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ABSTRACT

In this paper, we investigate and compare the trajectories of a well-known prey-predator
model named Lotka - Volterra Model including the effects of the trajectories of this model
by changing its different parameters. The Computer Algebra System (CAS)
MATHEMATICAS.0 is used to get the graphical consequences.

1. Introduction

One of the first models to incorporate interactions between predators and prey was
proposed in 1925 by the American biophysicist Alfred Lotka and the Italian
mathematician Vito Volterra. Unlike the Malthusian and Logistic models the Lotka-
Volterra model is based on differential equations very deeply. The Lotka-Volterra model
describes interactions between two species in an ecosystem, a predator and a prey. Since
we are considering two species, the model will involve two equations, one which
describes how the prey population changes and the second which describes how the
predator population changes .Since this model is studied as a basic model in modeling of
two species population, so studying of this model occupies great importance in modeling
science. In the Lotka-Volterra-model it is assumed that the death rate of the prey depends
on the number of predators. The larger the predator population, the more prey animals
will fall a victim. On the other hand, the predators are better off if many prey animals are
available. The Lotka-Volterra-model is also a feedback model, i.e. the prey population
has a positive effect on the size of the predator population, whereas the latter has a
negative (inhibiting) effect on the size of the prey population.

2. The Lotka-Volterra Model
We consider the Lotka-Volterra Predator-Prey Model [5] as follows:
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Where A (t) and P, (t) denotes the number of prey and predator at time t respectively
and the parameters o, 5,7 and 71 are positive constants.

3. Preliminaries

As the system (2.1) consists a system of nonlinear differential equations that cannot be
separated from each other and that cannot be solved in closed form. In this regards we
will discuss the qualitative and quantitative behavior of the system.

3.1 Theorem: Each trajectory for the Lotka - Volterra model (2.1) through each point
(EO B, ) on the positive quadrant, in P1P2 - plane is a closed oval curve.

B, _ B(nh-y)
dR R(a-pB)

Proof: From (2.1) we get,
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where, Aisaconstantand A=
e

These curves in the Ple -Plane are called the trajectories for our model.

To discuss the nature of these curves, we first find their points of intersection with lines
paralle] to the axis of coordinates. If we consider the point of intersection with the line

P, =k, we get,

e P’ = 2™k =—
/u(say)
or F(B)=e"™ -upR =0 . (3.1.5)

Since F(0) >0, F(c0)>0, (3.1.4) either does not give any positive real root or it gives an
even number of positive values of F . Further, the roots of (3.1.4) are determined by the
abscissae of the points of intersection of the curves

Py=e™ and Py = up/ (3.1.6)

It is easily seen that the two curves intersect in two distinct real points (when u = 4, ) or
in two coincident real points (whenz = ') or do not intersect in any point i = J7
(Figure 1)

PosptaP1¥ (piz>p*)

Pe=p1P1™ (ur<p™)

. - ; ~ Py
2 4 5 8 10
Figurel: Determining the point of intersection of curves.

The condition that the curves touch each other is obtained by eliminating A between the
equations
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ﬂE}, =" and /l}/})[}/_[ = 77e’7P' (3.1.7

With the critical value of p and the value B as

B =L (3.1.8)
n
If p> p*, (3.1.4) has two real roots and if p < p*, it has no real roots. Thus every straight

line parallel to the F} -axis cuts each trajectory in two real (coincident or distinct) points or

does not cut in any point. Similarly, every straight line parallel to the P, -axis cuts each

trajectory in two real points or does not cut in any points. This suggests that each trajectory
is a closed oval curve of the shape shown in Figure 2.

5

P
1
Figure 2: Typical trajectories.

It also appears from (3.1.8) that for every trajectory, points B and D, where the lines parallel

to the £} -axis touch the trajectory, lie on the line | = Z. Similarly, the points A and C,
n

' (1
where the lines parallel to the P, -axis touch the trajectory, lie on the line P, =—.

There are four degenerate trajectories which are of special interest. If the starting point is

dP, dp

. . a . . .
the equilibrium point, £, = —K,F;E =— 1i.e. the point at whlchd—,7 vanish, then
E 77 z.

(Pl, ) )always stays at this equilibrium point and we get a point trajectory. Similarly, if
the initial position is (0,0), then (Pl P )always stays at (0,0) and we get another point
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trajectory. If the trajectory starts from a point ( A ,O) on the P -axis, then P, always
remains zero and the trajectory is the part of the A -axis for which £} > Pl(, . Similarly if
the trajectory starts from a point ( 0,7, ) on the P, -axis, then P always remains zero and

the trajectory is the part of the P, -axes for which £, < F, . These degenerate trajectories

are shown in the following Figure-3.

P,
By
v
(E2)
v n g
A 4
——P » P1
by,

Figure 3: Special trajectories.

It is easily seen that two different trajectories cannot cross each other at a point; if, they

do, 22 will have two values at one point. In particular, no non point trajectory can pass
1

o
through the equilibrium points (Z,EJ and (0,0) Further, the trajectory starting
n

at(R" B, ) , where i >0,F, >0, cannot intersect the A -, P, -axis so that, if we start
with positive values of /], P, , we continue to get positive values of P, P, .

We can also get some idea of the shapes of the trajectories by considering the signs of
dP, dP,

——and —= in the four regions in which the first quadrant is divided by the lines

dt dt
I .
Pl'—*landP2=g . From QZ,BPl Z_f; ,&=77P2 —Z+E , we get the
n B dt B dt n
signs of Pll and P2’ in regions I, IL, IIT and IV as shown in Figure 4 .
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B <0,P >(

Figure4: Phase diagram of a predator-prey system. In the right lower part the predator and the prey
population increase (P > 0, P% > 0), in the right upper part the predator population increases
and the prey population decreases (P > 0, P5 > 0), in the left upper part the predator- and
prey population decreases (P’ > 0, P% > 0), in the left lower part the predator population
decreases and the prey population increases (P} >0, P% > 0).

Let the initial point £ = (Plo yes )be in region I. Here P decreases and P increases so
!

that the point moves in the counter-clockwise direction till it reaches C where P, = 0 and

the tangent is parallel to P, -axis. In region II, both P, and P, decreases and the point

continues to move in the counter clockwise direction till it reaches D where ; =0. In
region I, P, increases and P, decreases till A. In region IV both P, and P, increases
till B.

All the trajectories are thus described in the counter clockwise sense and they appear to
be cramped near the axes since they can only approach, but cannot cross them.

3.2 Theorem: The equilibrium positions for small oscillations, the trajectories of Lotka-
Volterra Predator-Prey Model are stable.

3.2.1 Analytical Proof

o
There are two equilibrium positions, namely, (0,0)and [Z,EJ The first position is
7

easily seen to be unstable. To discuss the stability of the second position, we substitute
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R(O)=Lem (). 20 = 5+ (1)

In (2.1) we get,
‘dﬂ=ﬁ(1+u1J(%—g—u2]3£=—ﬂuz — Puu,

dt 7 p at 7 (3.2.2)
%n(%)[%%]:%“_;n
So by linearize (3.2.2) we get,
% _ _Z’_ﬂu”% =%77u1 (3.2.3)
The secular equation determined by (3.2.3) is
A tay=0 (3.2.4)

So that the real parts of both the roots are zero. Solving (3.2.3), we obtain

u,(t)= 4, Cos(@t +k, ),uz (t)= 4, Cos(ﬁt +k, ) (3.2.5)
27

Jar

Therefore, periodic oscillations occur with period . In fact, from (3.2.3),

dzul d2u2
— =_0W1,_dt2 =~ (3.2.6)

and there is elliptic harmonic motion in the ujuy-plane. Also from (3.2.3),

2
du, _ an” u

= — 3.2.7)
du, Vi U,
Integrating (3.2.7), we get
n b |
— + 7= Constant , (3.2.8)
e an

So that for small oscillations the trajectories are ellipses. The equilibrium position
a
(Z,—) is therefore a center, or the equilibrium is neutral, and (PI’PZ )performs
n
Yy o

conservative oscillations about [— R —J .

n
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The existence of the conservative oscillations about the equilibrium point has been
established only for local or neighborhood stability. These oscillations exist also for
global stability, i.e.. they occur even for large deviations from the equilibrium positions,

if we can establish the existence of a Lypunov function G(Pl,Pz)which is always

positive and whose derivative with respect to t is always less than or equal to zero. Such a
function is,

G(B,B)=R'Be e (3.2.9)
Since it is always positive and its derivative is zero because from (3.1.4) G is constant.

This result confirms that all non-degenerate trajectories are closed oval curves with a non-
zero equilibrium point inside them.

3.2.2 Proof (By CAS

Here we replace the parameters «, f,7,and 17 of our model (2.1) by the letters a, b, ¢
and d and also B, P, by x, y for simplicity of writing MATHEMATICA codes and take the
values:

a=1.5;b=0.03; ¢=0.5;d=0.01;

as a standard one.

Lothka-Uolterra Model
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Figure 5: Direction field of Z—PIZ

Direction field allow us to get the possible shape of the solution curves. Hence the
dP.
solution curves of d_PT is the trajectories of the given systems. So ultimately we get the

shapes of the family of trajectories. Likely the trajectories would be oval shaped.
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Lotka-Volterra Model
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Figure 6: For different initial conditions different trajectories are shown in bold block curves.

Different values of the constant of integration give different trajectories. Our obtained
trajectories fit in with direction-field curves very closely. We also get these trajectories by
appropriate Mathematica code.

Lotka-Volterra Model
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Figure 7: Our equilibrium point is perfectly set to the center of our trajectories.

The predator population growth on the prey population as a substrate, lags the prey
population by 90°. This is shown in a phase diagram in which the number of predators is
plotted on the P, axis and the number of prey on the P; axis. If the parameters are
adequately chosen, both populations move on a closed path around the equilibrium point.

4. Effect of Changing the Value of Parametrs and Discussion

In this part, we explore how the solutions change if one of the parameters of the model
(2.1) is changed. The cases are shown by using the Mathematica codes.

4.1 Effect of changing the value of &
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Lotka-Volterra Model Lotka-Volterra Model
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Figure 11: Effect of changing the value of &

Observation: Decreasing the value @ of by 13.3% the trajectories of the system slightly
reduced in both directions A and P, i.c. the maximal growth rate of B and P, have
decreased. On the other hand, increasing the value of @ by 20% the trajectories of the
system expanded in both directions ([ and P, directions). i.e.. the maximal growth rate
of A and P,have increased . Thus we can conclude that the increase of ¢ increases

both population, because ¢ implies the natural growth rate of prey and more prey means
more predators.

4.2 Effect of changing the value of 5 :

Lotka-Volterra Model Lotka-Volterra Model
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Figurel2: Effect of changing the value of ,B

Observation: Decreasing the value of £ by 33.3% the trajectories dramatically
expanded in both Fand P, direction i.e. the maximal growth rate of Fand P, have
increased and increasing the value of £ by 33.3% the trajectories reduced suddenly in
both Fand P, direction i.e. the maximal growth rate of Fand P have decreased.

Increasing the value of f reduced P,and A to 0 level, because if predator increase

their hunting capacity then the food supply is less sufficient for large number of predator
and hence the prey population die out in a short time.
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4.3 Effect of changing the value of y :

Lotka-Volterra Model
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Figure 13: Effect of changing the value of

Observation: Decreasing the value of ¥ by 50% the trajectories mainly reduced in B
direction. Hence maximal growth rate of F have decreased and increasing the value of ¥
by 50% the trajectories mainly expanded in Fj direction. Hence maximal growth rate of
P have increased. But in the both cases it also happened to P, with small magnitude. If
the parameter y is increased the predator population P, is increased slowly but on the
other hand prey F is increased very fast.

4.4 Effect of changing the value of 1) :

Lotka-Volterra Model
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| . Figure 14: Effect of changing the value of 1}
|

; Observation: Decreasing the value of 77 by 50% the trajectories reduced in P direction.
‘ i.e.. the maximal growth rate of H is reduced and increasing the value of 7 by 50% the
} trajectories reduced in P direction. i.e.. the maximal growth rate of F is reduced. But in

the both cases it also happened to P, with small magnitude. Lastly when we increase the
value of 77the more death of the prey reduces its population and thus the population of
predators also decreased.
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CONCLUSION

The Lotka-Volterra model is one of the earliest predator-prey models to be based on
sound mathematical principles. It forms the basis of many models used today in the
analysis of population dynamics. We examine the effects of varying parameters that
changed the growth rate of prey and predator population. The predator and prey
populations seem to cycle endlessly without settling down quickly. While this cycling
has been observed in nature, it is not overwhelmingly common. Therefore results may
differ from actual situations. But the guidelines and MATHEMATICA codes that we
created could be very helpful for further study to model multi —species prey predator
systems.
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