THE HOMOLOGY AND COHOMOLOGY GROUPS OF H₃

Subrata Majumdar¹ and Quazi Selina Sultana²

¹²Department of Mathematics, Rajshahi University, Rajshahi E-mail:-majumdar_subrata@hotmail.com

Received 07.06.08

Accepted 27.06.09

ABSTRACT

A free resolution of ${\bf Z}$ for the integral group ring of the three-dimensional Heisenberg group H_3 has been constructed by extending Lyndon's partial resolution. The integral homology and cohomology have been calculated from there.

AMS Classification: 18G, 20J.

Key words: Fox derivatives, free resolution.

1. Introduction

Here we shall construct a full free resolution of \mathbf{Z} for the integral group ring of the three dimensional Heisenberg group, using Majumdar-Akhter [10] technique of extending Lyndon's partial free resolution [8] to a full free resolution. We compute the integral homology and cohomology from the resolution obtained.

 H_3 , the three dimensional Heisenberg group has a presentation

$$H_3 = \langle x, y, z : [x, z] = [y, z] = 1, [x, y] = z \rangle$$
, (Burillo[1], p.2).

It is a member of widely studied important class of Lie Groups called the Heisenberg groups. It is nilpotent of class 2. Huebschmann [6] used his sophisticated perturbation theory technique to determine the cohomology of the generalized Heisenberg group given by

$$G = \langle x, y, z : [x, z] = [y, z] = 1, [x, y] = z^k \rangle$$

$$G = H_3$$
, if $k = 1$.

The (2n+1) Heisenberg group H_{2n+1} is the group of upper triangular $(n+2)\times(n+2)$ matrices of the form:

$$\begin{pmatrix}
1 & x & z \\
0 & I & y^T \\
0 & 0 & 1
\end{pmatrix},$$

where $x = (x_1, x_2 \cdots, x_n)$, $y = (y_1, y_2 \cdots, y_n)$, I is the $n \times n$ unite matrix. Thus H_3 is the group of all upper triangular matrices:

$$\begin{pmatrix} 1 & x & z \\ 0 & I & y \\ 0 & 0 & 1 \end{pmatrix}, (x, y, z \in R).$$

The Heisenberg group H_3 has a cubic Dehn function ([1], p.1) the latter being a best possible choice for isoperimetric function. Isoperimetric inequalities have been used fruitfully in the study of hyperbolic groups and automatic groups (Gromov [4], Epstien [2]). The cubic nature of Dehn function for H_3 shows that it is neither hyperbolic nor automatic, since these have respectively a linear Dehn function and a quadratic Dehn function. Thurston proved this fact by combinatorial methods. He also shows that H_3 is not combable

2. Before constructing our free resolution for H_3 , we give a few definitions, state a few known results and prove a number of results that will be needed for construction and its proof.

Lemma 2.1

 H_3 is torsion free.

Proof

$$H_{3} = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & I & y \\ 0 & 0 & 1 \end{pmatrix} : (x, y, z \in R) \right\}.$$
Now
$$\begin{pmatrix} 1 & x & z \\ 0 & I & y \\ 0 & 0 & 1 \end{pmatrix}^{n} = \begin{pmatrix} 1 & nx & nz + nxy \\ 0 & I & ny \\ 0 & 0 & 1 \end{pmatrix}.$$
So
$$\begin{pmatrix} 1 & x & z \\ 0 & I & y \\ 0 & 0 & 1 \end{pmatrix}^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

if and only if n = 0.

Hence H_3 is torsion free.

The following definitions are due to Higman [5].

Definition 2.2

A group G is said to be *indexed* if it can be mapped homomorphically onto a non-zero subgroup of \mathbf{Z} .

Definition 2.3

A group G is said to be indicable throughout if every subgroup $H \neq 1$ of G can be indexed.

We state two theorems due to Higmann:

Theorem 2.4 ([5], p.242)

If G is indicable throughout and R is a ring with , and has no zero divisors, then RG has no zero divisors.

Theorem 2.5 ([5], p. 243)

If G is indicable throughout and R is a ring with I and has no zero divisors, then the units of RG are trivial.

We shall use these results to prove:

Theorem 2.6

 H_3 is indicable throughout.

Proof

We write G for H_3 and let $H(\neq 1)$ be a subgroup of G.

Case I

First suppose that $H \subseteq G'$. By the definition of G, $G'' \subseteq Z(G)$. This implies that G' is abelian. G' is the normal subgroup generated by the commutator $[h_1, h_2]$, h_1 , h_2 are the images of x_1, x_2 in G. So a typical element g' of G' is $\prod \left(g_i^{-1}\left([h_1, h_2]^{e_i}\right)\right)$, $e_i = 1$.

$$\therefore g' = \prod_{i=1}^{n} [h_1, h_2]^{e_i}, \text{ since } [h_1, h_2] \text{ is a commutator of } h_1 \text{ and } h_2.$$

Since G' is infinite cyclic, and since $H \neq 1$, H too infinite cyclic. So H can be indexed.

Case II

Suppose $H \subseteq G'$. Then $HG' \neq G'$, and so, $\frac{HG'}{G'}$ is a subgroup of $\frac{G'}{G}$, and is not the identity subgroup. Hence $\frac{HG'}{G'}$ is free abelian. Then there is a homomorphism $f: \frac{HG'}{G'} \to Z$ such that $Imf \neq \{0\}$. If φ is the canonical homomorphism $\varphi: H \to \frac{HG'}{G'}$, then φ is onto and $Im\overline{f} \neq \{0\}$, where $\overline{f}: H \to Z$ is the composite $\overline{f} = f\varphi$. Thus H can be indexed.

Hence *G* is indicable throughout.

As a consequence of Theorem 2.4, Theorem 2.5 and Theorem 2.6 implies the following:

Corollary 2.7

ZG has no zero divisors.

Corollary 2.8

The units of ZG are trivial.

3. Free resolution of Z

Let $G = H_3 = \frac{F}{R}$, where F is the free group generated by x_1, x_2 and R is the normal closure of r_1, r_2 , where $r_1 = [x_1, [x_1, x_2]]$ and $r_2 = [x_2, [x_1, x_2]]$

i.e.,

$$r_1 = x_1^{-1} x_2^{-1} x_1^{-1} x_2 x_1 x_1 x_1^{-1} x_2^{-1} x_1 x_2;$$

$$r_2 = x_2^{-1} x_2^{-1} x_1^{-1} x_2 x_1 x_2 x_1^{-1} x_2^{-1} x_1 x_2.$$

Then the Fox derivatives of r_1, r_2 are:

$$\begin{split} \frac{\partial r_1}{\partial x_1} &= -r_1 - x_2 x_1 r_1 + x_2^{-1} x_1 x_2 + x_2; \\ \frac{\partial r_1}{\partial x_2} &= -x_1 r_1 + x_1 x_2^{-1} x_1 x_2 - x_2^{-1} x_1 x_2 + 1; \\ \frac{\partial r_2}{\partial x_1} &= -x_2^2 r_2 + x_2 x_1^{-1} x_2^{-1} x_1 x_2 - x_1^{-1} x_2^{-1} x_1 x_2 + x_2; \\ \frac{\partial r_2}{\partial x_2} &= -r_2 - x_2 r_2 + x_2^{-1} x_1 x_2^2 r_2 + x_1^{-1} x_2^{-1} x_1 x_2 - x_2^{-1} x_1 x_2 + 1. \end{split}$$

Writing $\pi(x_i) = h_i, i = 1,2$, we have

$$\begin{split} \frac{\partial r_1}{\partial x_1} &= -1 - h_2 h_1 + h_2^{-1} h_1 h_2 + h_2; \\ \frac{\partial r_1}{\partial x_2} &= -h_1 + h_1 h_2^{-1} h_1 h_2 - h_2^{-1} h_1 h_2 + 1; \\ \frac{\partial r_2}{\partial x_1} &= -h_2^2 + h_2 h_1^{-1} h_2^{-1} h_1 h_2 - h_1^{-1} h_2^{-1} h_1 h_2 + h_2; \\ \frac{\partial r_2}{\partial x_2} &= -1 - h_2 + h_2^{-1} h_1 h_2^2 + h_1^{-1} h_2^{-1} h_1 h_2 - h_2^{-1} h_1 h_2 + 1. \end{split}$$

To construct the free resolution of **Z** we proceed as follows. In Lyndon's partial free resolution of **Z**, let $\beta_1 \gamma_1 + \beta_2 \gamma_2 \in Kerd_1$, where $\gamma_1, \gamma_2 \in ZG$.

Then
$$d_1(\beta_1\gamma_1 + \beta_2\gamma_2) = 0.$$

$$\therefore \left[\alpha_1 \left(h_2 - 1 - h_2 h_1 - h_2^{-1} h_1 h_2 \right) + \alpha_2 \left(1 - h_1 - h_2^{-1} h_1 h_2 + h_1 h_2^{-1} h_1 h_2 \right) \right] \gamma_1$$

$$+ \left[\alpha_1 \left(-h_2^2 - h_2 h_1^{-1} h_2^{-1} h_1 h_2 - h_1^{-1} h_2^{-1} h_1 h_2 + h_2 \right) + \alpha_2 \left(h_2^{-1} h_1 h_2^2 + h_1^{-1} h_2^{-1} h_1 h_2 - h_2^{-1} h_1 h_2 - h_2 \right) \right] \gamma_2$$

$$= 0.$$

or,
$$\alpha_{1} \left[\left(h_{2} - 1 - h_{1} h_{2} - h_{2}^{-1} h_{1} h_{2} \right) \gamma_{1} + \left(-h_{2}^{2} - h_{2} h_{1}^{-1} h_{2}^{-1} h_{1} h_{2} - h_{1}^{-1} h_{2}^{-1} h_{1} h_{2} + h_{2} \right) \gamma_{2} \right] + \alpha_{2} \left[\left(1 - h_{1} - h_{2}^{-1} h_{1} h_{2} + h_{1} h_{2}^{-1} h_{1} h_{2} \right) \gamma_{1} + \left(h_{2}^{-1} h_{1} h_{2}^{2} + h_{1}^{-1} h_{2}^{-1} h_{1} h_{2} - h_{2}^{-1} h_{1} h_{2} - h_{2} \right) \gamma_{2} \right] = 0$$

Since Y_0 is free on α_1, α_2 , we have

$$\begin{pmatrix} (h_2 - 1 - h_1 h_2 - h_2^{-1} h_1 h_2) \gamma_1 \\ + \left(-h_2^2 - h_2 h_1^{-1} h_2^{-1} h_1 h_2 - h_1^{-1} h_2^{-1} h_1 h_2 + h_2 \right) \gamma_2 = 0 \\ \left(1 - h_1 - h_2^{-1} h_1 h_2 + h_1 h_2^{-1} h_1 h_2 \right) \gamma_1 \\ + \left(h_2^{-1} h_1 h_2^2 + h_1^{-1} h_2^{-1} h_1 h_2 - h_2^{-1} h_1 h_2 - h_2 \right) \gamma_2 = 0$$
 (ii)

We write Equation (3.1) as

$$a\gamma_1 + b\gamma_2 = 0 \quad (i)$$

$$c\gamma_1 + d\gamma_2 = 0 \quad (ii)$$
(i)

Solving the equations (I) in **Q**, we have $\gamma_1 = \gamma_1'$, where γ_1' is an arbitrary element of **ZG**,

and $\gamma_2 = -b^{-1}a\gamma_1' = -d^{-1}c\gamma_1'$, so that $-b^{-1}a_1 = -d^{-1}c$. γ_1' is an arbitrary element of ZG, $-b^{-1}a_1 = -d^{-1}c \in ZG$. Since $b^{-1}a$ has a inverse $a^{-1}b$, $b^{-1}a = g_0$, for some $g_0 \in G$, by Corollary 2.8.

Define Y_2 as the right **ZG**-module freely generated by δ and define

$$d_2: Y_2 \to Y_1 \quad \text{by}$$

$$d_2(\delta) = \beta_1 - \beta_2 g_0.$$
 Then
$$d_2(\delta \gamma_1) = (\beta_1 - \beta_2 g_0) \gamma_1 = \beta_1 \gamma_1 - \beta_2 g_0 \gamma_1 = \beta_1 \gamma_1 - \beta_2 \gamma_2.$$
 Hence
$$\beta_1 \gamma_1 + \beta_2 \gamma_2 \in Kerd_2.$$

$$(d_1 d_2)(\delta) = d_1(\beta_1 - \beta_2 g_0)$$

$$= (\alpha_1 a \gamma_1 + \alpha_2 a \gamma_2) - (\alpha_1 b g_0 \gamma_1 + \alpha_2 d g_0 \gamma_2)$$

$$= \alpha_1 (a - a) \gamma_1 + \alpha_2 (c - c) \gamma_2$$

$$= 0$$

 $\therefore Kerd_2 \supseteq \operatorname{Im} d_1.$

Now let $\delta \in Kerd_2$, then

$$\alpha_1 \gamma - \alpha_2 g_0 \gamma = 0$$

 $\Rightarrow \gamma = 0.$

Thus we have

Theorem 3.1

The following is a free **Z**G-resolution of **Z**:

$$0 \to Y_2 \xrightarrow{d_2} Y_1 \xrightarrow{d_1} Y_0 \xrightarrow{d_0} ZG \xrightarrow{\varepsilon} Z \to 0,$$

where $\ Y_0,Y_1,Y_2$ are right **ZG**-modules freely generated by $\{\alpha_1,\alpha_2\},\{\beta_1,\beta_2\},\delta$ and

 ε , d_0 , d_1 , d_2 are defined by

$$\begin{split} \varepsilon(g) &= 1, \forall g \in G; \\ d_0(\alpha_1) &= h_1 - 1; \\ d_0(\alpha_2) &= h_2 - 1; \\ d_1(\beta_1) &= \alpha_1 \Big(h_2 - 1 - h_2 h_1 - h_2^{-1} h_1 h_2 \Big) + \alpha_2 \Big(1 - h_1 - h_2^{-1} h_1 h_2 + h_1 h_2^{-1} h_1 h_2 \Big) \\ d_1(\beta_2) &= \alpha_1 \Big(-h_2^2 - h_2 h_1^{-1} h_2^{-1} h_1 h_2 - h_1^{-1} h_2^{-1} h_1 h_2 + h_2 \Big) \\ &+ \alpha_2 \Big(h_2^{-1} h_1 h_2^2 + h_1^{-1} h_2^{-1} h_1 h_2 - h_2^{-1} h_1 h_2 - h_2 \Big). \\ d_2(\delta) &= \beta_1 - \beta_2 g_0. \end{split}$$

4. Homology

For a left **ZG**-module A, the homology groups $H_n(G,A)$ are given by the homology of the complex of abelian groups

$$0 \to A \xrightarrow{\overline{d_2}} A^2 \xrightarrow{\overline{d_1}} A^2 \xrightarrow{\overline{d_0}} A \to 0$$

where $\overline{d_0}$, $\overline{d_1}$, $\overline{d_2}$ are given by

$$\overline{d_0}(a_2, a_2) = (h_1 - 1)a_1 + (h_2 - 1)a_2;$$

$$\overline{d_1}(a_1, a_2) = \left(\left[h_2 - 1 - h_2 h_1 - h_2^{-1} h_1 h_2 \right] a_1,$$

$$\left[-h_2^2 - h_2 h_1^{-1} h_2^{-1} h_1 h_2 - h_1^{-1} h_2^{-1} h_1 h_2 + h_2 \right] a_2 \right)$$

$$\overline{d_2}(a) = (a, g_0 a).$$

If A is trivial, then

$$\overline{d_0}(a_2, a_2) = 0;$$
 $\overline{d_1}(a_1, a_2) = (0, 0);$
 $\overline{d_2}(a) = (a, a).$

If A = Z, then

$$H_0(G,Z) \cong Z,$$

 $H_1(G,Z) \cong Z \oplus Z,$
 $H_2(G,Z) \cong Z,$
 $H_3(G,Z) \cong 0.$

5. Cohomology

For a right **ZG**-module A, the cohomology groups $H^n(G,A)$ are given by the homology of the complex

$$0 \leftarrow A \leftarrow \frac{d_2^*}{d_2^*} - A^2 \leftarrow \frac{d_1^*}{d_1^*} - A^2 \leftarrow \frac{d_0^*}{d_0^*} - A \leftarrow 0$$
.

where d_0^* , d_1^* , d_2^* are given by

$$d_0^*(a) = (a(h_1 - 1), a(h_2 - 1));$$

$$d_1^*(a_1, a_2) = (a_1[h_2 - 1 - h_2h_1 - h_2^{-1}h_1h_2], a_2[-h_2^2 - h_2h_1^{-1}h_2^{-1}h_1h_2 - h_1^{-1}h_2^{-1}h_1h_2 + h_2],$$

$$d_2^*(a) = a_1 - g_0a_1.$$

If A is trivial, then

$$d_0^*(a) = (0,0);$$

$$d_1^*(a_1, a_2) = (0,0)$$

$$d_2^*(a) = 0.$$

If A = Z, then

$$H^0(G,Z) \cong Z,$$

 $H^1(G,Z) \cong Z \oplus Z,$
 $H^2(G,Z) \cong Z \oplus Z,$
 $H^3(G,Z) \cong Z.$

REFERENCES

- 1. Burillo J., Lower bound isoperimetric function for nilpotent groups, *Dimacs series in discrete Mathematics and theoretical computer science* **25**, 1-8, (1996).
- 2. Epstien A. B. D., J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Peterson, W. P. Thurston, Word processing in groups, *Jones and Bartlett, Boston -London.* (1992).
- 3. Fox R. H., Free Differential Calculus I, Ann. Math. 57, 3,547-560, (1953).
- 4. Groves J. R. J., Rewriting systems and Homology of groups, *Proceedings of the third International conference on the theory of Groups, Canberra 1456 LNM, Springer-Verlag,* (1989).

5. Higman G., The zero divisors and units in a group ring, Proc. Lond. Math. Soc. 46(2), 231-248, (1940).

- 6. Huebschmann J., Perturbation theory and free resolutions for nilpotent groups of class 2, *J. Algebra*, **126** 2, 348-399, (1984).
- 7. Lyndon R. C. and P. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, (1997).
- 8. Lyndon R. C., Cohomology theory of groups with a single defining relation, *Ann. Math.* **52**, 3, 656-665, (1953).
- 9. Majumdar S. and N. Akhter, On a simple method of determining the homology and the cohomology for finitely presented group. *Bull. Cal. Math. Soc.* **100**, (2008).
- 1. Majumdar S., A free resolution for a class of groups, J. Lond. Math. Soc. 2, 615-619, (1970).