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ABSTRACT 

This paper is devoted to find the numerical solutions of the fourth order linear and 
nonlinear differential equations using piecewise continuous and differentiable 
polynomials, such as Bernstein, Bernoulli and Legendre polynomials with specified 
boundary conditions. We derive rigorous matrix formulations for solving linear and 
non-linear fourth order BVP and special care is taken about how the polynomials 
satisfy the given boundary conditions. The linear combinations of each polynomial 
are exploited in the Galerkin weighted residual approximation. The derived 
formulation is illustrated through various numerical examples. Our approximate 
solutions are compared with the exact solutions, and also with the solutions of the 
existing methods. The approximate solutions converge to the exact solutions 
monotonically even with desired large significant digits. 
Keywords: Galerkin method, Fourth order linear and nonlinear BVP, Bernstein, 
Bernoulli and Legendre polynomials. 

1. Introduction 
In the literature of numerical analysis, there are many fourth order linear and nonlinear 
boundary value problems arising in science and engineering which are solved either 
analytically or numerically. For this, many authors have attempted to solving fourth order 
boundary value problem (BVP) to obtain high accuracy rapidly by using a numerous 
methods, such as least square method, finite difference method, Sinc-Galerkin method, 
and also some other methods using polynomial and nonpolynomial spline functions.  
Since the piecewise polynomials can be differentiated and integrated easily, and can be 
approximated any function to any accuracy desired. So Bernstein polynomials have been 
studied by many authors [1 – 3], spline functions [6 – 10]  have been studied extensively 
for solving only linear BVP. Recently Loghmani and Alavizadeh [7]  has attempted to 
solve both linear and nonlinear BVP using least square method with B-splines. Special 
nonlinear boundary value problems have been studied by Twizell and Tirmizi [13] using 
multiderivatives with Pade` approximation method, also by El-Gamel et al [11] and only 
linear BVP by Smith et al [12] by the technique of Sinc-Galerkin methods.  
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Very recently, Bhatti and Bracken [1] used Bernstein polynomials for solving two point 
BVP by the Galerkin method, but it is limited only to second order linear BVP and to first 
order nonlinear IVP. Besides spline functions and Bernstein polynomials, there are 
another types of piecewise continuous polynomials, namely Bernoulli polynomials and 
Legendre polynomials, which are available in the book [Atkinson, 4].  But none has 
attempted, to the knowledge of the present authors, to solve the fourth order BVP using 
these polynomials. Therefore, the purpose of this paper is devoted to use three kinds of 
piece wise polynomials: Bernstein, Bernoulli and Legendre polynomials widely for 
solving linear and nonlinear fourth order BVP exploiting Galerkin weighted residual 
method. 
However, in this paper, we give a short description on Bernstein, Bernoulli and Legendre 
polynomials and their properties first in section 2. Then we discuss in section 3, the 
formulation for solving linear fourth order BVP by Galerkin weighted residual method, 
using Bernstein, Bernoulli and Legendre polynomials as basis functions in the 
approximation, in details. Then we deduce similar formulation for nonlinear problems in 
the next section. Numerical examples, for both linear and nonlinear boundary value 
problems, are considered to verify the proposed formulation, and the obtained results are 
compared as well. 

2. Some special polynomials 
(a) Bernstein polynomials 
The general form of the Bernstein polynomials of nth degree over the interval ],[ ba  is 
defined by [1 – 3] 
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For example, the first 11 Bernstein polynomials of degree 10 over the interval  ]1,0[   are 
given bellow:  
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Note that each of these n+1 polynomials having degree n satisfies the following 
properties: 
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1,,2,1   ,0)()()( ,,  nibBaBiii nini    

For these properties, Bernstein polynomials are used in the trail functions satisfying the 
corresponding homogeneous form of the essential boundary conditions in the Galerkin 
method to solve a BVP. 
(b) Bernoulli Polynomials  
The Bernoulli polynomials [4] of degree n  can be defined over the interval [0, 1] 
implicitly by   

kn
k

n

k
n xb

k
n

xB 


 










0
)(              (2a) 

where,  kb  are Bernoulli numbers given by 
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Also eqns. (2a) can be written explicitly as 
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The first 10 Bernoulli polynomials are given bellow: 
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(c) Legendre Polynomials  
The general form of the Legendre polynomials [4] of degree n  is defined by  
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The first few Legendre polynomials are given below : 
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3. Galerkin Weighted Residual Formulation of 4th order BVP 
In this section we first obtain the rigorous formulation for fourth order linear BVP and 
then we extend our idea for solving nonlinear BVP. For this, we consider a linear fourth 
order differential equation 
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with Dirichlet boundary conditions 

,)( 1aau   2)( abu               (5b) 

and with Neumann boundary conditions       

,)( 1cau   ,)( 2cbu               (5c) 

where )(),( xsxp  and )(xr  are specified continuous functions, and 1a , 2a , 1c , 2c  are 
specified numbers. We want to solve the BVP of the form (5) by Galerkin method [5] 
using the polynomials, described in section 2, as trial functions.  
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We approximate the solution of the differential equation (5a) as 
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Using (6) into Eq. (5a), the Galerkin weighted residual equations are: 
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since 0)()(  bBaB jj and using the boundary condition in Eq. (5c). 

On using (8), the Eq. (7) leads us 
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Since from (6), we have 
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Solving the system (10a), we find the values of the parameters ia , and then substituting 
into (6), we get the approximate solution of the desired BVP (5). 
For nonlinear fourth order BVP, we first compute the initial values on neglecting the 
nonlinear terms and using the system (10a). Then using the iterative method we find the 
numerical approximations for desired nonlinear BVP. This formulation is described 
through the numerical examples in the next section. 

4. Numerical Examples 
In this section, we consider four linear and one nonlinear problems to verify the proposed 
formulation in section 3. For this, we give the results for linear problems in brief 
depending on prescribed boundary conditions, but the nonlinear problem is illustrated in 
details. All the computations are performed by MATLAB. Since the convergence of linear 
BVP is calculated by 
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where )(~ xun  denotes the approximate solution using n polynomials and   depends on 

the problem which varies from 710 . In addition, the convergence of nonlinear BVP is 
assumed when the absolute error of two consecutive iterations,   satisfies  
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where N  is the Newton’s iteration number and   varies from 1110 .  
Example 1: We first consider the BVP [6]: 
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Using the method illustrated in section 3, we approximate )(xu  as 
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Here 0)(0 x  as specified by the essential boundary conditions of Eq. (11b).  
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Solving the system (13a), we find the values of the parameters and then substituting these 
parameters in Eq.(12), we get the approximate solution of the BVP (11) for different 
values of n .  
 

Table 1: Observed maximum errors for the example 1. 

Number of Polynomial 
used Bernstein Bernoulli Legendre Reference results 

3 31014.1   31014.1   31013.1   

1110417.1  , [6] 
5 61085.2   61085.2   61085.2   

7 91043.4   91043.4   91043.4   

9 121036.1   121050.3   121050.3   
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The absolute errors, using different number of polynomials, with previous results 
obtained in [6], are summarized in Table 1.  
Example 2: Consider the BVP [6, 7, 8, 9] 
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euu 4)1(,0)0(  ,           (14c) 

with exact solution, xexxxu )1()(   . 

Our absolute errors for different number of polynomials, shown in Table 2, to compare 
with existing methods. 

Table 2: Observed maximum errors for the example 2. 

Number of 
Polynomial used Bernstein Bernoulli Legendre Reference results 

3 31046.2   31047.2   31047.2   111042.1  , [6] 
111072.3  , [7] 
81096.4  ,  [8] 
61037.5  ,  [9] 

5 61094.5   61094.5   61094.5   

7 91001.9   91001.9   91001.9   

9 121013.7   121012.7   121015.7   

Example 3: We consider another BVP [8] 
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The exact solution of this BVP is, xexxu )1()( 2 . 

Table 3: Observed maximum errors for the example 3. 

Number of 
Polynomial used Bernstein Bernoulli Legendre Reference 

results 

3 21026.5   21026.5   21026.5   

51084.1  , [8] 
5 41072.4   41072.4   41072.4   

7 61083.2   61087.2   61087.2   

9 91011.9   91012.9   91012.9   
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The absolute errors, shown in Table 3, are listed to compare with existing results obtained 
in [8]. 
Example 4: We consider linear BVP [9, 10]: 
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In Table 4, we list the absolute errors are obtained by the present method to compare with 
the results obtained so far. 

Table 4: Observed maximum errors for the example 4. 

Number of Polynomial 
used Bernstein Bernoulli Legendre Reference results 

7 91071.8   91071.8   91072.8   

61022.6  , [9] 
121082.2  , [10] 

9 1110912.2   1110912.2   1110912.2   

12 141050.8   141050.8   141050.8   

15 171033.8   171033.8   171055.5   

 
Example 5: We consider the 4th order nonlinear BVP [11, 13] 
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The exact solution of this BVP is  )1ln()( xxu  . 

We approximate )(xu  as 
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Here 2ln)(0 xx   is specified by the essential boundary conditions in (17b). Also  
0)1()0(  ii BB  for each 1,,3,2,1  ni   

Using (18) into Eqn. (17a), the Galerkin weighted residual equations are: 
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Now the initial values of the coefficients  ia  are obtained by applying the modified 
Galerkin method to the BVP neglecting the nonlinear term in (20a). That is, to find initial 
coefficients we will solve the system only 

GAD               (21a) 

whose matrices are constructed from 
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         (21c) 

Once the initial values of the ia  are obtained from Eqn. (21a), they are substituted into 
Eqn. (20a) to obtain new estimates for the values of ia . This iteration process continues 
until the converged values of the unknown parameters are obtained. Substituting the final 
values of the parameters in Eqn. (18), we obtain an approximate solution of the BVP 
(17).  
Since the absolute errors, for different number of polynomials, are shown in Table 5 with 
5 iterations.  
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Table 5: Observed maximum errors for the example 5 with five iterations. 

Number of 
Polynomial used Bernstein Bernoulli Legendre Reference 

results 

3 41080.2   41080.2   41080.2   

8102.2  , [11] 
5105.6  , [13] 

5 61071.4   61071.4   61059.4   

7 81017.9   81017.9   81017.9   

9 91010.1   81099.8   91010.3   

5. Conclusion 
In this paper first we have used Bernstein, Bernoulli and Legendre, the piecewise 
continuous and differentiable polynomials, for solving fourth order linear and nonlinear 
BVPs in the Galerkin method. The concentration has given not only on the performance 
of the results but also on the formulation. We may notice that the formulation of this 
paper is very easy to understand and may be implemented to solve for BVP whose 
analytical solution is not available. The results of each problem guarantee the 
convergence and stability. Some results confirm also with great accuracy than the results 
obtained by the previous methods so far. 
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