -square closed Lie ideal, σ -prime ring, Jordan derivation, derivation.

1. Introduction

Throughout the paper, we consider R to be an associative ring with centre Z. [a, b] = ab-bawhich denotes the commutator of a and b, we will use the identities: [ab, c] = [a, c]b + a[b, c]and [a, bc] = [a, b]c + b[a, c] for all $a, b, c \in R$. An additive subgroup U of R is called a Lie ideal if $[U, R] \subseteq U$. An additive mapping d: R(R) is called a derivation if d(ab) = d(a)b + ad(b) holds for all $a, b \in R$ and it is called a Jordan derivation if $d(a^2) = d(a)a + ad(a)$ holds for all $a \in R$. Clearly every derivation is a Jordan derivation but the converse is not true in general. A ring R is said to be a prime ring if aRb = 0 $(a, b \in R)$ implies that a = 0 or b = 0. An additive mapping f: R(R) is called a generalized derivation with the associated derivation d:R(R) if f(ab) = f(a)b + a d(b) holds for all $a, b \in R$; it is called a Jordan generalized derivation with the associated derivation d of R such that $f(a^2) = f(a)a + ad(a)$ holds for all $a \in R$. R. Awtar [1] proved that if $U \notin Z$ is a square closed Lie ideal of a 2-torsion free prime ring R and d:R(R) is an additive mapping such that $d(u^2) = d(u)u + ud(u)$, for all $u \in U$ then d(uv) = d(u)v + ud(v) holds for all $u, v \in U$.

We need the following lemmas due to R. Awtar [1] for proving our result.

Lemma 1.1 If $U \not\subseteq Z$ is a Lie ideal of a ring R, then d(uv + vu) = d(u)v + ud(v) + d(v)u + vd(u) holds for all $u, v \in U$.

Lemma 1.2 If $U \not\subseteq Z$ is a Lie ideal of a ring *R*, then d(uvu) = d(u)vu + ud(v)u + uvd(u) holds for all $u, v \in U$.

Lemma 1.3 If $U \not\subseteq Z$ is a Lie ideal of a ring R, then d(uvw + wvu) = d(u)vw + ud(v)w + uvd(w) + d(w)vu + wd(v)u + wvd(u) holds for all $u, v, w \in U$.

Lemma 1.4 If $U \not\subseteq Z$ is a Lie ideal of a ring R, then $u^v[u, v] = 0$ holds for all $u, v \in U$, where $u^v = d(uv) - d(u)v \mid u d(v)$.

Lemma 1.5 If $U \not\subseteq Z$ is a Lie ideal of a ring *R*, then $[u, v]u^v = 0$ for all $u, v \in U$, where u^v is as in Lemma 1.4

2. Jordan Derivations on Lie Ideals of σ -Prime Rings

Let R be a ring. A mapping (: R(R) is called an involution if ((a + b) = ((a) + ((b), (2(a) = a)))and ((ab) = ((b)) ((a)) holds for all $a, b \in R$. A Lie ideal U of R is called a σ -Lie ideal if (U) = U and it is called a σ -square closed Lie ideal if it is a σ -Lie ideal and for all $u \in U, u^2 \in U$. A ring R with involution σ is said to be a σ -prime ring if $aRb = aR(b) = \{0\}$ implies that a=0 or b=0. It is worthwhile to note that every prime ring having an involution σ is σ prime but the converse is not true in general. As an example, let $T = R \times R^{\circ}$, where R° is an opposite ring of a prime ring R with involution (x, y) = (y, x). Then T is not prime if (0, a)T(a, 0) = 0. But, R is σ -prime if we set (a, b)T(x, y) = 0 and (a, b)T((x, y)) = 0, then $aRx \times yRb = 0$ and $aRy \times xRb = 0$ and thus aRx = yRb = aRy = xRb = 0 by Oukhtite and Salhi [6]. We define the set $S_1 a\sigma(R) = \{x(R: (x) = \pm x)\}$ which are known as the set of symmetric and skew symmetric elements of R. Let U be a Lie ideal of R. We define $\mathcal{C}_{\mathcal{R}}(U) = \{r \in \mathbb{R}: ru = ur, \forall u \in U\}$ which we shall call the centralizer of U with respect to R. Oukhtite and Salhi [12] worked on left derivation on σ -prime rings and proved that $U \subseteq Z$ or d(U) = 0, where U is a nonzero σ -square closed Lie ideal of R. Oukhtite and Salhi [12] described additive mappings $d:R(R \text{ such that } d\{u^2\}) = 2ud(u) \forall u \in U$, where U is a nonzero σ -square closed Lie ideal of a 2-torsion free σ -prime ring R and prove that d(uv) = ud(v) + vd(u) for all u, v ∈ U. Afterwords, Oukhtite, Salhi and Taoufiq [11] studied Jordan generalized derivations on σ -prime rings and proved that every Jordan generalized derivation on U of R is a generalized derivation on U of R, where U is a σ -square closed Lie ideal of a 2-torsion free σ -prime ring R. Some significant results on Lie ideals and generalized derivations in σ -prime rings have been obtained by M. S. Khan and M. A. Khan [5]. On the other hand, various remarkable characterizations of σ -prime rings on σ -square closed Lie ideals have been studied by many authors viz. M. R. Khan, D. Arora and M. A. Khan [4]; Oukhtite and Salhi [7, 8, 9,10] and J. Bergun, I. N. Herstein and J. W. Kerr [2] and I. N. Herstein [3]. In this paper, we shall prove that if $d: R \to R$ is an additive mapping satisfying $d(u^2) = 2ud(u) \forall u \in U$, where U is a σ -square closed Lie ideal of a 2-torsion free σ -prime ring R then d(uv) = ud(v) + vd(u) for all $u, v \in U$ and hence every Jordan derivations on a σ -prime ring R is a derivation on R. We begin with the following results.

Lemma 2.1 Let R be a 2-torsion free σ -prime ring and U be a σ -Lie ideal of R. Let $u \in U$ be any element such that [u, [u, x]] = 0, for all $x \in R$, then [u, x] = 0.

Proof: We have [u, [u, x]] = 0 for all $x \in R$. Let $y \in R$, then $xy \in R$. Replacing x by xy, we have [u, [u, xy]] = 0. So 0 = [u, [u, xy]] = [u, x[u, y] + [u, x]y]

Jordan Derivations on LIE Ideals of σ -Prime Rings

= [u, x[u, y]] + [u, [u, x]y]= x[u, [u, y]] + [u, x][u, y] + [u, x][u, y] + [u, [u, x]]y= 2[u, x][u, y].

Since R is 2-torsion free so [u, x][u, y] = 0. For every $z \in R$ we have $zy \in R$. Putting zx for y, we have [u, x][u, z] = 0. Therefore, 0 = [u, x](z[u, x] + [u, z]x)

= [u, x]z[u, x] + [u, x][u, z]x= [u, x]z[u, x].

Therefore, [u, x]R[u, x] = 0. Since ((U) = U, we have ((u) = u, for all $u \in U$. Let $x \in S_{a\sigma}(R)$. Then $((x) = \pm x$. If ((u) = u and ((x) = -x, then

Hence [u, x]R[u, x] = [u, x]R([u, x] = 0. By the σ -primeness of R, we get [u, x] = 0.

Lemma 2.2 Let *R* be a 2-torsion free σ -prime ring and $U \neq 0$ be a σ -Lie ideal and a σ - subring of *R*. Then either $U \subseteq Z$ or *U* contains a nonzero σ -ideal of *R*.

Proof: First we assume that, U as a σ -ring is not commutative. Then for some $u, v \in U$, $[u, v] \neq 0$ and $[u, v] \in U$. Therefore the ideal J of R generated by [u, v] is nonzero, $J \subseteq U$ and (U) = J. On the other hand, let us assume that U is commutative. Then for every $u \in U$, [u, [u, x]] = 0 for all $x \in R$. Hence by Lemma 2.1, [u, x] = 0. This shows that $U \subseteq Z$.

Lemma 2.3 If $U \not\subseteq Z$ is a σ -Lie ideal of a σ -prime ring R, then $C_R(U) = Z$.

Proof: $C_R(U)$ is both a σ -subring and a σ -Lie ideal of R and $C_R(U)$ contains no nonzero σ -ideal of R. In view of Lemma 2.2, $C_R(U) \subseteq Z$. Therefore, $C_R(U) = Z$.

Lemma 2.4 If U is a σ -Lie ideal of a σ -prime ring R and $a \in R$. If [a, [U, U]] = 0 then [a, U] = 0, that is, $C_R([U, U]) = C_R(U)$.

Proof: If $[U, U] \not\subseteq Z$, then by Lemma 2.3, $a \in Z$, so a centralizes U. On the other hand, let $[U, U] \subseteq Z$, then we have [u, [u, x]] = 0 for $u \in U$ and $x \in R$. In view of Lemma 2.1, [u, x] = 0. This yields that $U \subseteq Z$. For both the cases we have seen that $a \in C_R(U)$. This gives that $C_R([U, U]) = C_R(U)$.

Lemma 2.5 Let $U \not\subseteq Z$ be a σ -square closed Lie ideal of a 2-torsion free σ -prime ring R and d:R(R) be an additive mapping satisfying $d(u^2) = d(u)u + u d(u)$, for all $u \in U$. If $u^v = d(uv) | d(u)v - u d(v)$, for all $u, v \in U$ then $u^v w[u, v] = 0$, for all $w \in U$.

Proof: In view of Lemmas 1.4 and 1.5, we have $[u^v, [u, v]] = u^v[u, v] - [u, v]u^v = 0$. This yields that $u^v \in C_R([U, U]) = C_R(U)$, by Lemma 2.4. Hence for every $w \in U$, we have $u^v w[u, v] = 0$. **Lemma 2.6** ([7], Lemma 2.2) Let $U \not\subseteq Z$ be a σ -Lie ideal of a 2-torsion free σ -prime ring R and $a, b \in R$ such that aUb = aU(b) = 0, then a = 0 or b = 0.

Theorem 2.7 Let U be a σ -square closed Lie ideal of a 2-torsion free σ -prime ring R and d:R(R) be an additive mapping satisfying $d(u^2) = d(u)u + u d(u)$, for all $u \in U$, then d(uv) = d(u)v + ud(v) holds for all $u, v \in U$.

Proof: If U is a non-commutative Lie ideal of R then $U \notin \mathbb{Z}$. By Lemma 2.5, we have $a^{b}w[a,b] = \mathbf{0}$ for all $a, b, w \in U$. Let us assume that $a, b \in U \cap S_{a\sigma}(R)$. Since ((U) = (U), we have ([a,b] = [a,b] as $[a,b] \in U$. If $((b) = \mathbf{1}b$ and ((a) = a, then Also, if ((b) = b and $((a) = \mathbf{1}a,$ then ([a,b] = [a,b]. Therefore, we have $a^{\dagger}b w[a,b] = a^{\dagger}b w([a,b] = 0$. By applying the Lemma 2.6 in the above relation, we obtain that $a^{b} = \mathbf{0}$ or $[a,b] = \mathbf{0}$ for all $a, b \in U \cap S_{a\sigma}(R)$. Let $I_a = \{b \in U_{f_a}a^{b} \oplus I_{f_a} \in U_{f_a}a^{b} \oplus I_{f_a} \in U: [a,b] = 0\}$. Then I_a and I_a are additive subgroups of U such that Then by Brauer's trick $I_a = U$ or $I_a = U$. Using the similar argument, we have $U = \{a \in U: U = I_a\}$ or $U = \{a \in U: U = J_a\}$. If $U = \{a \in U: U = J_a\}$ then [a,b] = 0, which yields that $U \subseteq Z$, by Lemma 2.2. Which is a contradiction to the fact that $U \notin Z$. So we have $U = \{a \in U: U = I_a\}$ and hence $a^{b} = \mathbf{0}$ for all $a, b \in U \cap S_{a\sigma}(R)$. This implies

$$d(ab) = d(a)b + ad(b), \forall a, b(U \cap S_1 a\sigma(R) \dots \dots \dots (1))$$

Now let $u, v \in U$. If we define $u_1 \mathbf{1} = u + ((u), u_1 2 = u | ((u), v_1 \mathbf{1} = v + ((v), v_1 2 = v | ((v), u_1 2 = v | ((v), u_1 2 = v | ((v), u_1 2 = v | (v), u_1 2 = v$

 $d(2u2v) = d(u_1 v_1 + u_1 v_2 + u_2 v_1 + u_2 v_2)$

$$= d(u_1)v_1 + u_1d(v_1) + d(u_1)v_2 + u_1d(v_2) + d(u_2)v_1 + u_2d(v_1) + d(u_2)v_2 + u_2d(v_2)$$

$$= (d(u_1) + d(u_2))v_1 + (u_1 + u_2)d(v_1) + (d(u_1) + d(u_2))v_2 + (u_1 + u_2)d(v_2)$$

 $= d(u_1 + u_2)v_1 + 2ud(v_1) + d(u_1 + u_2)v_2 + 2ud(v_2) = d(2u)v_1 + 2ud(v_1) + d(2u)v_2 + 2ud(v_2) = 2u$ = 2d(u)2v + 2ud(2v)

$$= 4d(u)v + 4ud(v)$$

Thus 4d(uv) = 4(d(u)v + u d(v)). Since *R* is 2-torsion free, we obtain d(uv) = d(u)v + u d(v). If *U* is a commutative σ -Lie ideal of *R*, then by Lemma 2.2, $U \subseteq Z$. Therefore, by using 2-torsion freeness of *R* and in view of the Lemma 1.1, we have d(uv) = d(u)v + ud(v). Jordan Derivations on LIE Ideals of σ -Prime Rings

In view of above theorem, we obtain the following corollary.

Corollary 2.8 Let *R* be a 2-torsion free σ -prime ring. Then every Jordan derivations on *R* is a derivation on *R*.

REFERENCES

- [1] Awtar, R., Lie ideals and Jordan derivations of prime rings, Proc. Math. Soc. 90(1) (1984), 9-14.
- [2] Bergun, J., Herstein, I. N. and Kerr, J. W., Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259-267.
- [3] Herstein, I. N., Topics in Ring Theory, The University of Chicago Press, Chicago, 111 London, 1969.
- [4] Khan, M. R., Arora, D. and Khan, M. A., Notes on derivations and Lie ideals in sigma-prime rings, *Advances in Algebra*, **3**(1) (2010), 19-23.
- [5] Khan, M. S. and Khan, M. A., Lie ideal and generalized derivations in sigma-prime rings, J. Algebra, 6(29) (2012), 1419-1429.
- [6] Oukhtite, L. and Salhi, S., On generalized derivations of sigma-prime rings, *African Diaspora J. Math.*, 5(1) (2006), 19-23.
- [7] Oukhtite, L. and Salhi, S., On commutativity of sigma-prime rings, *Glasnik Mathematicki*, 41(1) (2006), 57-64.
- [8] Oukhtite, L and Salhi, S., Derivations and commutativity of sigma-prime rings, Int. J. Contemp., 1(2006), 439-448.
- [9] Oukhtite, L. and Salhi, S., On derivations in sigma-prime rings, Int. J. Algebra, 1(2007), 241-246.
- [10] Oukhtite, L. and Salhi, S., Sigma-Lie ideals with derivations as homomorphisms and antihomomorphisms, *Int. J. Algebra*, 1(2007), 235-239.
- [11] Oukhtite, L., Salhi, S. and Taofiq, L., Jordan generalized derivations on sigma-prime rings, *Int. J. Algebra*, **1**(5) (2007), 231-234.
- [12] Oukhtite, L. and Salhi, S., Centralizing automorphisms and Jordan left derivations on sigma-prime rings, *Advances in Algebra*, 1(1) (2008), 19-26.