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ABSTRACT

Jacobson radical of gamma rings is one of the most significant concept in the ring theory. In
this paper we consider the Jacobson radical for gamma rings due to A.C. Paul and T.M. Abul
Kalam Azad [5]. Some new characterizations are developed in this radical. The Jacobson
Density Theorem and its converse Theorem are also proved here.

1. Introduction

S.Kyuno [3] introduced the Jacobson radical J(M) using the right quasi-regularity. He
also proved that the right Jacobson radical is equal to that of the left one.

A.C. Paul and T. M. Abul Kalam Azad [5] gave the notion of Jacobson radical for I'-rings
by means of annihilators of the I'M-modules. They have developed some
characterizations of this radical.

T.S. Ravisankar and U.S. Shukla [6] studied Jacobson radicals in the setting of modules.
They obtained a number of remarkable properties of these radicals.

Jacobson radicals for I'-rings are also studied may other authors such as Kyuno, Coppage
and Luh etc.

In this paper, we have depeloped some properties of Jacobson radicals which are different
and significant in the Mathematical interest. We have also proved Jacboson Density
Theorem and its converse Theorem.

2. Preliminaries

2.1. Definitions.

Gamma Ring: Let M and I" be two additive abelian groups. Suppose that there is a
mapping from M x I' x M - M (sending (X, a, Y) into Xay) such that

1) X+Yy)a z=Xxaz +yoz
X (o + B)z =Xaz + xPz
xa(y + z) = Xay + xaz 0

i) (xay)Bz=xo(yp2),
where X, Y, zeM and a, Bel’. Then M is called a I'-ring.

Ideal of I'-rings: A subset A of the T'-ring M is a left (right) ideal of M if A is an additive
subgroup of M and MI'A = {caa | ceM, ael’, acA}(AI'M) is contained in A. If A is both
a left and a right ideal of M, then we say that A is an ideal or two sided ideal of M.
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Matrix Gamma Ring: Let M be a I'-ring and let My, , and I, denote, respectively, the
sets of m x n matrices with entries from M and of n x m matrices with entries from I, then
Mmn is a [y m -ring and multiplication defined by

(aij)(yij)(bij) = (Cij), where Gj = ZZaipy quqj' If m=n, then M, is a [',-ring.
pq

Division gamma ring: Let M be a I'-ring. Then M is called a division I'-ring if it has an
identity element and its only non zero ideal is itself.

Nilpotent element: Let M be a I'-ring. An element X of M is called nilpotent if for any
yeT, there exists a positive integer n = n(y) such that (xy)"x = (XyXy...yxy)x = 0.

Nil ideal: An ideal A of a I'-ring M is a nil ideal if every element of A is nilpotent i.e. for

all xeA and yeT, (Xy)"x = (XyXy . . . yXy)x = 0, where n depends on the particular element x
of A.

Nilpotent ideal: An ideal A of a T'-ring M is called nilpotent if (AI')"A = (ATAI . .
....'A)A = 0, where n is the least positive integer.

Maximal ideal: An ideal R in a I'-ring M is called a maximal

ideal in M if (i) RcM and (ii) whenever L is an ideal in M such that RcL.cM, then either
L=RorL=M.

Annihilator of a subset of a I'-ring: Let M be a I'-ring. Let S be a sub set of M. Then the
left annihilator 1(S) of S is defined by 1(S) = {meM | mI'S =0}, where as the right
annihilator r(S) is defined by r(S)={meM| SI'm =0}.

Idempotent element: Let M be a T'-ring. An element ¢ of M is called idempotent if eye
=e # ( for some yel.

Primitive idempotent: Let M be I'-ring. An idempotent e of M is called primitive if it is
impossible to express as the sum of two orthogonal idempotent elements.

Internal direct sum: Let M be a I'-ring and N;and N, be two left ideals of M such that
(1) M=N;+Ny= {n+n, | nieN,neN,}
i) NinN2= {0}

Then we say M is the internal direct sum or simply direct sum of N; and N, and we write
M= N1 (‘B Nz.

I'M-module. Let M be a I'-ring and let (P, +) be an abelian group. Then P is called a left
I'M-module if there exists a ['-mapping (I"-composition) from MxI'xP to P sending (m, o,
p) to map such that

) (M +my)ap =mop + map
i) moup: + P2) = Map; + Map;

iii) (m,am,)Bp = ma(m,Pp),
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for all p, p1, p.€P, m, m; meM, o, Bel.

If in addition, M has an identity 1 and 1yp = p for all peP and some yeT, then P is called
a unital I'M-module.

Sub I'M-module: Let M be a I'-ring. Let P be a left TM-module. Let (Q, +) be a
subgroup of (P, +). We call Q, a sub left [M-module of P if myqeQ for all meM, qeQ
and yerl.

Irreducible I’'M-module: Let M be a I'-ring and P be left ’'M-module. We say that P is
an irreducible left 'M-module if

(1) P#0andP2Q 20, Qisasub I'M- module of P, implies Q =P or Q =0, and
(i1) myp # 0 for some meM, peP and yeTl.

I'M-homomorphism: Let M be a I'-ring. Let P and Q be two left 'M-modules. Let ¢ be
a map of P into Q. Then ¢ is called a 'M-homomorphism if and only if (X +Yy) = @(X) +
o(y) and e(myX) = mye(x) for all x, yeP, meM and yeI. If ¢ is one-one and onto, then ¢
is a 'M-isomorphism and is denoted by P = Q. If ¢ is a 'M-homomorphism of P into Q,
then kernel of o, i.e., kerp = {xeP | ¢(X) = 0}, which is a left sub 'M-module of P and
image of ¢ i.e., Imp = {yeQ | y = @(X) for some xeP} is a left sub 'M-module of Q. We
use the notation Hompy(P, Q) to denote the set all 'M-homomorphisms of P into Q. If Q
= P, then ¢ is called a 'M-endomorphism. Clearly Homry(P, P) forms a I'-ring. We call
Hompm(P, P) the I'-ring of 'M -endomorphism of P.

Let M be a I'-ring and A is an ideal of M. Since every ideal A is a 'M-module, then the
homomorphism between two ideals are the same as that of given above.

I"-vector space: Let (V, +) be an abelian group. Let A be a division I'-ring with identity 1
and let ¢: AxI'xV— V, where we denote ¢(m,y,v) by myv. Then V is called a left I"-vector
space over A, if for all 3;, &,€A, vy, V,€V and yeT, the following hold:.

1) O1y(vy+vy) = 01yvy + 87V
il) (01t 82)yvy =d1yvy + dryvy
iii) (81B82)yvi = 81B(82yv1)

iv) lyv,= v, for some yel.

We call the elements v of V vectors and the elements 6 of A scalars. We also call dyv the
scalar multiple of v by d. Similarly, we can also define right I'-vector space over A.

Sub I'-Space: Let V be a left I'-vector space over A. A non empty sub set U of V is called
a sub ['-Space of V if

(1) (U, +)1is asub group of (V, +)
(i) oyueU for all 5e€A, yel', ueU.
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It is clear that U is a sub I'-space of V provided that U is closed with respect to the
operations of addition in V and scalar multiplication of vectors by scalars.

Linear I"-combination: Let V be a left I'-vector space over a division I'-ring A. Let v;, V,
, ..., VheV and let yeT, then the vector V= 0;yv; + 8;yV2 + ... + OpyVn, 01,02, ..., Oy EA
is called a linear y-combination of the V;’s over A. If v is a linear y-combination for some
vel, then v is called a linear ['-combination of the Vv;’s over A.

Linearly I'-independent and linearly I'-dependent:Let V be a left I'-vector space over
a division ['-ring A. Let yel', then the set of vectors {Vi|i€/\} is called linearly y-
independent over A (or simply y-independent) if for each finite sub set of vectors

Vi sViys s Vi OF (vilieA}, O1YVi, + 0¥V, F e +8,yv; =0implies &, = &, =

........ = 8, = 0. Otherwise, the set {v; | ieA} is called linearly y-dependent (or simply -
dependent). If {v; | ieA} is y-independent for some yeT’, then {v; | ieA} is called linearly
I-independent. Otherwise the set {Vv; | ie A} is called linearly I'-dependent.

Generators of a I'-vector space: Let V be a left I'-vector space over a division I'-ring A.
Let G be a sub set of V. Let G = {vi}. Then G is said to be a set of generators for V or G
spans V, if any veV is a linear I'-combination of vectors in G.

Basis of a I'-vector space: Let V be a left ['-vector space over a division I'-ring A. A basis
B for V is a subset of V such that

(i) BspansVand
(il)) B is I'-independent

Dimension of a I'-vector space: Let V be a left I"-vector space over a division I'-ring A.
If V has a basis with n elements, then we say that V is finite dimensional of dimension n
over A and we denote this by [V : A] = n. If V does not have a finite basis, then we say
that V is infinite dimensional and write [V : A] = c. We note that if V = {0}, then [V : A] =
0, since empty set is a basis for {0}.

Linear I'-transformation: Let V and U be a left I'-vector spaces over a division I'-ring
A. Let T:V— U satisfy

(1) T(vitvy) =T(vy) + T(v,) for all vi, v,V
(i) T(Syv) = §yT(v) for all €A, yel, veV.

We call T a linear I'-transformation from V to U and we denote the set of all linear I'-
transformations from V to U by Hom, (V, U). Hom, (V, U) is an additive group.

For all T, SeHom,(V,U), T + S and TyS are respectively defined by
(T + S)(X)=T(X) + S(x) and
(TyS)(X) = T(yS(x)) for all xeV and yeT'.

2.2 Theorem. Every Unital irreduicible left 'M-module is cycle.
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2.3 Theorem (Ist Isomorphism Theorem of I'M-homomorphism). Let M be a I'-ring
and P and Q be the left TM-modules. Let ¢: P> Q be a 'M-homomorphism. Then

M =
Aerd)_lm(p

3. Definition of the Jacobson Radical
3.1 Definition
The Jacobson radical of M is written as J(M) and is defined as

J(M) = {meM | myP = 0 for all yeI'}, where P is an irreducible left 'M-module. If M has
no irreducible left 'M-module, then J(M) = M and M is called radical I'-ring.

3.2 Lemma. Let P be an irreducible left ’'M-module. Then P ;'V%Q , where R is a

maximal left ideal of M. Furthermore, there is an aeM such that My(1 — a) = {x —
xyajxeM} R for some yel.

Proof. By Theorem 2.2, P is cyclic, say P = Myp for some peP and yeT.

We define ¢ : M — P by ¢(m) = myp for all meM. Let m;, myeM, then o(m;+ m,) = (m;+
M2)yp = Myp + Myyp = o(mM;) + (M) Let meM, then o(mam;) = (Mam;)yp = ma(m;yp)
= map(m;) for all ael’. Hence ¢ is a 'M-homomorphism. Also we have seen that ¢ is

one-one and ¢ is onto. So by Theorem 2.3, 1\% = P, where R is the kernel of ¢.

Now let R’ be a left ideal of M such that ReR’'cM. Then R%R is isomorphic to a non zero

sub I'M-module of P. But P is an irreducible left I'M-module, then non zero sub
I’'M-module of P is itself.

Hence R%Q =~ P. Therefor R' = M. Hence R is a maximal ideal of M.

Since Myp = P, then there is an aeM such that ayp = p. Then for each xeM, (X — Xya)yp =
Xyp — xyayp = xyp — Xyp = 0, so X — xyaeR. Thus My (1 — a) cR. Hence the lemma is
proved.

3.3 Definition. A left ideal R of M is called a regular ideal if there is an a€M such that
My(1 —a)cR for some yel.

3.4 Lemma. Every regular proper left ideal of M is contained in a maximal regular left
ideal of M.

Proof. Let R be a regular proper left ideal of M and let aeM such that My(1 — a)cR.
Suppose aeR and let xeM. Then X — xyaeR and xyaeR. Hence x = (x — xya) + xyaeR.
Then McR, a contradiction. Thus agR.

By Zorn’s Lemma, there is an ideal R" maximal with respect to the properties:
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i) RcR’
ii) agR’.
We claim that R’ is actually a maximal left ideal of M. For suppose

R'cR"cM. Then aeR’ and futher more X — XyaeR", xyacR". Hence X =(X — xya) +
xyaeR". Therefore Mc R". Hence R”" = M.

Finally, since My(1 — a)cRc R’, then R’ is regular. Hence the lemma is proved.
3.5 Definition. IfR is a left ideal of M, then (R:M) = {meM| m'McR}.
It is easy to verify that (R:M) is also a left ideal of M.

3.6 Theorem. J(M) = R, where the intersection is over all maximal regular left ideal of
the I"-ring M.

Proof. Let xeJ(M) and let R be a maximal regular left ideal of M. Then My(1 — a)cR for
some aeM and yel'. Thus x — xyaeR. Since xeJ(M), we have xe(M:R), that is, xyMcR.
Hence xyaeR and so xeR. Thus J(M)cR.

We now suppose that xenR. My(1+x) is a regular left ideal of M. If it is proper, it is
contained in a maximal regular left ideal R’. But XxeR' and thus for all yeM, yyxeR’, and
Yy + yyX — yyXx = yeR'. Hence R’ = M, a contradiction. Therefore My(1+x) = M. Hence
— XeMy(1+x), that is, there is a yeM such that X +y + yyx = 0.

We let P be an irreducible left 'M-module and suppose NRzI(P). Then ("R)yP # 0 and
(MR)yp # 0 for some pep. But then (NR)yp = P. Hence ryp = — p for some renR. We
now let seM be such that r + s + syr = 0. Then

O=(r+s+syr)yp=ryp+syp+syryp=—p+syp+sy(-p)=—p+syp—syp=-p.

Thus p = 0. So that ("R)yp = 0, a contradiction. Thus NRcI(P) and hence NRcJ(M).
Therefore J(M) = NR. Hence the theorem is proved.

3.7 Definition. An element acM is left quasi-regular if there is an element a’eM such
that

a+a +a'ya=0 forall yeI'. Then is &’ called a left quasi-inverse of a. A left ideal R of
M is left quasi-regular if each of its elements is left quasi-regular.

We can define right quasi-regularity similarly; an element a is quasi-regular if there exists
a’'eMsuch thata+a +aya’ =a+a +aya=0 for all yeI'. We note that if R is a left
quasi-regular ideal of a I'-ring M and &'’ is a left quasi-inverse of acR, thena +a’' + a'ya=
0 so thata’ =—a—a'yaeR.

3.8 Theorem. J(M) is a left quasi-regular ideal of M and contains every left quasi-regular
left ideal of M.

Proof. Let R be a left quasi-regular left ideal of M. Let P be an irreducible left M-
module. Suppose RyP # 0 for some yel'. Then there exists a peP such that Ryp = P.
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Hence there exists an aeP such that ayp =—p. Let a’' €R be a left quasi inverse of a. Then

O=(a+a +avyayp=ayp+ayp+ayayp=ayp+ayp+ay-p)=—-p+ayp-ayp= -
p.

Therefore p = 0. Thus Ryp=0, a contradiction. Hence RyP = 0, that is, Rcl(P). Therefore
RcJ(M). By Theorem 3.6, J(M) is the intersection over all maximal regular left ideal of
the I'-ring M. Hence all elements of J(M) is left quasi-regular. Theorefare J(M) is a left
quasi-regular left ideal. Hence the theorem is proved.

3.9 Lemma. If an element a of a I'-ring M has a left quasi-inverse € and a right quasi-
inverse b, then b = c.

Proof. Since ¢ and b are respectively left and right quasi inverse of a, then we have
at+tc+cya=0 anda+b+ayb=0 forall yerl.
Now (a+c+cya)yb=0yb
= ayb + cyb + cyayb = 0.
Also, cy(a+b+ayb)=cy0. Socya+cyb+cyayb=0.
Thus cya + cyb + cyayb = ayb + cyb + cyayb.
= ayb = cya. Therefore cya —ayb = 0.
Now c—b =(c—-b)+(a—-a)+(cya—ayb)=(a+c+cya) —(a+b+ayb)=0.
Therefore ¢ = b. Hence the lemma is proved.
3.10 Lemma. Every element of J(M) is right quasi-regular.

Proof. Let acJ(M). Then there is an a'eJ(M) such that a +a'+ a’ya =0 for all yeI'. Then
a'eJ(M), so @” is a left quasi-inverse of @'. But a is a right quasi-inverse of @' and so by
Lemma 3.9, a = a". Thus a +a'+ aya’ =0, that is, @' is a right quasi-inverse of a. Hence
every element of J(M) is right quasi-regular. Thus the theorem is proved.

The lemmas give us immediately:
3.11 Theorem. J(M) is a right quasi-regular ideal and thus a quasi-regular ideal of M.

Proof. Let J'(M) is a left quasi-regular ideal of M. Then J'(M) contains every right quasi-
regular right ideal, that is, J(M)c J'(M). We have J(M) is a right quasi-regular ideal of M,
then J(M) contains every left quasi-regular ideal, that is J'(M) < J(M). Hence J'(M) =
J(M). Thus J(M) is a quasi-regular ideal of M. Hence the theorem is proved.

3.12 Theorem. J(M) = {zeM | byzya is quasi-regular for all a, beM and some yeT'}.

Proof. Since J(M) is an ideal of M and if zeJ(M), then byzyaeJ(M) for all a, beM and
some yeI'. Since J(M) is a quasi-regular ideal, then byzya is quasi-regular.

Conversely, let z be an element of M such that byzya is quasi-regular for all a, be M. Let P
be an irreducible left 'M-module. Then as in the proof of Theorem 3.8, zyael(P) for all
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aeM. If 0zueM, then P = Myu and zyP = zyMyu = 0, so that zel(P). Hence zeJ(M). Thus
the theorem is proved.

3.13 Theorem. j(l\%(M)): 0-

Proof. Let R be a left quasi-regular left ideal in I\%(M) Let R be its inverse image in

M.LetacRand a=a+J(M). LetbeRbesuchthata+b+bya=0and a+ b+ by a
= 0 for all yeI'. Then a + b + byaeJ(M) and so is left quasi-regular. Let ¢ be such that.

atb+byatc+cy(a+b+bya)=0
Then a+b+bya+c+cya+cyb+cybya =0
= a+b+c+cyb+byatcya+tcybya =0
= at(b+c+cyb)+(b+c+cybyya =0
and thus a is left quasi-regular. Hence R is a left quasi-regular left ideal of M, and so

RcJ(M), that is, R= 0. But j(%( )j is a left quasi-reqular left ideal of 1\%(M) Hence

M
] —0. Thus the theorem is proved.
(Mi)=0 P

3.14 Definition. A T'-ring M is called (Jacobson) semi-simple if J(M) = 0.
We need the following two theorems due to Paul and Kalam [5]

3.15 Theorem. Every nil left ideal (and hence every nilpotent ideal) of a I'-ring M is
contained in J(M).

3.16 Theorem. If M is a left Artinian I"-ring, then J(M) is a nilpotent ideal of M.

3.17 Definition. An element a of a I'-ring M is called regular (in the sense of von
Neumann) if there exists an element U in M such that ayuya = a for some yel'; u is called
a relative inverse for a. If every element of a I'-ring M is regular, then M is called a
regular I'-ring.

3.18 Theorem. Any regular I'-ring is semi-simple.

Proof. Let M be a regular I'-ring. Suppose acJ(M). Let u is a relative inverse of a. Then
—Uya has a quasi-inverse v such that —uya + v +(—uya)yv = 0 for some yeI'. Now

ay 0 =ay(-uya+ v+ (-uya)yv
= 0 =-ayuya + ayv — ayuyayv
= 0=-a+ayv—ayv=-a. Hence a = 0. Therefore J(M) = 0. Hence M is semi-simple.

We recall that a classically I'-ring must have an identity element. We have a related result
for Jacobson semi-simplicity. First we note that if M is an arbitrary I'-ring, it can be
embedded in a [-ring M* with identity 1 such that M* = M@®(1), where (1), the I'-ring
generated by the identity is isomorphic to Z.
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3.19 Theorem. Let M be an arbitrary I'-ring and M* = M + (1), 1 an identity for M*. Then
J(M) =J(M*)M. If in addition M (1)= {0} and (1) = Z, then J(M) = J(M*).

Proof. Let zeJ(M*)NM. Then z has a quasi-inverse z’e M*. So z + z’+ 2’z = 0 for some
vel. Hence z’=—z —7'yz. Since 2 =—z — Z'yz, then ' is in M and z is quasi-regular in M.
Hence J(M*)NMcJ(M). Since M* = M + (1), then any left ideal of M is a left ideal of M*.
Hence J(M)cJ(M*)M. Therefore J(M) = J(M*)nM.

Suppose now that M(1) = {0} and (1) = Z. Then if z*€J(M*), then the coset z* of z* in
M%\/I is in the radical of the quotient I'-ring. But J(Z) = 0, being the intersection of the

maximal ideals of Z. So z* = 0 and z*eM. Therefore J(M*)cM. Hence J(M) = J(M*).

3.20 Theorem. If J(M) is the radical of a I'-ring M, then the radical of M, is J(M),, where
M, is the [',-ring, whose entries come from M and J(M), is matrix [';-ring, whose entries
come from J(M).

Proof. Consider a matrix of the form

al 0 0...0
A= s 0 0...0
a;; 0 0...0
ay; 0 0...0

where a;; is left quasi-regular. Then there exists @'y, such that a;;+ a’y;+ a@'y1y1;a;1 = 0 for
yi1€l’. Moreover My, (1- a;;) = M so there exist 2, 1 =2, 3, .. .n, such that a’;— a’s
Yiidp = — aip. Then if

a;; 0 0...0
A = a,y 0 0...0
a3 0 0...0
an 0 0...0 ,

A+ A"+ AT \A=0; thus A is left quasi-regular.

Now let J; be the set of elements AeM, with entries except possibly the jth column zero
and jth column consisting of elements of J(M). Each J; is a left ideal and by arguments
analogous to the one above for j =1, they are left quasi-regular. Hence J;cJ(M,), for j =1,
2,...,n.Thus JM),=J; +J + ..., Jh < IJ(M)).
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On the other hand, let C = (Cjj) belong to J(M,). If aeM, let A,q be the matrix with a in the
(p,q) position and zeros elsewhere. Let a, b be arbitrary elements of M. Form

0 0 0...aypCypeb

But CeJ(M,) and hence XAy, I',CI'y BgeJ(M,). Let (C5j) be the quasi-inverse of XAy,
I',CI'q By, so that

@YppCpq Yaq 0 + €11 € 11y11@Y1p C Vg D = 0 = @yppCpq Yaq 0 + €11+ @¥pp CogYaalyqr €11

Thus ayppCpq Yqq D 18 @ quasi-regular for all a, be M. But then by Theorem 3.12, CpqeJ(M).
Thus J(M,)cJ(M),. Hence J(M,) = J(M),. Thus the theorem is proved.

Let M be a I'-ring and let be e an idempotent in M. Since any element meM can be
written as m = eym + (m — eym) for some yel,

we have M =eyM + (1- e)yM, where (1 —e)yM = {m —eym | eeM} as before. Buteyb =D
for all beeyM and eyb = 0 for all be(1- e)yM, so that eyMn(1-e)yM =0

and thus M = eyM @(1- e)yM = Mye & My(1-e).
We can also write M = eyMye @ eyMy(1- e) ©(1-e)yMye ®(1-e)y My(1—e).

These representations are called the right, left and two sided Peirce decomposition of M
relative to e, repectively. We note that the terms of the first two are right and left ideals,
repectively, while those of the third are sub I'-rings of M. Moreover,

eyMye = eyMMye,
eMy(1 —e) =eyMnMy(1 —e),
(1 —e)yyMye =(1 —e)yMnMvye,
(1-e)yMy(1 —e) = (1 — e)yM~My(1 —e).

3.21 Theorem. Let M be an arbitrary I'-ring and J(M) its Jacobson radical. Then eyJ(M)ye
= eyMyenJ(M) is the radical of eyMye and (1 — e)y J(M)y(1 — e) = (1 — e)yMy(1 — e)
MNJ(M) is the radical of (1 — e)yMy(1 —e) for some yeT.

Proof. Tt is clear that eyMyenJ(M) = eyJ(M)ye and that this is a quasi-regular ideal in
eyMye. Hence eyJ(M)yecJ(eyMye). Suppose zeJ(eyMye). Using the two sided Peirce
decomposition of M, we write meM as m = m;; + myy +My; + My, where m;;eeyMvye,
mipeeyMy(1 —e), my; (1 — e)yMye and mype(1 — e)yMy (1 —e). Then

zym = zy(My; + My +Moy + M) = ZyMy; + ZyMyg + ZyMoy + ZyMgo = ZyMy; + Zymyo,

since zyMg; = ZyeyMy; = ZyMyo = ZyeyMgo = 0.

Now let 2’ is a quasi-inverse of zym;; in eyMye. Since zym,yyz' = 0 then we have
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Zym+z’+ zymyz' = zymy,.
Moreover, (zymyo)y(zymi) = 0 and hence by Theorem 3.15, zym;, is quasi-regular.
Therefore zym is quasi-regular for every meM. Thus zyMcJ(M). Hence byzya is quasi-
regular for every a, b eM. But then zeJ(M) and zeeyMyenJ(M) = eyJ(M)ye. Thus
J(eyMye)= eyJ(M)ye. The proof for (1 — e)yMy (1 — e) is analogous.
4. Primitive I'-rings
4.1 Definition. A left TM-module P is faithful if ayP = 0 implies that a = 0.
4.2 Defintion. A T'-ring M is primitive if it has a faithful, irreducible left 'M-module. An
ideal R of M is primitve if the I"-ring 1\% is primitive.
We need the following theorem which is in [5].

4.3 Theorem. J(M) = N(M:R), where R ranges over all maximal regular left ideals of the
I-ring M.

4.4 Lemma. Anideal R in a I'-ring M is primitive if and only if R = (M : Q), where Q is a
maximal regular left ideal of M.

Proof. Let Q be a maximal regular left ideal M. Then % is clearly a faithful, irreducible

left T - B%M : Q) -module. Hence B%M : Q)is primitive. So (M:Q) is primitive. Thus R is
primitive.

Conversely, let R be a primitive ideal of M and let P be a faithful, irreducible left
F-l\%-module. Then P is a left 'M-module and, infact, is an irreducible left I'M-
module. As a left I'- 1\% -module P is faithful, so its annihilator is the zero sub I'- 1\% -
module. Thus the annihilator of P considering P as a left ' M-module, is R. Then

R=1(P) = {xeM|xyM =R, some yel'}= {xeM|xyM = RcQ} = {xeM|xyMcQ!}= (M:
Q).

Therefore R = (M:Q), where Q is a maximal regular left ideal of M.

4.5 Theorem : If M is primitive, then eyMye and (1-e)yMy(1—€) are primitive for some
yel.

Proof. Let P be a faithful, irreducible left TM-module. Then we can write

P =ePS(1 —e)yP.
Then clearly eyP is a left '-eyMye-module. Since eymyey(1 — e)yP=0, if eymyeyeyP = 0,
then eymye €1(P). Hence eyP is faithful as a left I'-eyMye-module.

Now we let eyx # 0 and eyyeeyP. Then there exists meM such that my(eyx) = eyy. But
then eymy(eyX) = ey(eyy). This implies that eymy(eyeyx) = (eye)yy.
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Thus (eymye)y(eyx) = eyy and eyP is an irreducible left ['-eyMye module, since any
nonzero element generates all of eyP. Hence eyMye has a faithful, irreducible left module
eyP. Therefore eyMye is primitive. The proof for (1 —e) yMy(1 — e) is analogous.

4.6 Definition. Let P be a left TM-module and let E(P) be the T-ring of all
endomorphisms of the additive group of P with the obvious addition and multiplication. If
meM, we define T,eE(P) by Tryyp = myp for all peP and yeI. The set

Cw(P) = {p€E(P) | @YTm = Ty for allmeM and yel'}
is a sub I'-ring of E(P) called the commuting I'-ring of M on P.

4.7 Theorem (Schur’s Lemma). If P is an irreducible left TM-module, then Cy(P) is a
division ['-ring.

The proof'is given in [5].

If M is a primitive I'-ring and P is a faithful, irreducible left 'M-module, then P can be
regarded as a left ['-vector space over the division I'-ring Cu(P).

4.8 Definition. A T'-ring M is called a dense T'-ring of linear I'-transformations on P if,
given any Vy, V,, ..., V, €P which are linearly I'-independent over Cy(P) and any wy, W,
..., Wy €P, there is an meM such that myv;, =w;, i=1,2, ..., n and some yel". We
sometimes say simply that M is dense on P.

4.9 Theorem (Jacobson Density Theorem). Let M be a I'-ring and P be an irreducible
left TM-module. Then, considering P as a left ['-vector space over Cy(P), M is a dense I'-
ring of linear I'-tranformations on P.

Proof. It is sufficient to prove the following : (*) if V is a finite-dimensional sub I"-space
of P over Cy(P) and if peP, pgV, then there is an meM such that myV = 0 but myp = 0
for some yel.

For suppose we can always find such an m. Since myp # 0, we can apply the statement to
the 0 sub I'-space and myp. Thus we can find m; €M such that m;ymyp # 0. Since Mymyp
# 0, then we must have Mymyp = P. Thus, given any p,eP, we can find seM such that
symyV = 0 and symyp = p;.

If we are given vy, Vy, ..., V, €P, linearly I'-independent over Cy(P) and wy, Wy, ..., W
€P, then we can, by virtue of the above argument, find m;, m,, ..., m, €P such that
Oifj=i
miyvj =
w;if j=i
Letm=m+my+ ...+m,.Thenfori=1,2, ...,n,

MYVi= (My+ Myt Lo+ Mp)yVi = MyyVi + MpyVi + o+ MgyVi = MgV = Wi

Therefore myv; = w; . Thus M is dense on P.
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We now establish (*) by induction on the demension of V.

First suppose that [V: Cw(P)] = 0, and let peP, p # 0. Then V # 0 and we choose an
element meM such that myp # 0; the existence of such an m is guaranteed by the
irreduciblity of P.

Now suppose [V: Cu(P)] > 0 and let V = Vo @ Cuy(P)yw, w = 0, wgV,. Then [Vo:
Cu(P)] =[V: Cm(P)] -1 and we assume that the statement holds for V,, that is, we assume
that for any peP, peV,, then there is an meM such that myV,=0 and myp # 0 for some
yel.

Let 1(Vp) be the left annihilator of V, in M. Then if 1(V,)yp = 0 for all peP, we must have
peV,. 1(Vy) is a left ideal of M and so 1(V)) is a sub 'M-module of P. Since weV,, 1(V)yw
# 0, so we have 1(Vo)yw = P.

Suppose the desired result does not hold. Then there is a peP, pgV, such that myp = 0
whenever myV = 0. Define T,:P — P by Typ = myp. It is clear that Ty, is well defined.
Clearly TneE(P). If x = myw, mel(Vy) and m;eM, then m;yx = m;y(myw) = (m;ym)yw.

Thus Tryy(myyx) = my(myx)= myy(TmyX).

Therefore TreCw(P). Hence if mel(V,), we have myx = Tpy(myw) = my(Tpyw), so that
myx — my(Tmyw) = 0 So my(X — Tpyyw) = 0.Thus X — TpyyweV, and so xeVy @Cy(P)yw =
V, a contradiction. Hence the theorem is proved.

4.10 Definition. Let M be a I'-ring of linear I'-tranformations on a left I'-vector space
over a division I'-ring A. Then M is called k-fold transitive if given i <k and any v;, v,, .
.., Vi €V linearly I'-independent over A, and any W, W,, ..., W; €V, there is an meM
such that myv; =w, myv, =w, , ..., myv; = Ww;.

In this terminology the Jacobson Density Theorem for I'-rings say that under the
hypothesis of that theorem, M is n-fold transitive for any finite n less than or equal to the
dimension of P over Cy(P). We have the following strong converse of the Density
Theorem for Jacobsion I'-rings.

4.11 Theorem. Let M be a two-fold transitive I'-ring of linear I'-transformations on a non
trivial left ['-vector space over a division I'-ring A. Then V is an irreducible left ['M-
module, M is dense on V and A = Cy(V).

Proof. LetveV, v = 0. Since M is one-fold transitive, given any weV, then there is an
element meM such that myv = w for some yeI'. But this implies that V is an irreducible
left TM-module. We consider the elements of A as linear I'-transformations of V by
identifying an element with the left translation by that element. Since dy(myv) = my(dyv)
forallveV, meM, d€A and some yel', then AcCy(V).

Suppose we have peCw(V), pgA. Let veV, v = 0. Suppose v and (¢yv) are not linearly I'-
independent, i. e., suppose we can find &;, &, €A, not both zero, such that §;yv +
Oyy(pyv)=0. If 8,=0, then 3,y(¢pyVv)=0 and 5, # 0. Hence ¢yv = 0 and since ¢ #0 and V is
irreducible, then v = 0, a contradiction. Thus ;% 0. Similarly &, # 0.
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Let & =— &, 'y3, for some yeI so that v = &y(¢yV). Thus v — 8y(@yv) = 0. So V — (pyd)yv =
0. Therefore (1-@yd)yv = 0. If (1— @yd) €A, then peA, so (1- ¢yd)¢A and hence 1— ¢yd
# 0. So as before v =0, a contradiction.

Since v and (¢yv) are thus linearly I'-independent, then there is an meM such that myv =0
and my{@w) = v. However, since ¢pCyw(V), then we have

v =my(pyv) = @y(myv) = @y0 = 0, a contradiction. Therefore, we can not have pe Cw(V)
\ A. Hence Cy(V) = A. Thus the theorem is proved.
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