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ABSTRACT 
 
T. Maeda gave some constraint qualifications to get positive Lagrange multipliers associated 
with the vector-valued objective function and under these conditions, he derived Karush-
Kuhn-Tucker (KKT) type necessary conditions for inequality constraints. In this paper, we 
have defined these Maeda-type constraint qualifications under different sets and have derived 
KKT type necessary conditions for both equality and inequality constraints.  

 
1. Introduction 
Investigation on optimality conditions has been one of the most attracting topics in the 
theory of multiobjective optimization problems. Many authors have derived the necessary 
conditions for an efficient solution under the same constraint qualification as that used in 
scalar-valued objective function [1, 2, 3]. As some of the multipliers may be equal to 
zero, the components of the vector valued objective functions corresponding to zero 
multipliers have no role in the necessary conditions for efficiency. To remove this 
shortcoming getting positive Lagrange multipliers, T. Maeda [4] first gave some 
constraint qualifications, which ensures the existence of positive Lagrange multipliers. 
For getting positive Lagrange multipliers, much work has been done [5, 6, 7], starting 
from the T. Maeda's paper [4]. 

In this paper, we have used these Maeda-type constraint qualifications under more general 
sets that are more easily determinable than Maeda’s sets. Consequently we have been able 
to derive KKT type necessary conditions in a new way for both equality and inequality 
constraints. Our result has been illustrated with a suitable example.  
 
2. Preliminaries 
In this section, we introduce some notations and definitions, which are used throughout 
the paper.  

For , we use the following conventions. nE∈yx,
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yx   > ,   iff   ii  y x > ,   i=1,…,n 

yx ≥ ,   iff    yx   >   and   yx ≠ , 

yx   > ,   iff      i=1,…,n ii  y x >

At first, we consider the following multiobjective optimization problem P : 

( )xfmin , subject to the conditions that the minimizing point (or vector) x  should lie in 
the set X:   

 ( ) ( ){ }00 =<∈=∈ xh ,  xgExXx n    

Let,   and  are continuously differentiable vector-
valued functions defined by 

ln EEf →: , mn EEg →: pn EEh →:
( ) ( ) ( ) ( )( )xfxf l,...,xfxf , 21≡ , ( ) ( ) ( ) ( )( )xgxgxgxg m,...,, 21≡  

and ( ) ( ) ( ) ( )( )xhx p,...,2hxhxh ,1≡

1: EEh nk →

 where  for i=1,..,l,  for j=1,…,m 
and  for k = 1,…,p.  Assume that 

1: EEf ni → 1: EEg nj →

( ) ( ){ }0: == xgjxI j  for j=1,…,m. 

Due to the conflicting nature of the objectives, an optimal solution that simultaneously 
minimizes all the objectives is usually not obtainable. Thus, for Problem P , the solution 
is defined in terms of an efficient solution [8]. 

Definition 2.1.  A point Xx∈  is called an efficient solution to Problem P  if there is no 
 such that Xx∈ ( ) ( )xfxf ≤ . 

Now, we shall define the nonempty sets iM and M by  

 ( ) ( ){ } xfxf  X,xExM iin
i <∈∈≡ , li ,...,2,1=  

and ( ) ( ){ i
l

in Mxf  xf  X,xExM
1=
∩=<∈∈≡ }  = Set of efficient solution. 

Comparison between Maeda’s sets and Present sets: 

Maeda’s sets:  

 ( ) ( ){ }ik  and  lk  xfxf  XxExQ kkn
i ≠=<∈∈≡ ,...,2,1,,  

Present sets: 

 ( ) ( ){ } xfxf  X,xExM iin
i <∈∈≡ ,  li ,...,2,1=  

Relation between two types of sets are 

   ,l...,iMQ k
l

ik
k

i 1,
1

=∩=
≠
=

Definition 2.2.  The linearizing cone to M at Mx ∈  is the set defined by  
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( ) ( ) ( ) ( )
( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==∇

∈<∇=<∇
∈≡Ω

pkdxh

xdxgldxf
EdxM

k

T
j

T
i

n
,...,2,1,0  and

Ij  ,0  , 2,...,1,i ,0 
; .   

Here ( xM ;Ω )  is a nonempty closed convex cone. 

Definition 2.3.  Let X be a subset of . The tangent cone to X at nE X clx∈  is the set 

defined by ( )
( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=>

→∈−=∈
≡ →∞

 1,2,... for t and

 xx  with,Xx that  suchxtdEd
xX

n

nnnn

,0

lim
; ,

n all

xnnT  

where  denotes the closure of X and X cl ( )xXT ;  is a nonempty closed  cone and enjoys 
some important properties[9, 10]; let's just recall that it is isotone, i.e. ( ) ( )xXTxXT ;; 21 ⊆  
whenever . It is convex if the original set is convex. 2X⊆1X
 
3. Generalized constraint qualification 

The following lemma 3.1 shows that the relationship between the tangent cone ( )xMT i ;  
and linearzing cone ( )xM ;Ω . 

Lemma 3.1. We assume that x  is a feasible solution to problem P then we have  

  ( ) ( )xMxMconvTcl i
l

i
;;

1
Ω⊆∩

=
 

The proof is similar as Maeda did in [4]. 

Remark: 3.1   In general, the converse inclusion in lemma 3.1 does not hold. So for 
obtain the necessary conditions that a feasible solution to Problem P be an efficient 
solution, it is reasonable to assume that  

 ( ) (I
l

i

i xMconvTclxM
1

;;
=

⊆Ω ) (3.1) 

The condition (3.1) is considered as a Generalized Guignard Constraint Qualification 
(GGCQ) [4]. 

Theorem 3.1.  Let Xx∈ be any feasible solution to problem P  and , , , if li ,...,2,1= jg
( )xIj∈  and ,  are continuously differentiable at kh pk ,...,2,1= x . Assume that the 

GGCQ holds at x . If Xx ∈ is an efficient solution to Problem , then the system P

( )
( ) ( )
( ) ⎪

⎪
⎭

⎪⎪
⎬

⎫

==∇

∈<∇

=≤∇

p..., 2, 1,k     0dxh

xIj       dxg

l..., 2, 1,i         dxf

T
k

T
j

T
i

0

0

       (3.2) 

has no solution nEd ∈ . 
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Proof:  Assume that, (3.2) has solution nEd ∈ . Then we can write ( )xMd ;Ω∈ .  

By assumption we can write ( )xMconvTcld i ;∈ , li ,...,2,1= . Without loss of generality, 
we may assume that ( )xMconvTcld ;1∈ . Therefore, there exists a sequence 
{ } ( )xMconvTdm ;1⊆  such that ddmn

=
→∞

lim . 

Since each ( ) ...2,1,mxMconvTdm =∈ ,;1  so we can write 

 ,  and ∑
=

λ=
mK

k
mkmkm dd

1
∑
=

=λ
mK

k
mk

1

1 0≥λmk  for mK...,2,1,k =  

where  is a positive integer and mK ( )xMTddd
mmKmm ;,...,, 1

21 ∈ . 

By definition of ( )xMT ;1 , there exist sequences { } 1Mxn
mk ⊆  with { } 0>n

mkt  for all n, such 
that, xxn

mkn
=

∞→
lim , ( ) mk

n
mk

n
mkn

dxxt =−
∞→

lim , for any m, k. 

If ( xxtd n
mk

n
mk

n
mk −= )  then for any n, we have 

 ( ) ( ) ( ) ( ) ( ) 0111 <−ο+−∇=− xxxxxfxfxf n
mk

n
mk

Tn
mk  (3.3) 

where 
( )

0→
−

−ο

xx

xx
n
mk

n
mk  as xxn

mk →  

Since  and taking the limit as 0>n
mkt ∞→n , the above inequality implies  

 ( ) ( ) 00 11   dxf  dxf T
mk

T <∇⇒<∇ .  

Hence, ( ) ( ) 0;   dxfxMTd T
i

i <∇⇒∈ , li ,...,2,1= .  

Let ( ){ }0dxfdF T
ii <∇= : ,  . So we can write that li ,...,2,1= ( ) i

i FxMT ⊆; , . 

Since T is closed cone and i is arbitrary, we have 

li ,...,2,1=

 ( ) ( ){ }.l1,...,i0,dxfdFFxMT T
ii

l

i

i
l

i
=<∇==∩⊆∩

==
:;

11
 (let)  (3.4) 

Also, ( ) ( xXTxMT i
l

i
;;

1
⊆∩

=
)  so that we can write 

 ( ) ( )xXTdxMTd i
l

i
;;

1
∈⇒∩∈

=
. 

That is ( )xxtd ppp
−=

→∞
lim , where , 0>pt Xxp ∈  for each p, and xxpp

=
∞→

lim .  
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Since x  is an efficient solution to Problem P , so there is no point , where Xxp ∈

( ) ( )xfxf p ≤ .  

i.e. ( ) ( ) ( ) 0  xxxxxf pp
T ≤−ο+−∇  

     ( ) ( ) ( ) 0  txxtxxxf pppp
T ≤−ο+−∇⇒  

Since  and taking the limit as 0>pt ∞→p , the above inequality implies ( ) 0  dxf T ≤∇ .(3.5) 

It means that if x  is an efficient solution then we do not get (3.5). 

From (3.4) and (3.5) we have, 

 ( ) ( ) 0;
1

=∇⇒∩∈
=

dxfxMconvTcld T
i

i
l

i
, li ,...,2,1=  

 Therefore, (3.2) has no solution. This completes the proof. 
Theorem 3.2.  

Let X∈x be any feasible solution to problem P  and , if li ,...,2,1= , , jg ( )xIj∈  and 

,  are continuously differentiable at kh pk ,...,2,1= x . Suppose that GGCQ holds at x . If 
Xx∈ is an efficient solution to Problem P , then there exist vectors lEu∈ ,  such 

that  
mEv∈

 ( ) ( ) ( ) 0
111

=∇μ+∇+∇ ∑∑∑
===

p

k
kk

m

j
jj

l

i
ii xhxgvxfu       (3.6) 

 ( ) 0=xgv jj  , j=1,….m   (3.7) 

 , 0>u 0  v >  

Proof: 
Let Xx∈  be an efficient solution to Problem P . Then, from Theorem 3.1 we have, the 
system 

( )
( ) ( )
( ) ⎪

⎪
⎭

⎪⎪
⎬

⎫

==∇

∈<∇

=≤∇

p..., 2, 1,k     0dxh

xIj       dxg

l..., 2, 1,i         dxf

T
k

T
j

T
i

0

0

 

has no solution. By the Tucker’s theorem [1], there exist , and 0>u lEu∈ 0  v j > , 

( )xIj∈ , such that       

 ( ) ( ) ( ) 0
11

=∇μ+∇+∇ ∑∑∑
=∈=

p

k
kk

Ij
jj

l

i
ii xhxgvxfu  
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By setting , 0=jv ( )xIj∉ , we have  

   ( ) ( ) ( ) 0
111

=∇μ+∇+∇ ∑∑∑
===

p

k
kk

m

j
jj

l

i
ii xhxgvxfu  

  , 0>u 0  v >  

Since ( ) 0=xg j  for ( )xIj∈ , we have  

 ( ) 0=xgv jj  for j=1,…,m 

which completes the proof. 
Example 3.3. 
Consider the problem  

min {   and  }2x x ,1 ( ){ }2,0,0, 221 =+<<= xx   x-   x- xxX 121  

Here, ( ) ( ){ } XxfxfXxExM n =<∈∈= 11
1 , and ( ) ( ){ } { }xxfxfXxExM n =<∈∈= 22

2 ,  

It is easily verified that: 

i) All points in X are efficient solution. We choose ( )0,2=x  is an efficient solution to 
the problem. 

ii) GGCQ holds at ( )0,2=x .  

Since ( ) { }0xM =Ω ;  and ( ) { }0xMclconvT
i

i =
=
I

2

1

;  

We have,  ( ) ( ) ( ) ( ) 0xhxgvxfuxfu =∇μ+∇+∇+∇ 222211  

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
μ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⇒

0
0

1
1

1
0

0
1

221 1-
0  

vuu

  
⎭
⎬
⎫

μ−=
μ−=

⇒
22

1

vu
u

   

If  and  ( , 0<μ 0, 21 ≥vv 01 =v ( )xIv ∉1 ) then we have  which satisfy the 
necessary conditions of efficiency. 

0, 21 >uu
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