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ABSTRACT 
 

A free resolution of Z for the integral group ring of the three-dimensional Heisenberg group 
 has been constructed by extending Lyndon’s partial resolution. The integral homology 

and cohomology have been calculated from there. 
3H
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1. Introduction 
Here we shall construct a full free resolution of Z for the integral group ring of the three 
dimensional Heisenberg group, using Majumdar-Akhter [10] technique of extending 
Lyndon’s partial free resolution [8] to a full free resolution. We compute the integral 
homology and cohomology from the resolution obtained. 

3H , the three dimensional Heisenberg group has a presentation 

[ ] [ ] [ ] p.2). ], [1 Burillo (  ,, ,1,,:,,3 zyxzyzxzyxH ====  

It is a member of widely studied important class of Lie Groups called the Heisenberg groups. 
It is nilpotent of class 2. Huebschmann [6] used his sophisticated perturbation theory 
technique to determine the cohomology of the generalized Heisenberg group given by 

[ ] [ ] [ ] ., ,1,,:,, kzyxzyzxzyxG ====  

1.k if  ,3 == HG  

The  Heisenberg group  is the group of upper triangular 
matrices of the form: 
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where  unite matrix. Thus  is the 
group of all upper triangular matrices: 
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The Heisenberg group  has a cubic Dehn function ([1], p.1) the latter being a best 
possible choice for isoperimetric function. Isoperimetric inequalities have been used 
fruitfully in the study of hyperbolic groups and automatic groups (Gromov [4], Epstien 
[2]). The cubic nature of Dehn function for  shows that it is neither hyperbolic nor 
automatic, since these have respectively a linear Dehn function and a quadratic Dehn 
function. Thurston proved this fact by combinatorial methods. He also shows that  is 
not combable 

3H

3H

3H

2. Before constructing our free resolution for , we give a few definitions, state a few 
known results and prove a number of results that will be needed for construction and its 
proof. 

3H

Lemma 2.1 

3H  is torsion  free. 

Proof  
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if and only if n = 0. 

Hence is torsion free. 3H

The following definitions are due to Higman [5]. 

Definition 2.2 

A group G is said to be indexed if it can be mapped homomorphically onto a non-zero 
subgroup of Z. 

Definition 2.3 

A group G is said to be indicable throughout if every subgroup ( ) GH   of  1 ≠  can be indexed. 
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We state two theorems due to Higmann: 

Theorem 2.4 ([5], p.242) 

If  G  is indicable  throughout  and  R  is a ring  with  , and  has  no  zero  divisors,  then  
RG  has  no  zero  divisors. 

Theorem 2.5 ([5],  p. 243) 

If  G  is indicable  throughout  and  R  is   a  ring  with  I  and  has  no  zero  divisors,  
then  the units  of  RG  are  trivial. 

We shall use these results to prove: 

Theorem 2.6 

3H  is   indicable   throughout. 

Proof 

We write G for and let be a subgroup of G. 3H ( )1≠H

Case I 

First suppose that  By the definition of .GH ′⊆ ( )., GZGG ⊆′′  This implies that is 
abelian.  is the normal subgroup generated by the commutator 

G′
G′ [ ] 2121   ,  ,, hhhh are the 

images of  So a typical element G.x in   , 2x1 g′  of G′  is [ ]( )( ) .1  ,2 =i
e ei,h1

1−
i hg∏  

  since[ ] ,,
1

21∏
=

=′∴
n

i

eihhg [ ]21,hh   is a commutator of  and . 1h 2h

Since is infinite cyclic, and since G′ 1≠H , H  too infinite cyclic. So H can be indexed. 

Case II 

Suppose   .GH ′⊆ Then ,GGH ′≠′  and so, 
G
GH
′
′

 is a subgroup of  ,
G
G′  and is not the 

identity subgroup. Hence 
G
GH
′
′

 is free abelian. Then there is a homomorphism 

{ } If  .0 ϕ≠→
′
′

   : Imf
G
GHf such that   Z  is the canonical homomorphism ,:

G
GHH
′
′

→ϕ  then 

ϕ  is onto and { },0≠fIm  where  ZHf →:  is the composite .ϕ= ff Thus H can be 
indexed. 

Hence G is indicable throughout. 

As a consequence of Theorem 2.4, Theorem 2.5 and Theorem 2.6 implies the following: 

Corollary 2.7 

ZG has no zero divisors. 
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Corollary 2.8 

The   units   of   ZG   are   trivial. 
 
3. Free resolution of Z 

Let ,3 R
FHG ==  where F is the free group generated by  and R is the normal 

closure of , where  and 
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21,rr [ ][ ]2111 ,, xxxr = [ ][ ].,, 2122 xxxr =  
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Then the Fox derivatives of  are: 21 , rr
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Writing  we have ( ) ,2,1, ==π ihx ii
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To construct the free resolution of Z we proceed as follows. In Lyndon’s partial free 
resolution of Z, let  .,   where, 2112211 ZGKerd ∈γγ∈γβ+γβ

Then      ( ) .022111 =γβ+γβd
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or,         
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We write Equation (3.1) as 
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Solving the equations (I) in Q, we have 11 γ′=γ , where 1γ′  is an arbitrary element of ZG, 

and so that   is an arbitrary element of ZG, 
Since  has a inverse  for some , by 

Corollary  2.8. 
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Define  as the right ZG-module freely generated by 2Y δ and define  

   by   : 122 YYd →

                         ( ) .0212 gd β−β=δ  
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Thus we have 
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Theorem 3.1  

The following is a free ZG-resolution of Z: 

   ,00 012
012 →⎯→⎯⎯→⎯⎯→⎯⎯→⎯→ ε ZZGYYY ddd

where    are right ZG-modules freely generated by 210 ,, YYY { } { } δββαα ,,,, 2121  and 

210 ,,, dddε   are defined by 
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4. Homology  
For a left ZG-module A, the homology groups ( )AGHn ,  are given by the homology of 
the complex of abelian groups 

,00 012 22 →⎯→⎯⎯→⎯⎯→⎯→ AAAA ddd  

where  210 ,, ddd  are given by 

( ) ( ) ( ) ;11, 2211220 ahahaad −+−=   

( ) [ ]( ,1, 121
1

2122211 ahhhhhhaad −−−−=   

[ ] )2221
1

2
1

121
1

2
1

12
2
2 ahhhhhhhhhhh +−−− −−−−  

( ) ( )., 02 agaad =  

If A is trivial, then 
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If  ZA = , then 
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   ( ) ,,0 ZZGH ≅

   ( ) ,,1 ZZZGH ⊕≅

   ( ) ,,2 ZZGH ≅

   ( ) .0,3 ≅ZGH
 
5. Cohomology  

For a right ZG-module A, the cohomology groups ( )AGH n ,  are given by the homology 
of the complex 

,00 012 22 ←⎯⎯←⎯⎯←⎯⎯←←
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