
GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 29 (2009) 35-41 

A STANDARD MODULO PRIESTLEY  
TOPOLOGICAL QUASI-VARIETY 

 
S. N. Begum and M. R. Rahman 

 
Department of Mathematics, ShahJalal University of Science and Technology 

Sylhet 3114, Bangladesh 
Email: snaher@yahoo.com 

 
Received 26.11.06               Accepted 19.04.08 

 
 

ABSTRACT 
 

We construct a topological quasi-variety which is not standard but standard modulo Priestley. 
 
Key words: Standard topological quasi-variety, Boolean model, standard modulo Priestley. 
 
1. Introduction 

A structure >=< TRHGMM ,,,;~  is said to be a topological structure if  is a 
topological space, G is a set of finitary total operations, H is a set of finitary partial 
operations and R is a set of finitary relations on M. If the topological space s 
compact, then we say that 

>< TM ;

< TM >;  i
M~  is compact topological structure. A topological quasi-

variety generated by a finite topological structure >=< TRHGMM ,,,;~  with discrete 
topology T is the class )~(MPISc

+  of isomorphic copies of closed substructure of non-
empty direct power of M~ . For convenience of notation we will write )~(MQT  for 

)~(MPISc
+ . 

1.1  Definition of standardness 

Let M~  be a topological structure. We say that a topological structure 
>=< XXXX TRHGX ,,,X ;~  is the same type as M~  if  

(i)  is a topological space,  >< TX ; X

(ii) for each RHGg ∪∪∈  , there is a corresponding  of the 
same arity as that of g.  

XXXX RHGg ∪∪∈

A topological structure >=< XXXX TRHGXX ,,,;~  is said to be a Boolean structure (or 
Boolean model) of type  if  >< RHG ,,

(i)  is a Boolean space (that is, compact totally disconnected space),  >< XTX ;

(ii)  for each n-ary , the set is a closed subset of HGh ∪∈ )( Xhdom nX  and : 
 is continuous, and  

Xh
)( Xhdom X →
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(iii) if r∈R is n-ary, then Xr  is a closed subset of nX .  

We will omit the superscripts on where there is no danger of ambiguity. XXXX TRHG ,,,

An atomic formula of type  is an expression of either of the forms  >< RHG ,,

21 tt ≈  or   ) , ,,( 21 ntttr L

where  are terms built from the function symbols in and r∈R is an n-
ary relation symbol. A quasi-atomic formula of type 

nttt ,,, 21 L HG ∪
>< R,HG,  is an expression of 

one of the forms  

α⇒β∧β¬∨α
∈∈

    or     or   iIiiIi
 

where α  and each are atomic formulæ and I is a finite set. iβ

Let  be a set of quasi-atomic formulæ. We denote by Σ )(ΣTMod  the class of all Boolean 
structures which satisfy each quasi-atomic formula in Σ . The collection of all quasi-
atomic formulæ that hold in M~ forms the quasi-atomic theory of M~  which is denoted 
by )~(MThqa . 

We say that )~(MQT  is a standard topological quasi-variety, or that M~  is standard, if 
)~(MQT  is exactly the class of all Boolean models of the quasi-atomic theory of M~ , in 

symbols,  

))~(()~( MThModMQ qaTT =  

We say that a subset )~(MThqa⊆Σ  axiomatizes )~(MQT  provided that )()~( Σ= TT ModMQ . 

If )~(MQT  is axiomatizable, then it is certainly standard, and the axioms provide a 
description of its members. 

Most of the cases )~(MQT  are not standard, but we can often describe them by assuming 
that the underlying ordered set is a Priestley space (that is, compact totally order-
disconnected space). This is the reason that we are interested in studying standardness 
modulo Priestley. 
1.2  Definition of Standard modulo Priestley 

Let >≤=< THGMM ,,,;~ be a finite topological ordered partial algebra. A topological 
structure >≤ XX T,,=< XX HGXX ,;~  of the same type ≤>< ,, HG as M~  is said to be a 
 Priestley structure (or Priestley model) of type >< HG,  if 

(i) >≤=< XX TXX ,;~  is a Priestley space,  

(ii) If  is an n-ary operation, then is a closed subset of HGg ∪∈ )( Xgdom nX  and : 
 is continuous.  

Xg
)Xg X →(dom
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Let  be a set of quasi-atomic formulæ satisfied by Σ M~ . We denote the class of all 
Priestley models which satisfy each quasi-atomic formula in Σ  by . The class of 
all Priestley models of the quasi-atomic theory of 

)(ΣPMod
M~  is denoted by ))~(Mqa(ThModP . We 

say that )~(MQT  is standard modulo Priestley, or that M~ is standard modulo Priestley, 
if )~(MTQ  is exactly the class of all Priestley models of the quasi-atomic theory of M~ . In 
symbols,  

))~(()~( MThModMQ qaPT =  

Throughout this paper, if  is a finite topological space, then it will be assumed 
that T is the discrete topology. 

>< TX ;

A natural question is: Which finite topological ordered partial algebras M~ generate a 
topological quasi-variety that is standard modulo Priestley? By the definition, the 
category of the Priestley space is standard modulo Priestley. By [6, Theorem 4.2], every 
finite Boolean unar is standard. Every finite anti-chain is term equivalent to a finite 
Boolean unar and hence every finite anti-chain is standard. Begum [3] proved that all two 
element topological ordered unars are standard modulo Priestley. She also proved that all 
three and four-element topological chain with an order-preserving operation is standard 
modulo Priestley. 

In Section 2, we give a detail background which we need in this paper. In Section 3, we 
consider a quasi-variety generated by a four element Boolean ordered unar which is 
neither a chain nor an anti-chain. We show that the quasi-variety is not standard but 
standard modulo Priestley. 
 
2.  Preliminaries 
The notion of standardness was first introduced in [6]. The standardness problem arises 
from the question: Which structures are in  and what do they look like?  The Preservation 
Theorem gives us a set of axioms which satisfies each member of )~(MPISc

+ . 

Theorem 2.1 (The Preservation Theorem 1.4.3 [5]) Let M~  be a finite topological 
structure and let )~(MPISX c

+∈ . Then X is a Boolean structure which satisfies every 
quasi-atomic formula that is satisfied by M~ . 

The following Lemma is compiled from [7, Lemma 11.2 and Exercise 11.14]. 

Lemma 2.2  Let >≤=< TXX ,;~ be a Priestley space.  
(i) let Y be a close downset in X and let Yx∉ . Then there exists a clopen downset U 

such that UY ⊆  and Ux∉ . 

(ii) y↓ and y↑   are closed for each Xy∈ .  

(iii) If  is closed in X, then  and are closed in X.  XY ⊆ Y↓ Y↑
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To prove a topological structure >≤=< TgMM ,,;~  is non-standard, we will often use the 
following lemma which is due to [3].  

Lemma 2.3  Let >≤=< TGMM ,,;~  be a finite topological ordered unary algebra and let 
>≤=< TGXX ,,;~ . Then the following are equivalent:  

(i)  )~ ~(MQX T∈ , 

(ii)  X~  is a Boolean ordered unary algebra (that is, >< TX ;  is a Boolean space and for 
all  the map  is a continuous and ≤ is a closed order relation) such 
that  

Gg ∈ XXg →:

(Sep) for all with Xyx ∈,  yx ≤/ , there exist a continuous g-preserving and ≤-
preserving map with M:  X →α )() yx( α≤/α . 

(iii)  each  is a unary map on X, the binary relation ≤ on X is an anti-symmetric and 
(Sep) holds.  

Gg ∈

Note that this lemma shows that provided we can establish (Sep) then we do not need to 
prove that the maps are continuous!  We may now use these tools to show that 
specific Boolean ordered unars are non-standard. 

XXg →:

Let >≤=< TgMM ,,;~  be a finite topological ordered unar. Then we say that M~  is non-
standard via Priestley if there exists a Boolean structure >≤=< TgXX ,,;~  such that  

(a) X~  is locally finite,  

(b) every finite substructure of X~  is in )~(MQT , and  

(c) >≤  is not a Priestley space.  < TX ,;

Since every underlying ordered space of every member of )~(MQT  is a Priestley space, it 
follows that non-standard via Priestley implies non-standard. Indeed, one of the standard 
ways to prove that a finite topological ordered unar is non-standard is to prove that it is 
non-standard via Priestley. 

Proving that M~  is non-standard via Priestley has the added advantage that it is an 
inherent property, that is, it goes up to larger quasi-varieties. 

Lemma 2.4 ([1]) Let >≤=< TgMM ,,;~  and >≤=< TgNN ,,;~  be finite topological 
ordered unars. If M~ is non-standard via Priestley and )~(~ NQM T∈ , then  is also non-
standard via Priestley.  

N~

Proof. Let X~  be an example that shows that M~  is non-standard via Priestley. Since 
)~(~ NQM T∈  implies that )~()~( NQMQ TT ⊆  it follows immediately that X~ also shows that 

 is non-standard via Priestley.  N~
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Corollary 2.5 ([1]).  Let M~  and be finite topological ordered unars. If N~ M~  is non-
standard via Priestley and M~  is a substructure of , then  is also non-standard via 
Priestley.  

N~ N~

Lemma 2.6 Let >≤=< TgMM ,,;~  be a finite topological ordered unary algebra. Let  Σ  
be a set of axioms satisfied by M~ . If )~(~ MQX T∈ , then )(~

Σ∈ TModX  and  is 
a Priestley space.  

>≤< TX ,;

Proof. Let )~(~ MQX T∈ . Then by the Preservation Theorem 2.1, )(~
Σ∈ TModX . To prove 

 is a Priestley space, let >≤< TX ,; Xyx ∈,  with yx ≤/ . Since )~(~ MQX T∈

)()( yx
, by the 

Lemma 2.3, there exists a morphism such that M~X~: →α α≤/α . The clopen 
downset α  in X contains y but not x. Hence ))((1 yα↓− >≤< TX ,;  is a Priestley space.  

Because of the above Lemma we are guaranteed, for topological unary algebras, that if 
)~(~ MQX T∈ , then ))~((~ MThModX qaP∈  so that to show  ))~(()~( MThModMQ qaPT =  we 

need only 

• write down a set Σ  of axioms that is satisfied by M~ , and  

• show that if >≤=< TGXX ,,;~ is a Boolean model of Σ  such that >≤< TX ,;  is 
Priestley space, then condition (Sep) of Lemma 2.3 holds.  

This is the “standard method” to show that a finite topological ordered unary algebra 
>≤=< TGMM ,,;~  is standard modulo Priestley. 

 
3. A non-standard structure which are Standard modulo priestley 
In this section we consider the topological quasi-varieties generated by a four-element 
Boolean ordered unar  (see Figure 2) which is neither a chain nor an anti-chain. We 
show that it is non-standard but standard modulo Priestley.  

4M

If we consider the structure  given in Figure 1 where line indicate the relation and 
arrow line indicate the unary operation, then by [1, 2], we have  is non-standard. 

2M

2M

 
Figure-1 

Now we construct our main topological quasi-variety. Consider the topological structure 
>≤=< TgbaM ,,};1,,,0{~

4  given in the following Figure 2. 
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Figure 2: Four-element topological ordered unars 

Observe that each )~(~
4MQX T∈  satisfies the following set 

4MΣ  of axioms: 

(i) ≤ is an order relation (i.e., reflexive, symmetry and transitive), 
(ii) )()   ( ygxgyx ≤⇒≤

(iii)  )()( 2 xgxg =

(iv) yxyyg    ygxg ≤⇒=≤ )(and)()(  

(v) yygyx    xxg =⇒≤= )(and)(   

Theorem 3.1  is non-standard. 4M

Proof. Observe that  is a substructure of . By [1]  is non-standard via 
Priestley. Then by Corollary 2.5,  is non-standard via Priestley and hence non-
standard.  

2M 4M 2M

4M

Theorem 3.2 )()~(
44 MPT ModMQ Σ=  and hence )~( 4MQT  is standard modulo Priestley. 

Proof. Let )(~
4MTModX Σ∈  and >≤< TX ,;  be a Priestley space. In order to apply Lemma 

2.3, let  with Xy∈ yx ≤x, / .  

Case-1  )()( ygxg ≤/ . Since >≤< TX ,;  is a Priestley space, there exists a clopen upset U 
containing g(x) but not g(y). Thus contains x but not y. Define a map 

by 
)(1 Ug −

MX →α :

⎪⎩

⎪
⎨
⎧

∈

∈
=

−

−

).(\ if  
)( if  

)(
1

1

UgXza
Ugzb

zα  

Since U is an upset, by (i), we have  is an upset and hence  is a 
downset. Therefore, 

)(1 Ug − )(\ 1 UgX −

α  preserves ≤ . By (ii), we have  and 
. Hence 

)()) 1 Ug −⊆(( 1 Ugg −

)\))(\( 1 gXUgXg − ⊆ (1 U− α  preserves g. Moreover, )(yab α=≤)(x /=α  and 
therefore α  is the required separating morphism. 

Case-2  . By (iv), we have )()( ygxg ≤ yyg ≠)( . Assume g(x) = x. Let e the 
set of  fixed points of X. Since g is continuous, U is closed. Using (v) we can prove that U 

fix(g) U =:  b
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is an upset. Hence, by Lemma 2.2, there is a clopen upset V containing U but not y. Define 
a map y MX →α : b

⎩
⎨
⎧

∈
∈

=α
.\0

1
)(

VXz if  
Vz if  

z  

Here V is an upset and  is a down set whence g preserves VX \ ≤ . Now for all  we 
have, by (ii), and hence 

Xu∈
Uug )( ∈ Vug ∈)( . Therefore, nd  

Thus, 
VVg(  a⊆) VXg( .V ⊆)\

α  preserves g. Moreover 0)(( 1) =≤/= yx αα and so α  is the required separating 
morphism.  

Again assume g(x)  x. and again let ≠ fix(g) U =:
x

. As above, U is a closed upset. Define 
 By Lemma 2.2, we have  is closed. Hence V is a closed upset containing x 

but not y. Hence, by Lemma 2.2, there exists a clopen upset W containing V but not y. 
x↑∪

Xα

Xu∈

UV = ↑

Define a map y M→: b

⎩
⎨
⎧

∈
∈

=α
.\0

1
)(

WXz if  
Wz if  

z  

Since for all , we have WVUug ⊆⊆∈)( . Therefore, α  is the required separating 
morphism of x and y with 0)(1)( =α≤/= yxα . Hence  is standard modulo Priestley.  4M
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