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ABSTRACT 

Asymptotic analysis of the non-stationary cross-flow disturbances of Von-kármán rotation disk 
flow with a temperature dependence viscosity is investigated. The linear eigenrelations are 
derived for various values of the parameter which controls the temperature dependence of 
viscosity with more than one critical layer. It has been fund that there is a cut-off value at an 
angle that lies between 10.30 and 57.40, so that solution exist only for this range. 

 
1. INTRODUCTION  

Rotating disk flow has been at the centre of a large number of theoretical and 
experimental studies in recent years. In this flow temperature changes, viscosity can also 
undergo a significant change. To predict the behaviour of a flow properly, it is therefore 
necessary to consider viscosity variation for incompressible fluids. When the viscosity 
variation on temperature is taken into account, Gary et al. (1), and Mehta & Sood [2] 
demonstrated substantial change in flow characteristics compared to the constant 
viscosity assumption. Kafoussias & Williams [3], Kafoussias & Rees [4], and Keller [5] 
studied the effects of temperature dependent viscosity on mixed and natural convection 
flows by considering the viscosity to vary as linear function of temperature or 
proportional to a liner function of temperature.  

Hossain et al. [6] investigated the flow and heat transfer along a uniformly heated and 
impulsively rotating disk in a stationary fluid subjected to a trans-verse magnetic field 
with temperature dependent viscosity. The flow considered is laminar with viscosity μ′ = 
μ∞/[1 + ∈(T – T∞)/(Tω – T∞)] and it is  shown that heat transfer and surface friction are 
affected by the flow in the viscous sub-layer close to the disk surface, Using a finite 
difference method, Hossain et al. [7] explored the effect of a temperature dependent 
viscosity on natural convection flow of a viscous incompressible fluid from a vertical 
wavy surface. The influence of temperature dependent viscosity on the flow along a 
channel with porous wall was recently analyzed by Ferro & Gnavi [8]. Absolute and 
convective instabilities in the incompressible boundary layer on a rotationg disk with 
temperature-dependent viscosity has been solved numerically by jasmine & Gajjar [9].  

Bassom & Gajjar [10] have investigated the upper-branch neutral stability of three 
dimensional disturbances imposed on a three-dimensional boundary layer profile and 
non-stationary cross-flow vortices for constant viscosity. In this section our objective is to 
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extend Bassom & Gajjar [10] formulation to include the cases where viscosity depends on 
temperature. Following their work, the wave speed is taken to be small initially and the 
disturbances structure analogous to that occurring in two-dimensional boundary layer 
stability. The linear eigenrelations are derived for profiles with more than one critical 
layer. However, investigation relating to the asymptotic solutions of a rotating disk with 
temperature dependent viscosity has not been carried out as yet, which, therefore, is one 
of the aims of the current work.  

This paper is organized as follows: §1 is devoted to the description of the problem §2 for 
basic equation, and asymptotic solution. The conclusions are set in §3.  
 
2. The Basic Equations  

We take an infinite disk rotating with uniform angular velocity Ω about the vertical axis 
z, which passes through the centre of the disk. We consider the three dimensional 
boundary layer flow of an incompressible fluid. Tω denotes the uniform temperature at the 
disk surface and T∞ is the temperature of the ambient fluid. The basic equations in 
cylindrical polar coordinates (r, θ, z) governing the viscous fluid flow are  
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Fig. 1: The flow configuration and coordinate system.   
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where U is the velocity field with the radial, tangential and vertical components of 
velocity as u, υ, w. Here, Cp is the specific heat at constant pressure, ∞ρ  the fluid density, 
k the thermal conductivity of the fluid, p the pressure in the flow, and μ′ the viscosity of 
the fluid. In addition, we assume that the viscosity depends on temperature, i.e. μ′ = μ∞/[1 
+ ε(T – T∞)/(Tω – T∞)], where ∈ is termed the viscosity variation parameter. All other 
material functions such as the fluid density ρ  and the thermal conductivity k of the fluid 
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are treated as constants. The Navier-Stokes equations are non-dimensionalized with 
respect to a length, distance cale L = velocity scale Uc = LΩ, time scale L/Uc and 

pressure scale 

*
,er

ρ ∞  This leads to a global Reynolds number Re = 2
.cU

ν
LUc = R2, where R is 

the Reynolds number based on the displacement thickness δ = .
2
1

⎟
⎠
⎞

⎜
⎝
⎛
Ω
ν  Thus, relative to 

non-dimensional cylindrical polar coordinates (r, θ, z) which rotate with the disk, the full 
time-dependent, un-steary Navier-Stokes equations governing the viscous fluid flow are 
the usual momentum and the continuity equations given as follows 
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where μ = 1/[1 + ε(T–T)/(Tω–T∞)]. In this analysis the fluid is assumed to lie in the z ≥ 0 
semi-infinite space. In the above equations, the curvature effects as well as the effects 
streaming from the Coriolis force are present.  

To obtain the solutions of the governing equations, these are first converted into a 
convenient form using appropriate transformations. The boundary layer coordinate Z, 
which is of order O(1) is defined as Z = zR. Considering this, we can introduce the 
following mean flow variables: 

uB = rF(Z), υB = rG(Z), w = 
1
R H(Z),  (3a) 
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pB = 
1
R2 H(Z), TB = 

T – T∞

Tω – T∞
 = S(Z).   (3b)  

Substituting (3) into (2) yields the following non-dimensional ordinary differential 
equations for the mean flow: 

(1 + εS) F″ – εS′F′ – (1 + εS)2[F2 – (G + 1)2 + F′H] = 0,  (4a) 

(1 + εS)G – εSG′ – εS′G′ – (1 + εS)2[2F(G + 1) + G′H] = 0,  (4b) 

S″ – PrS′H = 0,  (4c)  

2F + H′ = 0,  (4d) 

where prime denotes differentiation with respect to Z, and Pr = μ∞cp/κ  is the Prandtl 
number. The boundary conditions are  

F = 0, G = 0, H = 0, S = 1 at Z = 0, (5a) 

F = 0, G = – 1, S = 0, H = h∞ as Z → ∞.  (5b)  

The value of h∞ is a constant vertical velocity of the rotating fluid in the far-field above 
the disk.  

We shall seek the asymptotic solution of mean flow equations (4) for small viscosity 
variation parameter ∈. We expand the functions in the ascending power of ∈ as 

F = F0(Z) + ∈F1(Z) + ∈2F2(Z) + ... , (6a)  

G = G0(Z) + ∈G1(Z) + ∈2H2(Z) + ... ,  (6b)  

H = H0(Z) + ∈H1(Z) + ∈2H2(Z) + ... ,  (6c)  

S = S0(Z) + ∈S1(Z) + ∈2S2(Z) + ... ,  (6d)  

Substituting (6) in equations (4) and equationg the coefficients of O (1), we get the 
following set of equations  
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The corresponding boundary conditions are  
F0 = G0 = H0 = 0, S0 = 1 at Z = 0,  (8a)  
F0 = 0, G0 = –1, S0 = 0, H0 = constant as Z → ∞. (8b)  

Next we equate terms of O(∈) to obtain the equations  
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Fig. 2: A comparison of the numerical and asymptotic calculations of mean velocity Profile (a) radial F, (b) 

azimuthal G, (c) axial H, and (d) temperature profile S as a function of Z when ε = 0.05.  

The corresponding boundary conditions are  

F1 = G1 = H1 = S1 = 0 at Z = 0,  (10a)  

F1 = G1= S1 = H1 = 0 as Z → ∞.  (10b)  

We have solved the set of ordinary differential equations (7) and (9) with the appropriate 
boundary conditions by employing the finite difference method for Fi, Gi, Hi, and Si (i = 
0, and 1).  

Based on these asymptotic findings, comparisons with the numerical calculations are 
sketched in figures (2) for temperature-dependent viscosity parameter ε = 0.05. Graphs 
show that the asymptotic solution is consistent with numerical computation fives by [9] 
for small temperature-dependent viscosity parameter ε. 
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Fig. 3: Flow structure for infinitesimal sized disturbances. 

We are here interested in perturbation solution of the basic velocity profiles using liear 

theory. A small parameter ε = R – ˆ 1
12 is defined. The scalings and disturbances structure 

with an infinitesimal sized perturbation having wave speed O( ε̂ ) is imposed onto the 
basic flow solution. Following the scalings and basic structure given by Bassom & Gajjar 
[10], a critical layer for positive wave speeds is determined close to the disk surface. In 
figure 3, we have displayed the zone structure near the disk surface. Most of the boundary 
layer is contained in zone I whereas zone II constitutes inviscid adjustment housing 
thinner zones III and IV which characterize the critical layer and viscous wall layer, 
respectively. The zone II is bifurcated into two regions by layer III designated as II– and 
II+ in figure 3. Zones VII are embeded in zone I. We consider the thicknesses of zones I-
IV as O( ), O( ), O( ), and O( ), and streamwise lengthscale O(6ε̂ 7ε̂ 3/23ε̂ 8ε̂ 12/5−R ). The 
basic flow is perturbed as  

(u, υ, w, T, P) = [(uB, υB, wB, TB, pB, pB) + δ(U, V, W, T, P)] + ...., (δ << 1)  

where u, υ, and w are velocity components, T is the temperture profile, and p is the 
pressure.  

First, we consider zone I, which forms the majority of the boundary layer. We define z = 
and ξ = O(1), and expand U,V,W,T, and P in the form  ξε6ˆ

(U,V,W,T,P) = [(u0, υ0, w0, T0, p0) + ε̂ (u1, υ1, w1, T1, p1) + ....] E + c.c. 

where E = exp(i( x (r,θ,t))) and c.c denotes the complex conjugate. Applying the method 
of multiple scales, we obtain  
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where wavenumbers αj, βj, and frequency cj (j = 0, 1,2, ...) are taken to be real. These 
expansions are then substituted into N – S equation (2) and the leading order terms are 
equated. The solution of the system is  

u0 = AF′, u0 = AG′, w0 = – (iA/r) U0B,  T0 = AS′, p0 = Pc,  (12)  

where A and Pc are unknown constants and where we have defined UnB = rαn F(ξ), + 
βnG(ξ), n = 0, 1, 2, .... .Equating the next order terms and performing some 
manipulations, we find that 
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Fig. 4: Mean velocity profile (F + μG) as a function of ξ for different values of μ. 

When ε = 0, the critical value of μ is μc = –
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which is the same value as obtained by Bassom & Gajjar [10].  

When ε = 0.05, 0.1, 0.2, 0.3, and 0.4, the critical vales of μc are 0.8745, 0.9207, 1.0130, 
and 1.1976, respectively. Figure 4 shows that ξ exists if 0 < μ < μc.  

The flow structure is augmented by zones VI and VII (see figure 3) of thicknesses O ( )  
and O  centered on ξ = 

7ε̂

( 3/23ε̂ ) ξ , when the second critical layer exists at some point in 
zone I.  

In zone II, z = Z = O(1). The perturbation quantities take form  7ε̂

(U, V, W, T, P) = ( ) ( )[ ]ccEPTwup ,T , w ,  ,u 00020 ......],,ˆ,,ˆˆˆ 1112110 ++ευε+εευ  

The above expansions are then substituted into N-S equation (2) and the leading-order 
terms are equated. We obtain the solutions for Z > Zc. where Zc denotes the lower critical 
point equal to α0c0/λ10: 
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For the inviscid constraint which requires w(0) → 0 as Z → 0, equations (14c) furnish  

α0c0Aλ10  = r .  (15)  2
0 cPγ

For the next order, the solution given is  

w(1) = 
r
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2
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– 
20

20000

λ
λα

r
ciA (Z – Zc) [In(Z – Ze) + In⎥λ10⎜] + iA2, (16) 

where A2 is a real constant. This solution is valid only for Z > Zc. Details of the critical 
layer at Z = Zc are now required for the continuation below Z < Zc. Following Bassom & 
Gajjar [10], equation (16) holds for Z < Zc if In (Z – Zc) is replaced by [In (Z – Zc) – iπ] 
when λ10 > 0 pr bu [In (Z – Zc) + iπ] when λ10 < 0. 
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Zone IV, describes the viscous wall layer, where z = and = O(1). The perturbation 
quantities now take the form  

ẑˆ8ε ẑ
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 and Pr is the Prandtl number. 

In zone zzV 5ˆ, ε= and )1(Oz = . Thickness O ( )5ε̂  is therefore required to describe the 
flow in the far-field. The perturbation quantities can be expresed as 
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For large ξ, F → O(exp(–cξ)), G → –1 + O(exp(–cξ)) where c = 0.884. Hence, solutions 
in this zone are  
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Matching with zone I requires therefore, 
2
000010 βγ=αλ c  (19) 

There are two critical layers in the flow when α0 and c0 are both positive. There is a phase 
jump of π in w1 across the upper critical layer. if 
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with A, A1 and P0 as real for ξ>ξ , then ξ>ξ , and A1 needs to be replaced by  
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where 
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0 . This replacement yields the solution valid for ξ>ξ .  

When two critical layers occur, matching the velocities between zones II– and IV, the 
resulting equations are  

μ = βd/αd, (22a) 
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=β=βα=α . Here ξ denotes the upper critical layer 
position. 

We shall extend the above formulation for temperature-dependent viscosity parameter ε, 
where ε is small. We expand αd, βd, cd, X, and μ in the ascending power of ε as 
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Substituting (23) into equations (22) and equating the terms of O(1), the following set of 
equations: 
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Next, we equate terms of O(ε) to get 
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Fig. 5: (a) Wavenumber αd, and (b) wavenumber βd as a function of μ, and (c) wave speed cd as a function of 

μ for different values of temperature-dependent viscosity ε. 

 
Fig. 6: (a) ξ , and (b) X as a function of μ for different values of temperature-dependent viscosity ε. 

We have determined wavenumbers, wave speed, ξ and X from equations (24) and (25). 
These solutions are sketched in figures 5 and figures 6 for different values of temperature 
dependent viscosity. These figures show that solutions exist only for μ1c < μ < μc and μ < 
0, where μ1c ≈ 0.183, 0.189, 0.206, 0.232, and 0.253 for ε = 0, 0.05, 0.1, 0.2, 0.3 and 0.4, 
respectively, and μc ≈ 0.8284, 0.8745, 0.9207, 1.0130 and 1.1976 for ε = 0, 0.05, 0.1, 0.2, 
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0.3 and 0.4, respectively. For μ > μc, the critical layer in Zone I is no longer present and 
no solutions of eigenrelations (24) and (25) exist. As temperature dependent viscosity 
parameter ε is increased, the critical value of μc increases. Moreover, X is positive for 0 < 
μ < μ1c and ε < 0.8. For this range of μ and ε, there can be no solution with α0 and c0. 
 
CONCLUSION 

The wave disturbances we have considered make the waveangle arctan (μ) with the radius 
of the disk. As temperature dependent viscosity parameter ε is increased, the range of 
waveangle increases. The values μ1c waveangle for stationary mode and μc for zero shear 
stress represent cut-off values. The change of ε has most effect on shear stress mode. It 
has been found that there is a cut-off value at an angle that lies between 10.3° and 57.4°, 
so that solutions exist only for this range. Our results agree quite well with those derived 
earlier by Bassom & Gajjar [10] for temperature dependent viscosity parameter ε = 0. 
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