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ABSTRACT

In this paper we have proved a classical characterization of modular join-semilattices. We
have also given some characterizations of modular ideals of join-semilattices through
congruences.
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1. Introduction
A classical characterization in lattices is:

e A lattice L is modular if and only if it has no sublattice isomorphic to the
pentagonal lattice [5, 6].

For the pentagonal lattice see Figure 1.
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Figure-1
Grétzer and Schmidt [4] first introduced the notion of modularity in semilattices.
Rhodes [7] characterized the modular meet-semilattices like as the classical

characterization for modular lattice. In section 3, we prove these results for join-
semilattices. We claim that our arguments make the proof easier than Rhodes’ proof.
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Cornish [2] characterized the modular join-semilattices in terms of congruences. The
notion of standard and distributive element (ideal) [3] has been introduced to study on
lattices in general. Talukder and Noor [8, 9] introduced the notion of a modular element
(ideal) in a join-semilattice. For this notion we can study the join-semilattices in general.
Talukder and Noor [8, 9] proved some parallel results, of Cornish [2], for modular ideals
in a join-semilattice. In section 4, we give some more results which characterize modular
ideal in a join-semilattice. This paper is based on [1].

2. Preliminaries
A join-semilattice S: = <S;v> is an algebra of type <2> that satisfies, for all a, b, ce S

(i) ava=a (v is idempotent)

(iavb=bva (v is commutative)

@iii) av (bve)=(avb) vc (v isassociative).
We will denote a join-semilattice as algebra, by S: = <S;v> or simply S if there is no
confusion.

A join-semilattice S is said to be modular join-semilattice if for all x, y, ze S with z<x,
X<yvz, implies x=y, vz forsome y,<y andy, €S.

The set [a, b] = {x | a< x < b} is called the closed interval from a to b. Clearly, [a, b] is a
join-semilattice.

Let S and T be two join-semilattices. A map y:S — T is said to be a homomorphism if
v is a join preserving map. That is, for all a, be S,
v(@avb)=y(@)vy(b)inT

A one-to-one homomorphism is called a monomorphism or an embedding. A onto
homomorphism is called an epimorphism. If a map y: A— B is an epimorphism, we say

that B is a homomorphic image of A. An epimorphism is called an isomorphism if it is
one-to-one map.

Let S be a join-semilattice. A non empty set | of S is called an ideal if,
(i) a,belimpliesavbeland
(ilaeS, bel witha<bimpliesael.

Equivalently by [7], a nonempty subset | of a join-semilattice S is called an ideal if,

avbel, ifandonlyif acland bel

forall a, beS.
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3. A classical characterization

Let P and Q be two ordered sets. Amap f :P — Q is said to be order preserving if f(a) <
f(b) whenever a<b.

Lemma 3.1 Let L and K be two join-semilattices. Every homomorphism f :L — K is an
order preserving map.

Proof: Let a,belLwitha<b. Since f:L>Kis a homomorphism so,
f(a)v f(b)=f(avb)= f(b). This implies f(a)< f(b) in K. Hence f is an order
preserving map.

A join-semilattice R is called a retract of a join-semilattice S if there are homomorphisms
f:S—>R and g:R—S such that f g =1, the identity map on R. Clearly, f is an
epimorphism and g is a monomorphism. If R is a subsemilattice of S and there exists an
epimorphism h:S — R such thath T,= I, then R is certainly a retract of S. In this case
h is called a retraction.

The dual (that is, for meet-semilattice) of the following theorem stated in [7] without

proof and the proof is given in [11]. Here we prove the result for a join-semilattice as we
need in this paper.

Theorem 3.2 A retract of a modular join-semilattice is a modular join-semilattice.

Proof. Suppose S is an modular join-semilattice and let R be a retract of S. Then there
exist an epimorphism f:S — R and a monomorphism g:R — Ssuch that fog=1;.
Letx,y,ze Rwith z<x suchthat x<ywvz. Then by lemma 3.1 g(x)<g(y)v g(z), as
g is a homomorphism. Also z < x implies g(z) < g(x). Since S is modular so there exist
y,<g(y) such that g(x)=y,vg(z), where vy,eS. Thus (fog)(x)
=f(y)v(fog)(z). This implies x=f(y)vz, where y <g(y) implies
f(y,) <(fog)(y)=y. Therefore R is modular.

For any a, beS§, the interval [a, b]={x | a<x<b} is clearly a join-semilattice. We have
the following result:

Theorem 3.3 Let S be a join-semilattice. For a, be S, the interval [a, b] is retract of S.
Proof: Defineamap f :S —[a,b]such that
£(x) = XV a _if Xxvas<h
b if xva<b
let y e[a,b], this implies a<y<b. Hence f(y)=ywva=y. Therefore, clearly f isan
epimporphism. Thus [a, b] is a retract of S.

We can easily prove that if B is a retract of A and C is a retract of B, then C is a retract
of A. Now we prove the following important characterization of modular join-semilattice.
Rodes [7] proved the result for the case of meet-semilattice. Our case is the dual of meet-
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semilattice. Moreover our argument makes the proof more simpler than the proof of
Rodes [7].

Theorem 3. 4 Let S be a join-semilattice. Then the followings are equivalent:
(a) S is modular;

(b) S is directed bellow and it does not contain a retract isomorphic to the pentagonal
lattice.
Proof: (a) = (b). Suppose S is a modular join semi lattice, then each pair of elements of S
has a lower bound. Let R be a retract of S, then by theorem 3.2 R is a modular join-
semilattice. Hence R can not be isomorphic to the pentagonal lattice.
(b) = (a) Suppose S is directed below non modular join—semilattice. We shall construct

a retract of S isomorphic to the pentagonal lattice. Since S is non modular, there exist
a,b,ceS where c<avb with a<csuch that c=ywva for all y<b. Clearly

avb=Dbvc. Since S is directed below, there is | <a,b. Set L={l,a,b,c,avb}. We
show that L is a retract of [l,av b]. Let W ={we[l,av b]|w<b,c}.

Define f :[l,av b]— L given by,

I, if xeW
b, if x<band x£c

f(x)=1c, if ¥<b,x<cand xsvav zforall zeW
a, if ¥<band x<avz forsomezeW
avb if x<bandxxc

Clearly, fis well defined. We must have to show that f is a homomorphism. Let
X,y e[l,avb].

Case 1: f(x)=a. then x<b and x<awvzfor some zeW . Since x<b we have
xvy<h foreach ye[l,avb].

Suppose f(y)=a. then #<b and y<avwfor some weW. So xvy<band
Xxvy=avwsome weW ,h Thus f(xvy)=a=f(x)v f(y).

Suppose f(y) =1, then the proof is trival.

Suppose f(y)=c, then 7 y<b, y<cand y<avp for every peW. So
Xvyxav pforevery peW . Since x<awvz forsome zeW , we have x<avc=c
so xvy<c,hence f(xvy)=c=Tf(x)v f(y).

Suppose  f(y)e{b,avb}. Ther’ y<cso /xvy<c amd xvy<b, hence
f(xvy)=avb=f(Xx) v f(y).

Case 2: f(x)=1.Then xeW
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Suppose f(y)=1,then yeW .Hence xvyeW,so f(xvy)=I=Ff(X)v f(y).

Suppose f(y)=a. Then xvy<Wand xvy=avz forsome zeW .

Henve f(xvy)=a=f(xX)v f(y)

Suppose f(y)=b.Then xv y<band X\/ygc/,hence f(xvy)=b=1f(x)v f(y)

Suppose f(y)=c,then xvy<b, xvy<c and xvy<avzfor ever zeW, hence
/

fxy)=c=1(x)v f(y)

Suppose f(y)=awvb.Then xvy<#and xv y<chience

f(xvy)=avb=1(x)v f(y).

Case 3: f(x)=awvb. Then x£b and x<c. Hence for any ye[l,avb]. We have
xvy<band xvy<e. Therefore f(xvy)=avb="f(x)v f(y)

Case 4: f(xX)=b.Then x<b and x<c. Since x<cso xvy<£t forall ye[l,avh].
Suppose f (y) €[l,b], then y<band hence Xvy<b. Therefore
f(xvy)=b=f(x)v f(y). Suppose f(y)e{a,c,avb}, then y<bandhence xvy<bh
therefore f(xvy)=avb=f(x)v f(y).

Case 5: f(x)=c. Then x<b,x<c and x<4v z for everyz eW . Therefore for every
yeW we have xvy<b and’xvy<avzfefevery zeW .

Suppose f(y)e{l,a,c}.Then y<candhence xvy<c.
Therefore f (xvy)=c=f(x)v f(y)

Suppose f(y) e{b,av b}. then y < and hence xv y <c”Therefore
f(xvy)=avb=f(X)v f(y).

This prove that L is an epimorphism image of [l,avb] and since it is obviously a
subjoin-semilattice, L is a retract of [l,av b]. Hence by theorem 3.3 L is a retract of S.
This completes the proof.

4. Quotient structure
An equivalence relation ® on a join-semilattice S is called a congruence relation on S if
a=Db(®) and c=d(®) impliesthat avc=bv d(®)
where a, b, c,deS.
Let S be a join-semilattice and | be an ideal of S. Then the congruence ® (1), defined by
Xx=y@O())(x,yeS)ifandonly if xvi=yviforsomeiel.

has | as a congruence class. If S is downwards directed then ® (1) is the smallest
congruence of S containing I. We denote the quotient lattice of all the congruence classes
of ® () by S/O(1).
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Now we have the following result.

Theorem 4.1 Let S be a modular join semilattice. The every ideal J of S is modular and
moreover S/ ® (J) is modular.

The mapping ¢:S — S/O(I) is said to be canonical homomorphism if for all xe S,

o(x) =[x]e(1)
The following characterizations of modular join semilattice due to [9].
Theorem 4.2 (Theorem 2.2 [10]) Let M be an ideal of a join semilattice directed below S.
Then M is modular if and only if ®(M) T, =@M N K) T, forall KeI(S).

Theorem 4.3 (Theorem 3.4 [10]) Let S be a join semilattice directed below and let J be
an ideal of S. For an ideal I, let ¢:S — S/®(l)) is the canonical homomorphism.

Then the following conditions are equivalent:
(i) Jis modular,
(i) For any Ie I(S) and xe I v J implies that x=j ® (1) for some jeJ,
(i) @(1v3) =9 (),
@iv) o p(d)=1vJ
(V) @(Jd)isanideal of S/O(I).
Now we prove our main results.

Theorem 4.4 Let S be a join-semilattice and J be an ideal of S, for an ideal I of S, if
¢:S—>S/0(l) is the canonical homomorphism then the following condition are

equivalent:
(i) Jis modular.
(iiyForany 1€1(S), 3)=(@ (A)] in S/O(I).
(iiiy  Forany 1L,Kel(S),o(@v K)=(@ @]V (¢ K)]in S/6(1).
Proof: (i) = (ii) Suppose (i) holds. So by (v) of theorem 4.3 ¢(J) is an ideal of

S/0O(1). Sincep(J)is an ideal it is obvious that @(J) = (e(J)] in S/O(1). Thus (ii)
holds.

(ii)= (iii) Suppose (ii) holds. Hence by (iii) of theorem 4.3 we have ¢(J v K)
=0(J) = (e()]Vv (e(K)]. Nowo(J)=¢(J v K). So by (ii) (¢(J)]=0¢(J v K). Again
(K)o vK)=0(J).

So (p(K)l= ¢(J) = ¢(J v K). Hence (¢(J)]v (e(K)]l= ¢(J v K).
Therefore ¢(J v K)=(p(J)]Vv (p(K)] in S/6(1).
(iii) = (i) Suppose (iii) holds. If in (iii) we replace K by J we get
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(I v I)=(e(I)]Vv (¢(3)], Hence ¢(J) = ((J)].
(ii) = (i) Suppose (ii) holds.

Theorem 5 Let S be a join semilattice and let J be an ideal of S. The following conditions
are equivalent:

(i) Jis modular.
(ii) The canonical map v :K/© (JnK) —>Jv K/O (J) for any Ke I(S) is one-to-one.

(iif) The canonical map v :K/® (JnK)—>Jv K/O (J) for any Ke I(S) is onto.
(iv)The canonical mapy :K/® (JnK)—Jv K/O (J) for any K e I(S) is an isomorphism.

Proof. (i)< (ii). Let [X]® (J) = [y]® (J) for x, y € K. By the Theorem 4.2 we have
[X]1® @ n K)=[y]® (I3 nK). The reverse argument gives us the reverse implication.

()< (iii). Let [X]® (J) e Jv K=0O (J). This implies xe Jv K. Hence by the Theorem
4.3 we have x= k® (J K') for some ke K. Hence by Theorem 4.2 we have

x=k® (J NK). Hence [x]® (J) = [K]® (J nK) for some k € K. The reverse argument
gives us the reverse implication.

()<= (iv). Let [x], yle K/ © (JnK). Then w (IX]v IY]) = v (Ixvyl = [xvy]® (J) =
IO VvIY]® @) = wI[X]Vv wly]l: Hence by (ii) and (iii) we have (iv) holds. The
reverse argument give us the reverse implication.
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