CHARACTERIZATION OF MODULAR JOIN-SEMILATTICES

¹M.R. Talukder and ²M.H.B. Arif

¹Department of Mathematics, Shah Jalal University of Science and Technology
Sylhet 3114, Bangladesh,
Email: r.talukder-mat@sust.edu

²Department of ICT, Metropolitan University, Sylhet 3100, Bangladesh,
Email: mhbarif@gmail.com

Received 11.01.07

Accepted 19.04.08

ABSTRACT

In this paper we have proved a classical characterization of modular join-semilattices. We have also given some characterizations of modular ideals of join-semilattices through congruences.

Key words: Join-semilattices, modular semilattices, distributive semilattices, quotient semilattices

1. Introduction

A classical characterization in lattices is:

• A lattice L is modular if and only if it has no sublattice isomorphic to the pentagonal lattice [5, 6].

For the pentagonal lattice see Figure 1.

Figure-1

Grätzer and Schmidt [4] first introduced the notion of modularity in semilattices. Rhodes [7] characterized the modular meet-semilattices like as the classical characterization for modular lattice. In section 3, we prove these results for join-semilattices. We claim that our arguments make the proof easier than Rhodes' proof.

44 Talukder and Arif

Cornish [2] characterized the modular join-semilattices in terms of congruences. The notion of standard and distributive element (ideal) [3] has been introduced to study on lattices in general. Talukder and Noor [8, 9] introduced the notion of a modular element (ideal) in a join-semilattice. For this notion we can study the join-semilattices in general. Talukder and Noor [8, 9] proved some parallel results, of Cornish [2], for modular ideals in a join-semilattice. In section 4, we give some more results which characterize modular ideal in a join-semilattice. This paper is based on [1].

2. Preliminaries

A join-semilattice $S := \langle S; \vee \rangle$ is an algebra of type $\langle 2 \rangle$ that satisfies, for all $a, b, c \in S$

(i) $a \lor a = a$ (\lor is idempotent)

(ii) $a \lor b = b \lor a$ (\lor is commutative)

(iii) $a \lor (b \lor c) = (a \lor b) \lor c$ (\lor is associative).

We will denote a join-semilattice as algebra, by $\mathbf{S} := \langle S; \vee \rangle$ or simply \mathbf{S} if there is no confusion.

A join-semilattice S is said to be modular join-semilattice if for all x, y, $z \in S$ with $z \le x$, $x \le y \lor z$, implies $x = y_1 \lor z$ for some $y_1 \le y$ and $y_1 \in S$.

The set $[a, b] = \{x \mid a \le x \le b\}$ is called the closed interval from a to b. Clearly, [a, b] is a join-semilattice.

Let **S** and **T** be two join-semilattices. A map $\psi: S \to T$ is said to be a homomorphism if ψ is a join preserving map. That is, for all $a, b \in S$,

$$\psi(a \lor b) = \psi(a) \lor \psi(b) in T$$

A one-to-one homomorphism is called a monomorphism or an embedding. A onto homomorphism is called an epimorphism. If a map $\psi: A \to B$ is an epimorphism, we say that B is a homomorphic image of A. An epimorphism is called an isomorphism if it is one-to-one map.

Let **S** be a join-semilattice. A non empty set *I* of *S* is called an ideal if,

- (i) $a, b \in I$ implies $a \lor b \in I$ and
- (ii) $a \in S$, $b \in I$ with $a \le b$ implies $a \in I$.

Equivalently by [7], a nonempty subset I of a join-semilattice S is called an ideal if,

$$a \lor b \in I$$
, if and only if $a \in I$ and $b \in I$

for all $a, b \in S$.

3. A classical characterization

Let P and Q be two ordered sets. A map $f: P \to Q$ is said to be order preserving if $f(a) \le f(b)$ whenever $a \le b$.

Lemma 3.1 Let L and K be two join-semilattices. Every homomorphism $f: L \to K$ is an order preserving map.

Proof: Let $a,b \in L$ with $a \le b$. Since $f:L \to K$ is a homomorphism so, $f(a) \lor f(b) = f(a \lor b) = f(b)$. This implies $f(a) \le f(b)$ in K. Hence f is an order preserving map.

A join-semilattice **R** is called a retract of a join-semilattice **S** if there are homomorphisms $f: S \to R$ and $g: R \to S$ such that $f \circ g = I_R$, the identity map on R. Clearly, f is an epimorphism and g is a monomorphism. If **R** is a subsemilattice of **S** and there exists an epimorphism $h: S \to R$ such that $h \uparrow_R = I_R$, then **R** is certainly a retract of **S**. In this case h is called a retraction.

The dual (that is, for meet-semilattice) of the following theorem stated in [7] without proof and the proof is given in [11]. Here we prove the result for a join-semilattice as we need in this paper.

Theorem 3.2 A retract of a modular join-semilattice is a modular join-semilattice.

Proof: Suppose S is an modular join-semilattice and let R be a retract of S. Then there exist an epimorphism $f: S \to R$ and a monomorphism $g: R \to S$ such that $f \circ g = I_R$. Let $x, y, z \in R$ with $z \le x$ such that $x \le y \lor z$. Then by lemma 3.1 $g(x) \le g(y) \lor g(z)$, as g is a homomorphism. Also $z \le x$ implies $g(z) \le g(x)$. Since S is modular so there exist $y_1 \le g(y)$ such that $g(x) = y_1 \lor g(z)$, where $y_1 \in S$. Thus $(f \circ g)(x) = f(y_1) \lor (f \circ g)(z)$. This implies $x = f(y_1) \lor z$, where $y_1 \le g(y)$ implies $f(y_1) \le (f \circ g)(y) = y$. Therefore R is modular.

For any $a, b \in S$, the interval $[a, b] = \{x \mid a \le x \le b\}$ is clearly a join-semilattice. We have the following result:

Theorem 3.3 Let S be a join-semilattice. For a, $b \in S$, the interval [a, b] is retract of S.

Proof: Define a map $f: S \rightarrow [a,b]$ such that

$$f(x) = \begin{cases} x \lor a & \text{if } x \lor a \le b \\ b & \text{if } x \lor a \le b \end{cases}$$

let $y \in [a,b]$, this implies $a \le y \le b$. Hence $f(y) = y \lor a = y$. Therefore, clearly f is an epimporphism. Thus [a,b] is a retract of S.

We can easily prove that if B is a retract of A and C is a retract of B, then C is a retract of A. Now we prove the following important characterization of modular join-semilattice. Rodes [7] proved the result for the case of meet-semilattice. Our case is the dual of meet-

46 Talukder and Arif

semilattice. Moreover our argument makes the proof more simpler than the proof of Rodes [7].

Theorem 3. 4 *Let S be a join-semilattice. Then the followings are equivalent:*

- (a) S is modular;
- (b) S is directed bellow and it does not contain a retract isomorphic to the pentagonal lattice.

Proof: $(a) \Rightarrow (b)$. Suppose S is a modular join semi lattice, then each pair of elements of S has a lower bound. Let R be a retract of S, then by theorem 3.2 R is a modular join-semilattice. Hence R can not be isomorphic to the pentagonal lattice.

 $(b) \Rightarrow (a)$ Suppose S is directed below non modular join–semilattice. We shall construct a retract of S isomorphic to the pentagonal lattice. Since S is non modular, there exist $a,b,c \in S$ where $c \le a \lor b$ with $a \le c$ such that $c \ne y \lor a$ for all $y \le b$. Clearly $a \lor b = b \lor c$. Since S is directed below, there is $l \le a,b$. Set $L = \{l,a,b,c,a \lor b\}$. We show that L is a retract of $[l,a \lor b]$. Let $W = \{w \in [l,a \lor b] \mid w \le b,c\}$.

Define $f:[l,a \lor b] \to L$ given by,

$$f(x) = \begin{cases} l, & \text{if } x \in W \\ b, & \text{if } x \le b \text{ and } x \le c \\ c, & \text{if } x \le b, x \le c \text{ and } x \le a \lor z \text{ for all } z \in W \\ a, & \text{if } x \le b \text{ and } x \le a \lor z \text{ for some } z \in W \\ a \lor b & \text{if } x \le b \text{ and } x \le c \end{cases}$$

Clearly, f is well defined. We must have to show that f is a homomorphism. Let $x, y \in [l, a \lor b]$.

Case 1: f(x) = a. then $x \le b$ and $x \le a \lor z$ for some $z \in W$. Since $x \le b$ we have $x \lor y \le b$ for each $y \in [l, a \lor b]$.

Suppose f(y) = a, then $\oint \le b$ and $y \le a \lor w$ for some $w \in W$. So $x \lor y \le b$ and $x \lor y = a \lor w$ some $w \in W$, Thus $f(x \lor y) = a = f(x) \lor f(y)$.

Suppose f(y) = l, then the proof is trival.

Suppose f(y) = c, then $y \le b$, $y \le c$ and $y \le a \lor p$ for every $p \in W$. So $x \lor y \le a \lor p$ for every $p \in W$. Since $x \le a \lor z$ for some $z \in W$, we have $x \le a \lor c = c$ so $x \lor y \le c$, hence $f(x \lor y) = c = f(x) \lor f(y)$.

Suppose $f(y) \in \{b, a \lor b\}$. Then $y \le c$ so $x \lor y \le c$ and $x \lor y \le b$, hence $f(x \lor y) = a \lor b = f(x) \lor f(y)$.

Case 2: f(x) = l. Then $x \in W$

Suppose f(y) = l, then $y \in W$. Hence $x \lor y \in W$, so $f(x \lor y) = l = f(x) \lor f(y)$.

Suppose f(y) = a. Then $x \lor y \le \mathcal{B}$ and $x \lor y = a \lor z$ for some $z \in W$.

Henve $f(x \lor y) = a = f(x) \lor f(y)$

Suppose f(y) = b. Then $x \lor y \le b$ and $x \lor y \le c'$, hence $f(x \lor y) = b = f(x) \lor f(y)$

Suppose f(y) = c, then $x \lor y \le b$, $x \lor y \le c$ and $x \lor y \le a \lor z$ for ever $z \in W$, hence $f(x, y) = c = f(x) \lor f(y)$

Suppose $f(y) = a \lor b$. Then $x \lor y \le b$ and $x \lor y \le c$ hence $f(x \lor y) = a \lor b = f(x) \lor f(y)$.

Case 3: $f(x) = a \lor b$. Then $x \le b$ and $x \le c$. Hence for any $y \in [l, a \lor b]$. We have $x \lor y \le b$ and $x \lor y \le c$. Therefore $f(x \lor y) = a \lor b = f(x) \lor f(y)$

Case 4: f(x) = b. Then $x \le b$ and $x \le c$. Since $x \le c$ so $x \lor y \le c$ for all $y \in [l, a \lor b]$. Suppose $f(y) \in [l, b]$, then $y \le b$ and hence $x \lor y \le b$. Therefore $f(x \lor y) = b = f(x) \lor f(y)$. Suppose $f(y) \in \{a, c, a \lor b\}$, then $y \le b$ and hence $x \lor y \le b$ therefore $f(x \lor y) = a \lor b = f(x) \lor f(y)$.

Case 5: f(x) = c. Then $x \le b, x \le c$ and $x \le a \lor z$ for every $z \in W$. Therefore for every $y \in W$ we have $x \lor y \le b$ and $x \lor y \le a \lor z$ for every $z \in W$.

Suppose $f(y) \in \{l, a, c\}$. Then $y \le c$ and hence $x \lor y \le c$.

Therefore $f(x \lor y) = c = f(x) \lor f(y)$

Suppose $f(y) \in \{b, a \lor b\}$, then $y \le c'$ and hence $x \lor y \le c''$. Therefore $f(x \lor y) = a \lor b = f(x) \lor f(y)$.

This prove that L is an epimorphism image of $[l, a \lor b]$ and since it is obviously a subjoin-semilattice, L is a retract of $[l, a \lor b]$. Hence by theorem 3.3 L is a retract of S. This completes the proof.

4. Quotient structure

An equivalence relation Θ on a join-semilattice S is called a congruence relation on S if

$$a \equiv b(\Theta)$$
 and $c \equiv d(\Theta)$ implies that $a \lor c \equiv b \lor d(\Theta)$

where $a, b, c, d \in S$.

Let **S** be a join-semilattice and *I* be an ideal of **S**. Then the congruence $\Theta(I)$, defined by $x \equiv y(\Theta(I))(x, y \in S)$ if and only if $x \lor i = y \lor i$ for some $i \in I$.

has I as a congruence class. If S is downwards directed then $\Theta(I)$ is the smallest congruence of S containing I. We denote the quotient lattice of all the congruence classes of $\Theta(I)$ by $S/\Theta(I)$.

48 Talukder and Arif

Now we have the following result.

Theorem 4.1 Let S be a modular join semilattice. The every ideal J of S is modular and moreover $S / \Theta(J)$ is modular.

The mapping $\varphi: S \to S/\Theta(I)$ is said to be canonical homomorphism if for all $x \in S$,

$$\varphi(x) = [x]\Theta(I)$$

The following characterizations of modular join semilattice due to [9].

Theorem 4.2 (Theorem 2.2 [10]) Let M be an ideal of a join semilattice directed below S. Then M is modular if and only if $\Theta(M) \uparrow_K = \Theta(M \cap K) \uparrow_K$ for all $K \in I(S)$.

Theorem 4.3 (Theorem 3.4 [10]) Let S be a join semilattice directed below and let J be an ideal of S. For an ideal I, let $\varphi: S \to S/\Theta(I)$ is the canonical homomorphism. Then the following conditions are equivalent:

- (i) J is modular,
- (ii) For any $I \in I(S)$ and $x \in I \lor J$ implies that $x \equiv j \Theta(I)$ for some $j \in J$,
- (iii) $\varphi(I \vee J) = \varphi(J)$,
- (iv) $\varphi^{-1}\varphi(J) = I \vee J$
- (v) $\varphi(J)$ is an ideal of $S/\Theta(I)$.

Now we prove our main results.

Theorem 4.4 Let S be a join-semilattice and J be an ideal of S, for an ideal I of S, if $\varphi: S \to S/\Theta(I)$ is the canonical homomorphism then the following condition are equivalent:

- (i) J is modular.
- (ii) For any $I \in I(S)$, $\varphi(J) = (\varphi(J)]$ in $S / \Theta(I)$.
- (iii) For any $I, K \in I(S)$, $\varphi(J \vee K) = (\varphi(J)] \vee (\varphi(K)]$ in $S / \Theta(I)$.

Proof: $(i) \Rightarrow (ii)$ Suppose (i) holds. So by (v) of theorem 4.3 $\varphi(J)$ is an ideal of $S/\Theta(I)$. Since $\varphi(J)$ is an ideal it is obvious that $\varphi(J) = (\varphi(J)]$ in $S/\Theta(I)$. Thus (ii) holds.

(ii) \Rightarrow (iii) Suppose (ii) holds. Hence by (iii) of theorem 4.3 we have $\varphi(J \vee K) = \varphi(J) \subseteq (\varphi(J)] \vee (\varphi(K)]$. Now $\varphi(J) = \varphi(J \vee K)$. So by (ii) $(\varphi(J)] = \varphi(J \vee K)$. Again $\varphi(K) \subseteq \varphi(J \vee K) = \varphi(J)$.

So
$$(\varphi(K)] \subseteq \varphi(J) = \varphi(J \vee K)$$
. Hence $(\varphi(J)] \vee (\varphi(K)] \subseteq \varphi(J \vee K)$.

Therefore $\varphi(J \vee K) = (\varphi(J)) \vee (\varphi(K))$ in $S/\Theta(I)$.

(iii) \Rightarrow (ii) Suppose (iii) holds. If in (iii) we replace K by J we get

$$\varphi(J \vee J) = (\varphi(J)] \vee (\varphi(J)]$$
, Hence $\varphi(J) = (\varphi(J)]$.

(ii) \Rightarrow (i) Suppose (ii) holds.

Theorem 5 *Let S be a join semilattice and let J be an ideal of S. The following conditions are equivalent:*

- (i) J is modular.
- (ii) The canonical map $\psi: K/\Theta(J \cap K) \to J \vee K/\Theta(J)$ for any $K \in I(S)$ is one-to-one.
- (iii) The canonical map $\psi: K/\Theta(J \cap K) \to J \vee K/\Theta(J)$ for any $K \in I(S)$ is onto.
- (iv) The canonical map $\psi: K/\Theta(J \cap K) \to J \vee K/\Theta(J)$ for any $K \in I(S)$ is an isomorphism.
- *Proof.* (i) \Leftrightarrow (ii). Let $[x] \Theta(J) = [y] \Theta(J)$ for $x, y \in K$. By the Theorem 4.2 we have $[x] \Theta(J \cap K) = [y] \Theta(J \cap K)$. The reverse argument gives us the reverse implication.
- (i) \Leftrightarrow (iii). Let $[x] \Theta(J) \in J \vee K = \Theta(J)$. This implies $x \in J \vee K$. Hence by the Theorem 4.3 we have $x \equiv k\Theta(J \cap K)$ for some $k \in K$. Hence by Theorem 4.2 we have
- $x \equiv k \Theta(J \cap K)$. Hence $[x] \Theta(J) = [k] \Theta(J \cap K)$ for some $k \in K$. The reverse argument gives us the reverse implication.
- (i) \Leftrightarrow (iv). Let [x], $[y] \in K/\Theta(J \cap K)$. Then $\psi([x] \vee [y]) = \psi([x \vee y] = [x \vee y]\Theta(J) = [x]\Theta(J) \vee [y]\Theta(J) = \psi[x] \vee \psi[y]$: Hence by (ii) and (iii) we have (iv) holds. The reverse argument give us the reverse implication.

REFERENCES

- 1. M.H.B. Arif, A study on Join-semilattices, Masters Thesis, Shahjalal University of Sceince and Technology, (2005).
- W.H. Cornish, Characterization of distributive and modular semilattices, Math. Japonica, 22, 159–174 (1977).
- 3. G. Grätzer and E.T. Schmidt, *Standard ideals in lattices*, Acta. Math. Acad. Sci. Hungar., **12**, 67–86, (1961).
- 4. George Grätzer and E.T.Schmidt *On congruence lattice of lattices*, Acta Math. **13**, 179-185. MR 25 # 2983, (1962).
- 5. George Grätzer, Lattice Theory, Freeman, San Francisco, (1971).
- 6. George Grätzer, General Lattice Theory, Birkhäuser Verlag Basal, (1978).
- 7. J. B. Rhodes, Modular and distributive semilattice. Trans. Amer. Math. Society. Vol. 201, 31-41, (1975).
- 8. M.R. Talukder and A.S.A. Noor, *Standard ideals of a join semilattice directed below*, Southeast Asian Bull. of Math. **22**, 135–139, (1997).
- 9. M.R. Talukder and A.S.A. Noor, *Modular ideals of a join semilattice directed below*, Southeast Asian Bull. of Math. **23**, 18–37, (1998).
- 10. A.S.A. Noor and M.R. Talukder *Isomorphism theorem for standard ideals of a join-semilattice directed below*, to be published in SEA Ball. Math.
- 11. M. A. Hossain, A Study on meet semilattices dicrected above, D. Phil. Thesis, Rajshahi University, (2004).