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ABSTRACT   
 

Flow instability through a curved duct with square cross section is numerically 
studied by using the spectral method over a wide range of the Dean number 0  

 5000 for the curvature 
≤

Dn ≤ δ = 0.1. A temperature difference is applied between 
the vertical sidewalls for the Grashof number  =100, where the outer wall is 
heated and the inner wall is cooled. After a comprehensive survey over the 
parametric ranges, two branches of asymmetric steady solutions are obtained by the 
Newton-Raphson iteration method. Linear stability of the steady solutions is then 
investigated. It is found that only the first branch is linearly stable in a couple of 
interval of  while the other branch is linearly unstable. Steady values of the 
Nusselt numbers, , are also calculated for two differentially heated vertical 
sidewalls. When there is no stable steady solution, time evolution of  is obtained 
and it is found in the unstable region the flow undergoes through various flow 
instabilities, if  is increased. 
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1.  Introduction 
The study of flow through a curved duct is of fundamental interest because of its 
numerous applications in fluid engineering, such as in heat exchangers, ventilators, gas 
turbines, aircraft intakes and centrifugal pumps. Blood flow in human veins and arteries is 
another important application of curved duct flow. The flow through a curved duct shows 
physically interesting features under the action of the centrifugal force caused by the 
curvature of the duct. The presence of curvature generates centrifugal forces which act at 
right angle to the main flow direction and produce secondary flows. Dean [1] was the first 
who formulated the problem in mathematical terms under the fully developed flow 
condition. He found the secondary flow consisting of a pair of counter rotating vortices 
caused by the centrifugal force. Since then, there have been a lot of theoretical and 
experimental works concerning this flow, the review articles by Berger et al. [2], 
Nandakumar and Masliyah [3] and Ito [4] may be referred. 
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One of the interesting phenomena of the flow through a curved duct is the bifurcation of 
the flow because generally there exist many steady solutions due to channel curvature. 
Dennis and Ng [5], Nandakumar and Masliyah [6] and later Yanase, Gotoh and 
Yamamoto [7] studied dual solutions of the flow through a curved duct. Yang and Keller 
[8] studied the bifurcation of the flow for small curvature and found multiple branches of 
solutions. Thangam and Hur [9] studied the characteristics of laminar secondary flows in 
a curved rectangular duct. However, detailed bifurcation structure and linear stability of 
the steady solutions for fully developed flows in a curved square duct was investigated by 
Winters [10]. He applied bifurcation analysis to it and found that there are many 
symmetric and asymmetric steady solutions among which linearly stable ones are few. 
The existence of the multiple solutions of the flow through a curved duct with the large 
aspect ratio was first studied by Yanase and Nishiyama [11]. They obtained two kinds of 
solutions: the two-vortex solution and the four-vortex solution for the same aspect ratio. 
Yanase [12] gave a short comment that the solution oscillates temporally between the 
symmetric two- and four-vortex solutions for the Dean number at which no stable steady 
solution exists. Wang and Yang [13] performed a numerical study on fully developed 
bifurcation structure and stability of the forced convection in a curved square duct flow. 
In the succeeding paper, Wang and Yang [14] performed numerical as well as 
experimental investigations of periodic oscillations for the fully developed flow in a 
curved square duct. Flow visualization in the range of Dean numbers from 50 to 500 was 
conducted in their experiment. They showed, both experimentally and numerically, that a 
temporal oscillation takes place between symmetric/asymmetric 2-cell and 4-cell flows 
when there are no stable steady solutions. 

One of the most important applications of curved duct flow may be the enhancement of 
the thermal exchange between two sidewalls, because it is possible that the secondary 
flow may convey heat and then increases the heat flux between two sidewalls. 
Chandratilleke and Nursubyakto [15] presented numerical calculations to describe the 
secondary flow characteristics in the flow through curved ducts of aspect ratios ranging 
from 1 to 8 that were heated on the outer wall, where they studied for small Dean 
numbers and compared the numerical results with their experimental data. Recently, 
Yanase et al. [16, 17] performed numerical investigations of isothermal and non-
isothermal flows through a curved rectangular duct. They discussed the bifurcation 
structure of the solutions and studied the effect of secondary flows on convective heat 
transfer. Very recently, Mondal et al. [18, 19] performed numerical prediction of 
isothermal and non-isothermal flows through a curved duct of square cross section. They 
found a close relationship between unsteady solutions and the bifurcation diagram of 
steady solutions for the isothermal flow. They also investigated effects of curvature on the 
flow characteristics. However, complete bifurcation structure as well as effects of the 
Nusselt number on the flow characteristics were not shown in their paper for the non-
isothermal flow in the curved square duct. 

The objective of the present study is to understand the characteristics of non-isothermal 
flow through a curved square duct over a wide range of the Dean number by finding the 
steady solutions, investigating their linear stability and analyzing the nonlinear behavior 
of the unsteady solutions by time evolution calculation of the Nusselt number. 
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2. Governing Equations 
Consider a laminar flow of viscous incompressible fluid through a curved duct with 
square cross section whose width or height is . The coordinate system with the 
relevant notation is shown in Fig. 1, where C is the center of the duct cross section, O the 
center of curvature and  the radius of curvature. The 

d2

L x -, y - and -axes are taken to 
be in the horizontal, vertical and axial directions, respectively. It is assumed that the outer 
wall of the duct is heated while the inner one is cooled. The temperature of the outer wall 
is  and that of the inner wall is where 

z
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The variables are non-dimensionalized by using the representative length and the 
representative velocity . We introduce the non-dimensional variables defined as 
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where , , and  are the non-dimensional velocity components in the u v w x , y , and 
z directions, respectively; t  is the non-dimensional time, P  the non-dimensional 
pressure,  the non-dimensional curvature, and temperature is non-dimensionalized by δ

TΔ . Henceforth, all the variables are nondimensionalized if not specified. 

 
Figure 1: Coordinate system. 

Since the flow field is uniform in the -direction, the sectional stream function  is 
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The basic equations for   and ,w ψ T are derived from the Navier-Stokes equations and 
the energy equation under the Boussinesq approximation as 
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The Dean number , the Grashof number  and the Prandtl number Dn Gr Pr , which 
appear in Eqs. (2) to (4) are defined as 
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where ,μ  γ ,κ and g  are the viscosity, the coefficient of thermal expansion, the 
coefficient of thermal diffusivity and the gravitational acceleration respectively.  

In the present study, the rigid boundary conditions for and w ψ  are used as 
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and the temperature T  is assumed to be constant on the walls as 

xxTyTyT =±−=−= )1,(,1),1(,1),1( .                                                  (8) 

In this study, only  varies while , Dn Gr Pr and δ are fixed as Gr = 100, Pr =7.0 (water) 
and δ = 0.1. 
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3. Numerical Method 
The method adopted in the present numerical calculation is the spectral method. By this 
method the variables are expanded in a series of functions consisting of the Chebyshev 
polynomials. That is, the expansion functions and are expressed as )(xnφ )(xnΨ

( ) )(1)(),()1()(
222 xCxxxCxx nnnn −=ψ−=φ                           (9) 
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where M  and are the truncation numbers in the N x - and -directions respectively. The 
expansion coefficients and  are then substituted into the basic Eqs. (2), (3) 
and (4) and the collocation method is applied. As a result, nonlinear algebraic equations 
for and   are obtained. The collocation points are taken to be 
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Where 1,...,1 += Mi  and 1,...,1 += Nj .The steady solutions are obtained by the Newton-
Raphson iteration method and the convergence is assured by taking pε < , where 

subscript 
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In the present numerical calculations, M = 20 and =20 have been used for sufficient 
accuracy of the solutions (for details, see Mondal [20]). 

N

To solve the steady solution, the time derivative terms ,/ tw ∂∂  ,/ t∂ψ∂  and are 
taken to be zero and the expansion series (10) with coefficients and , being 
time independent, is substituted into the basic Eqs. (2) to (4). Finally, in order to calculate 
the unsteady solutions, the Crank-Nicolson and Adams-Bashforth methods together with 
the function expansion (10) and the collocation methods are applied to Eqs. (2) to (4). 
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4. Resistance Coefficient and the Nusselt Number 

In the present study, the resistance coefficient λ  is used as the representative quantity of 
the flow state. It is also called the hydraulic resistance coefficient, and is generally used in 
fluids engineering, defined as  
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for steady solutions. For unsteady solutions, on the other hand, it is defined as  
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where    denote an average over a time interval 〈〈 〉〉 τ . When the field is periodic, τ  is 
taken as one period, and if it is chaotic τ  is chosen to be an appropriate time interval. 
 
5. Results and Discussion 
5.1 Solution structure 

We obtain two branches of asymmetric steady solutions over a wide range of the Dean 
number  for 50000 ≤≤ Dn 1.0=δ and 100=Gr . The steady solution branches are 
obtained by the path continuation technique with different initial guesses as discussed in 
Mondal [20]. The bifurcation diagram is shown in Fig. 2 for 2000100 ≤≤ Dn usingλ , the 
representative quantity of the solutions. The two steady solution branches are named as 
the first steady solution branch (first branch, thick solid line) and the second steady 
solution branch (second branch, thin solid line) respectively. In this regard, it should be 
remarked that for the isothermal flow in a curved square duct, Mondal et al. [18] obtained 
four branches of steady solutions with a bifurcating relationship among the branches, 
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where two steady solutions are symmetric and two are asymmetric. For the non-
isothermal flow in the present study, however, we obtain only asymmetric steady 
solutions, and it is found that there exists no bifurcating relationship between them in the 
parameter range investigated in this paper.  

 
Figure 2: Steady solution branches for Gr = 100 and 2000100 ≤≤ Dn at . 1.0=δ

                             (a)  

(b)   ψ         

         T        

                Dn =   100(a)          500           1000            2000            4000         5000(c) 

Figure 3: (a) First steady solution branch with the region of linear stability (bold line). (b) Contours of 
secondary flow (top) and temperature profile (bottom) on the first steady solution branch for Dn = 
100(a), 500, 1000, 2000, 3000, 4000 and 5000(c) from left to right. 
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The first steady solution branch is solely depicted in Fig. 3(a). As seen in Fig. 3(a), the 
branch exists throughout the whole range of the Dean number in the present study. The 
branch starts from point a ( 0=Dn ) and goes to the direction of increasing  as Dn
λ decreases and extends up to point  c )5000( =Dn . To observe the change of the flow 
patterns and temperature distributions, contours of typical secondary flow and 
temperature profile at several Dean numbers are shown in Fig. 3(b), where the contours of 
ψ and T are drawn with the increments 6.0=ψΔ and 2.0=ΔT  respectively. The same 
increments of ψ  and T are used for all the figures in this paper, if not specified.  

                                  
Figure 4: Second steady solution branch for Gr = 100 and 5000500 ≤≤ Dn  at . 1.0=δ

 
The right-hand side of each duct box of ψ  and T is in the outside direction of the duct 
curvature. In the figures of the secondary flow, solid lines 0≥ψ show that the secondary 
flow is in the counter clockwise direction while the dotted lines 0<ψ in the clockwise 
direction. In the figures of the temperature field, solid lines are those for and dotted 
ones for . As seen in Fig. 3(b), the first steady solution branch consists of two-vortex 
solutions which are asymmetric with respect to the horizontal centre plane . Heating 
the outer wall causes deformation of the secondary flow and yields asymmetry of the 
flow.  

0≥T

0=y
0<T

The second steady solution branch is shown in Fig. 4. As seen in Fig. 4, the branch starts 
from point  and goes to the direction of decreasing asa )5000( =Dn Dn λ increases and 
turns smoothly at point ( ) in the opposite direction. The branch then goes 
to the direction of increasing as 

b 72.654=Dn
Dn λ decreases which extends up to point  

( ). We show the secondary flow patterns and temperature profiles at several 
values of the Dean number on this branch in Fig. 5. It is found that the second branch 
starts with a two-vortex solution at point  and becomes a four-vortex solution at point 

which remains a four-vortex solution up to point . Thus we obtain a two-vortex 
solution on the lower branch, on the upper branch; however, we obtain four-vortex 
solutions.  

d
5000=Dn

b
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                         1000                                                             Dn 2000 3000 4000 5000

        (a)   ψ        

              T        

       (b)   ψ        

              T         
                    1000            2000            3000                           Dn 4000 5000
Figure 5: Contours of the secondary flow (top) and temperature profile (bottom) on the second steady solution 

branch for 1.0=δ  at (a) on the upper branch and (b) on 
the lower branch. 

.5000,4000,3000,2000,1000     Dn =

5.2 Linear stability of the solutions 

In this paper, we examine linear stability of the steady solutions against only two-
dimensional ( -independent) perturbations. To do this, the eigenvalue problem is solved 
which is constructed by the application of the function expansion method together with 
the collocation method to the perturbation equations obtained from Eqs. (2), (3) and (4). It 
is assumed that the time dependence of the perturbation is , where  is the 
eigenvalue with 

z

teσ ir iσ+σ=σ

rσ the real part, iσ the imaginary part and 1−=i . If all the real parts of 
the eigenvalue σ  are negative, the steady solution is linearly stable, but if there exists at 
least one positive real part of the eigenvalue, it is linearly unstable. In the unstable region, 
the perturbation grows monotonically for  and oscillatorily for .  0=σi 0≠σi

On the basis of the above-mentioned criteria, linear stability of the steady solutions is 
investigated. It is found that between the two steady solution branches; only the first 
branch is linearly stable in a couple of interval of , while the other branch is linearly 
unstable. The eigenvalues of the first steady solution branch are listed in Table 1 where 
the eigenvalues with the maximum real part of 

Dn

σ  are presented. Those for the linearly 
stable solutions are printed in bold letters. As seen in Table 1, the stability region exists 
for and 5.8180 ≤≤ Dn 6.27672.1449 ≤≤ Dn and the perturbation grows oscillatorily 
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( ) for 0≠σi 1.14496.818 ≤≤ Dn
5. 6.2767≈Dn

 and . Therefore, the Hopf bifurcation occurs 
at  and and inverse Hopf bifurcation at

7.2767≥Dn
818≈Dn 2.1449≈Dn

1.

. Linearly 
stable steady solution regions are shown with thick solid lines in Fig. 3(a).  

 
Table 1: Linear stability of the first steady solution branch for Gr = 100 at 0=δ . 

Dn λ  rσ  iσ  

0 0.000000 -8.379  110−× 0 

100 1.031217 -1.105 0 

500 0.360906 -1.454 0 

818.5   0.269458 -5.461  310−× ±

±

±

±

±

±

±

8.078 

818.6 0.269440 3.288  310−× 8.088 

1200 0.219209 7.701 2.254  10×

1449.1  0.198380 1.389  310−× 1.732  10×

1449.2 0.198373 -3.008  310−× 1.731  10×

2000 0.169178 -2.056 0 

2767.6 0.144324 -2.897  310−× 1.074  210×

2767.7   0.144322 7.382  410−× 1.075  210×

3500 0.129120  2.449 10×  ±

±

1.424  210×
4000 0.121279  3.473 1.623  210×

 
5.3 Nusselt number 

We show the variation of the steady values of the Nusselt number with the Dean number in 
Fig. 6 for the first steady solution branch, where solid line denotes  on the cooled 
(inner) sidewall and dashed line  on the heated (outer) sidewall. Since between the two 
steady solution branches only the first branch is linearly stable, calculation of the steady 
values of the Nusselt number is meaningful only for this branch. Figure 6 shows that the 
tendency of increasing the Nusselt number is larger on the heated sidewall than that on the 
cooled sidewall for larger Dean numbers, which can be explained by the fact that many 
subsidiary secondary vortices are generated near the outer sidewall (Chandratilleke and 
Nursubyakto [15]). This result also suggests that heat transfer is significantly enhanced by 
the secondary flow from the heated wall to the fluid since the Nusselt number goes higher 
for the heated wall than that of the cooled wall, if the Dean number is increased.  

cNu

hNu
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Figure 6: Steady values of the Nusselt number (Nu) for the first steady solution branch. 

5.4 Time evolution 

In order to study the nonlinear behavior of the unsteady solutions, time evolution 
calculations of the Nusselt number are performed for both the cooled and heated sidewalls 
at several values of the Dean number. Figures 7 and 8 show the time evolution of  for 
the cooled ( ) and heated ( ) sidewalls, respectively.  

Nu
cNu hNu

 
Figure 7: Time evolution of Nu at the cooled sidewall for Dn = 1000, 3000 and 4000. 

 
Figure 8: Time evolution of Nu at the heated sidewall for Dn = 1000, 3000 and 4000. 

Time evolutions of  for , at which the steady solution is linearly stable on the 
first branch, show that the value of  quickly approaches that of the stable solution on 

Nu 818≤Dn
Nu
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the first branch. Then in order to see what happens when the steady solution is linearly 
unstable on the first branch for 1449819 ≤≤ Dn

1000=
, time evolution calculation is performed 

for both the sidewalls at  as shown in Fig. 7. It is found that the unsteady 
solution is a periodic (or multi-periodic) oscillation at

Dn
1000=Dn . To observe the periodic 

change of the flow patterns and temperature distributions, contours of typical secondary 
flow and temperature profile are shown in Fig. 10, for one period of oscillation at 

, where it is seen that the periodic (or multi-periodic) oscillation at 
 is a two-vortex solution.  

1.146.13 ≤≤ t
1000=Dn

                                                    500            2000  Dn

ψ                                                   

                                                T    
Figure 9: Contours of the secondary flow (top) and temperature profile (bottom) for one  and 

at . 
500=Dn

2000=Dn 10=t

Time evolution calculation is then performed for 27671450 ≤≤ Dn

Dn

, where the steady 
solution is linearly stable on the first branch. It is found that the unsteady flow remains 
steady-state in this range whatever the initial condition we use. Figure 9 shows, for 
example, contours of secondary flow and temperature profile for and 2000 
at , at which the steady flow is linearly stable in the first and second stable regions, 
respectively. Time evolutions of  are then performed for . Time evolutions 
of  for and 4000 are shown in Figs. 7 and 8 for the cooled and heated 
sidewalls, respectively. It is found that in the second unstable region, a periodic or multi-
periodic oscillation occurs for

500=Dn
10=t

Nu Dn
Nu

35702768

2768≥
3000=

≤≤ Dn ; however, as  is increased further 
( ), the periodic oscillation turns into a chaotic state. Then, in order to observe 
the change of the flow characteristics, as time proceeds, contours of secondary flow and 
temperature profile are shown in Figs. 11 and 12 fo 00

Dn
4000=Dn

r 30=Dn
3000

and 4000, respectively. 
As seen in Figs. 11 and 12, the periodic oscillation at =Dn  is a two-vortex solution 
while aperiodic (chaotic) oscillation at 4000=Dn  is a two- and four-vortex solutions. In 
this regard, it should be worth mentioning that irregular oscillation of the flow through a 
curved duct has been observed experimentally by Ligrani and Niver [21] for the large 
aspect ratio.  
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                t                                                           6.13 7.13 8.13 9.13 0.14

                 ψ  

              T                  
Figure 10: Contours of the secondary flow (top) and temperature profile (bottom) for one period of oscillation 

1.146.13 ≤≤ t  and . 1000=Dn

                                                                     t 12.14 13.14 14.14 16.14 17.14 18.14

       ψ     

      T     
Figure 11: Contours of the secondary flow (top) and temperature profile (bottom) for one period of oscillation 

18.1412.14 ≤≤ t  and 3000=Dn  

          t                                                                    0.12 2.12 4.12 6.12 8.12 0.13

      ψ     

       T    
Figure 12: Contours of the secondary flow (top) and temperature profile (bottom) for one period of oscillation 

 and  1312 ≤≤ t 4000=Dn

By the time evolution calculations, it is found that stable steady solutions occur in the 
regions and8180 ≤≤ Dn 27671450 ≤≤ Dn , periodic solutions for 1449819 ≤≤ Dn and 

and chaotic solution for . Linear stability analysis indicates 3570≤Dn2768≤ 3575≥Dn
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that the stable steady solution exists for 5.8180 ≤≤ Dn  and . 
Therefore, the results of the linear stability analysis and those of the time evolution 
calculations are consistent. 

6.27672.1449 ≤≤ Dn

1.0=

 
6. Conclusion 
A numerical study of the fully developed two-dimensional flow of viscous incompressible 
fluid through a curved duct of square cross section has been performed by using a spectral 
method and covering wide range of the Dean number for a fixed curvatureδ . In the 
present study, a temperature difference is applied across the vertical sidewalls for the 
Grashof number Gr = 100, where the outer wall is heated and the inner one cooled.  

After a comprehensive survey over the range of the parameters, two branches of 
asymmetric steady solutions are obtained with two- and four-vortex solutions. Linear 
stability of the steady solutions reveals that only one branch is linearly stable in two 
distinct intervals of the Dean number (Dn) while the other branch is completely unstable. 
It is found that the Hopf bifurcation occurs at the Dean numbers on the boundary between 
the stable and unstable Solutions. In order to investigate the transition from the multi-
periodic oscillations to the chaotic states in more detail, the spectral analysis is found to 
be very useful. It is found that the chaotic solution is weak for small Dn, where the 
solution drifts among the steady solution branches, for large Dn, on the other hand, the 
chaotic solution becomes strong, where the solution gets away from the steady solution 
branches.  

Steady values of the Nusselt numbers, Nu, are also calculated for two differentially heated 
vertical sidewalls, and it is found that the larger the Dean number is, the larger the Nusselt 
number becomes on the outer sidewall. When there is no stable steady solution, time 
evolutions of Nu are calculated and it is found in the unstable region the flow undergoes 
through various flow instabilities, if the Dean number is increased. 
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