A STANDARD MODULO PRIESTLEY TOPOLOGICAL QUASI-VARIETY

S. N. Begum and M. R. Rahman

Department of Mathematics, ShahJalal University of Science and Technology Sylhet 3114, Bangladesh Email: snaher@yahoo.com

Received 26.11.06

Accepted 19.04.08

ABSTRACT

We construct a topological quasi-variety which is not standard but standard modulo Priestley.

Key words: Standard topological quasi-variety, Boolean model, standard modulo Priestley.

1. Introduction

A structure $\widetilde{M} = \langle M; G, H, R, T \rangle$ is said to be a **topological structure** if $\langle M; T \rangle$ is a topological space, G is a set of finitary total operations, H is a set of finitary partial operations and R is a set of finitary relations on M. If the topological space $\langle M; T \rangle$ is compact, then we say that \widetilde{M} is **compact topological structure**. A **topological quasivariety** generated by a finite topological structure $\widetilde{M} = \langle M; G, H, R, T \rangle$ with discrete topology T is the class $IS_cP^+(\widetilde{M})$ of isomorphic copies of closed substructure of non-empty direct power of \widetilde{M} . For convenience of notation we will write $Q_T(\widetilde{M})$ for $IS_cP^+(\widetilde{M})$.

1.1 Definition of standardness

Let \widetilde{M} be a topological structure. We say that a topological structure $\widetilde{X} = \langle X; G^X, H^X, R^X, T^X \rangle$ is the **same type** as \widetilde{M} if

- (i) $\langle X; T^X \rangle$ is a topological space,
- (ii) for each $g \in G \cup H \cup R$, there is a corresponding $g^X \in G^X \cup H^X \cup R^X$ of the same arity as that of g.

A topological structure $\widetilde{X} = \langle X; G^X, H^X, R^X, T^X \rangle$ is said to be a **Boolean structure** (or **Boolean model**) of type $\langle G, H, R \rangle$ if

- (i) $< X; T^X >$ is a Boolean space (that is, compact totally disconnected space),
- (ii) for each *n*-ary $h \in G \cup H$, the set $dom(h^X)$ is a closed subset of X^n and h^X : $dom(h^X) \to X$ is continuous, and

36 Begume and Rahman

(iii) if $r \in R$ is *n*-ary, then r^{X} is a closed subset of X^{n} .

We will omit the superscripts on G^X , H^X , R^X , T^X where there is no danger of ambiguity.

An **atomic formula** of type $\langle G, H, R \rangle$ is an expression of either of the forms

$$t_1 \approx t_2$$
 or $r(t_1, t_2, \dots, t_n)$

where t_1, t_2, \dots, t_n are terms built from the function symbols in $G \cup H$ and $r \in R$ is an *n*-ary relation symbol. A **quasi-atomic formula** of type $\{G, H, R\}$ is an expression of one of the forms

$$\alpha \quad or \quad \bigvee_{i \in I} \neg \beta_i \quad or \quad \bigwedge_{i \in I} \beta_i \Rightarrow \alpha$$

where α and each β , are atomic formulæ and I is a finite set.

Let Σ be a set of quasi-atomic formulæ. We denote by $Mod_T(\Sigma)$ the class of all Boolean structures which satisfy each quasi-atomic formula in Σ . The collection of all quasi-atomic formulæ that hold in \widetilde{M} forms the **quasi-atomic theory** of \widetilde{M} which is denoted by $Th_{aa}(\widetilde{M})$.

We say that $Q_T(\widetilde{M})$ is a **standard topological quasi-variety**, or that \widetilde{M} is standard, if $Q_T(\widetilde{M})$ is exactly the class of all Boolean models of the quasi-atomic theory of \widetilde{M} , in symbols,

$$Q_T(\widetilde{M}) = Mod_T(Th_{qa}(\widetilde{M}))$$

We say that a subset $\Sigma \subseteq Th_{qa}(\widetilde{M})$ axiomatizes $Q_T(\widetilde{M})$ provided that $Q_T(\widetilde{M}) = Mod_T(\Sigma)$. If $Q_T(\widetilde{M})$ is axiomatizable, then it is certainly standard, and the axioms provide a description of its members.

Most of the cases $Q_T(\widetilde{M})$ are not standard, but we can often describe them by assuming that the underlying ordered set is a Priestley space (that is, compact totally order-disconnected space). This is the reason that we are interested in studying standardness modulo Priestley.

1.2 Definition of Standard modulo Priestley

Let $\widetilde{M} = \langle M; G, H, \leq, T \rangle$ be a finite topological ordered partial algebra. A topological structure $\widetilde{X} = \langle X; G^X, H^X, \leq^X, T^X \rangle$ of the same type $\langle G, H, \leq \rangle$ as \widetilde{M} is said to be a **Priestley structure** (or **Priestley model**) of type $\langle G, H \rangle$ if

- (i) $\widetilde{X} = \langle X; \leq^X, T^X \rangle$ is a Priestley space,
- (ii) If $g \in G \cup H$ is an *n*-ary operation, then $dom(g^X)$ is a closed subset of X^n and g^X : $dom(g^X) \to X$ is continuous.

Let Σ be a set of quasi-atomic formulæ satisfied by \widetilde{M} . We denote the class of all Priestley models which satisfy each quasi-atomic formula in Σ by $Mod_{P}(\Sigma)$. The class of all Priestley models of the quasi-atomic theory of \widetilde{M} is denoted by $Mod_{P}(Th_{qa}(\widetilde{M}))$. We say that $Q_{T}(\widetilde{M})$ is **standard modulo Priestley**, or that \widetilde{M} is **standard modulo Priestley**, if $Q_{T}(\widetilde{M})$ is exactly the class of all Priestley models of the quasi-atomic theory of \widetilde{M} . In symbols,

$$Q_T(\widetilde{M}) = Mod_P(Th_{qa}(\widetilde{M}))$$

Throughout this paper, if $\langle X;T \rangle$ is a finite topological space, then it will be assumed that T is the discrete topology.

A natural question is: Which finite topological ordered partial algebras \widetilde{M} generate a topological quasi-variety that is standard modulo Priestley? By the definition, the category of the Priestley space is standard modulo Priestley. By [6, Theorem 4.2], every finite Boolean unar is standard. Every finite anti-chain is term equivalent to a finite Boolean unar and hence every finite anti-chain is standard. Begum [3] proved that all two element topological ordered unars are standard modulo Priestley. She also proved that all three and four-element topological chain with an order-preserving operation is standard modulo Priestley.

In Section 2, we give a detail background which we need in this paper. In Section 3, we consider a quasi-variety generated by a four element Boolean ordered unar which is neither a chain nor an anti-chain. We show that the quasi-variety is not standard but standard modulo Priestley.

2. Preliminaries

The notion of standardness was first introduced in [6]. The standardness problem arises from the question: Which structures are in and what do they look like? The Preservation Theorem gives us a set of axioms which satisfies each member of $IS_cP^+(\widetilde{M})$.

Theorem 2.1 (The Preservation Theorem 1.4.3 [5]) Let \widetilde{M} be a finite topological structure and let $X \in IS_cP^+(\widetilde{M})$. Then X is a Boolean structure which satisfies every quasi-atomic formula that is satisfied by \widetilde{M} .

The following Lemma is compiled from [7, Lemma 11.2 and Exercise 11.14].

Lemma 2.2 Let $\widetilde{X} = \langle X; \leq, T \rangle$ be a Priestley space.

- (i) let Y be a close downset in X and let $x \notin Y$. Then there exists a clopen downset U such that $Y \subset U$ and $x \notin U$.
- (ii) y and y are closed for each $y \in X$.
- (iii) If $Y \subset X$ is closed in X, then ${}^{\downarrow}Y$ and ${}^{\uparrow}Y$ are closed in X.

38 Begume and Rahman

To prove a topological structure $\widetilde{M} = \langle M; g, \leq, T \rangle$ is non-standard, we will often use the following lemma which is due to [3].

Lemma 2.3 Let $\widetilde{M} = \langle M; G, \leq, T \rangle$ be a finite topological ordered unary algebra and let $\widetilde{X} = \langle X; G, \leq, T \rangle$. Then the following are equivalent:

- (i) $\widetilde{X} \in Q_T(\widetilde{M})$,
- (ii) \widetilde{X} is a Boolean ordered unary algebra (that is, $\langle X;T \rangle$ is a Boolean space and for all $g \in G$ the map $g: X \to X$ is a continuous and \leq is a closed order relation) such that
 - (Sep) for all $x, y \in X$ with $x \not\leq y$, there exist a continuous g-preserving and \leq -preserving map $\alpha: X \to M$ with $\alpha(x) \not\leq \alpha(y)$.
- (iii) each $g \in G$ is a unary map on X, the binary relation \leq on X is an anti-symmetric and (Sep) holds.

Note that this lemma shows that provided we can establish (Sep) then we do not need to prove that the maps $g: X \to X$ are continuous! We may now use these tools to show that specific Boolean ordered unars are non-standard.

Let $\widetilde{M} = \langle M; g, \leq, T \rangle$ be a finite topological ordered unar. Then we say that \widetilde{M} is **non-standard via Priestley** if there exists a Boolean structure $\widetilde{X} = \langle X; g, \leq, T \rangle$ such that

- (a) \widetilde{X} is locally finite,
- (b) every finite substructure of \widetilde{X} is in $Q_T(\widetilde{M})$, and
- (c) $\langle X; \leq, T \rangle$ is not a Priestley space.

Since every underlying ordered space of every member of $Q_T(\widetilde{M})$ is a Priestley space, it follows that non-standard via Priestley implies non-standard. Indeed, one of the standard ways to prove that a finite topological ordered unar is non-standard is to prove that it is non-standard via Priestley.

Proving that \widetilde{M} is non-standard via Priestley has the added advantage that it is an *inherent* property, that is, it goes up to larger quasi-varieties.

Lemma 2.4 ([1]) Let $\widetilde{M} = \langle M; g, \leq, T \rangle$ and $\widetilde{N} = \langle N; g, \leq, T \rangle$ be finite topological ordered unars. If \widetilde{M} is non-standard via Priestley and $\widetilde{M} \in Q_T(\widetilde{N})$, then \widetilde{N} is also non-standard via Priestley.

Proof. Let \widetilde{X} be an example that shows that \widetilde{M} is non-standard via Priestley. Since $\widetilde{M} \in Q_T(\widetilde{N})$ implies that $Q_T(\widetilde{M}) \subseteq Q_T(\widetilde{N})$ it follows immediately that \widetilde{X} also shows that \widetilde{N} is non-standard via Priestley.

Corollary 2.5 ([1]). Let \widetilde{M} and \widetilde{N} be finite topological ordered unars. If \widetilde{M} is non-standard via Priestley and \widetilde{M} is a substructure of \widetilde{N} , then \widetilde{N} is also non-standard via Priestley.

Lemma 2.6 Let $\widetilde{M} = \langle M; g, \leq, T \rangle$ be a finite topological ordered unary algebra. Let Σ be a set of axioms satisfied by \widetilde{M} . If $\widetilde{X} \in Q_T(\widetilde{M})$, then $\widetilde{X} \in Mod_T(\Sigma)$ and $\langle X; \leq, T \rangle$ is a Priestley space.

Proof. Let $\widetilde{X} \in Q_T(\widetilde{M})$. Then by the Preservation Theorem 2.1, $\widetilde{X} \in Mod_T(\Sigma)$. To prove $\langle X; \leq, T \rangle$ is a Priestley space, let $x, y \in X$ with $x \not\leq y$. Since $\widetilde{X} \in Q_T(\widetilde{M})$, by the Lemma 2.3, there exists a morphism $\alpha : \widetilde{X} \to \widetilde{M}$ such that $\alpha(x) \not\leq \alpha(y)$. The clopen downset $\alpha^{-1}({}^{\downarrow}\alpha(y))$ in X contains y but not x. Hence $\langle X; \leq, T \rangle$ is a Priestley space. \square

Because of the above Lemma we are guaranteed, for topological unary algebras, that if $\widetilde{X} \in Q_T(\widetilde{M})$, then $\widetilde{X} \in Mod_P(Th_{qa}(\widetilde{M}))$ so that to show $Q_T(\widetilde{M}) = Mod_P(Th_{qa}(\widetilde{M}))$ we need only

- write down a set Σ of axioms that is satisfied by \widetilde{M} , and
- show that if $\widetilde{X} = \langle X; G, \leq, T \rangle$ is a Boolean model of Σ such that $\langle X; \leq, T \rangle$ is Priestley space, then condition (Sep) of Lemma 2.3 holds.

This is the "standard method" to show that a finite topological ordered unary algebra $\widetilde{M} = \langle M; G, \leq, T \rangle$ is standard modulo Priestley.

3. A non-standard structure which are Standard modulo priestley

In this section we consider the topological quasi-varieties generated by a four-element Boolean ordered unar M_4 (see Figure 2) which is neither a chain nor an anti-chain. We show that it is non-standard but standard modulo Priestley.

If we consider the structure M_2 given in Figure 1 where line indicate the relation and arrow line indicate the unary operation, then by [1, 2], we have M_2 is non-standard.

Figure-

Now we construct our main topological quasi-variety. Consider the topological structure $\widetilde{M}_4 = <\{0,a,b,1\};g,\leq,T>$ given in the following Figure 2.

40 Begume and Rahman

Figure 2: Four-element topological ordered unars

Observe that each $\widetilde{X} \in Q_T(\widetilde{M}_4)$ satisfies the following set Σ_M of axioms:

- (i) \leq is an order relation (i.e., reflexive, symmetry and transitive),
- (ii) $x \le y \Rightarrow g(x) \le g(y)$
- (iii) $g(x) = g^2(x)$
- (iv) $g(x) \le g(y)$ and $g(y) = y \Rightarrow x \le y$
- (v) g(x) = x and $x \le y \Rightarrow g(y) = y$

Theorem 3.1 M_4 is non-standard.

Proof. Observe that M_2 is a substructure of M_4 . By [1] M_2 is non-standard via Priestley. Then by Corollary 2.5, M_4 is non-standard via Priestley and hence non-standard.

Theorem 3.2 $Q_T(\widetilde{M}_4) = Mod_P(\Sigma_{M_4})$ and hence $Q_T(\widetilde{M}_4)$ is standard modulo Priestley.

Proof. Let $\widetilde{X} \in Mod_T(\Sigma_{M_*})$ and $\langle X; \leq, T \rangle$ be a Priestley space. In order to apply Lemma 2.3, let $x, y \in X$ with $x \nleq y$.

<u>Case-1</u> $g(x) \not\leq g(y)$. Since $\langle X; \leq, T \rangle$ is a Priestley space, there exists a clopen upset U containing g(x) but not g(y). Thus $g^{-1}(U)$ contains x but not y. Define a map $\alpha: X \to M$ by

$$\alpha(z) = \begin{cases} b & \text{if } z \in g^{-1}(U) \\ a & \text{if } z \in X \setminus g^{-1}(U). \end{cases}$$

Since U is an upset, by (i), we have $g^{-1}(U)$ is an upset and hence $X \setminus g^{-1}(U)$ is a downset. Therefore, α preserves \leq . By (ii), we have $g(g^{-1}(U)) \subseteq g^{-1}(U)$ and $g(X \setminus g^{-1}(U)) \subseteq X \setminus g^{-1}(U)$. Hence α preserves g. Moreover, $\alpha(x) = b \nleq a = \alpha(y)$ and therefore α is the required separating morphism.

<u>Case-2</u> $g(x) \le g(y)$. By (iv), we have $g(y) \ne y$. Assume g(x) = x. Let U := fix(g) be the set of fixed points of X. Since g is continuous, U is closed. Using (v) we can prove that U

is an upset. Hence, by Lemma 2.2, there is a clopen upset V containing U but not y. Define a map $\alpha: X \to M$ by

$$\alpha(z) = \begin{cases} 1 & \text{if } z \in V \\ 0 & \text{if } z \in X \setminus V. \end{cases}$$

Here V is an upset and $X \setminus V$ is a down set whence g preserves \leq . Now for all $u \in X$ we have, by (ii), $g(u) \in U$ and hence $g(u) \in V$. Therefore, $g(V) \subseteq V$ and $g(X \setminus V) \subseteq V$. Thus, α preserves g. Moreover $\alpha(x) = 1 \nleq \alpha(y) = 0$ and so α is the required separating morphism.

Again assume $g(x) \neq x$. and again let U := fix(g). As above, U is a closed upset. Define $V = U \cup^{\uparrow} x$ By Lemma 2.2, we have f(x) is closed. Hence V is a closed upset containing x but not y. Hence, by Lemma 2.2, there exists a clopen upset W containing Y but not Y.

Define a map $\alpha: X \to M$ by

$$\alpha(z) = \begin{cases} 1 & \text{if } z \in W \\ 0 & \text{if } z \in X \setminus W. \end{cases}$$

Since for all $u \in X$, we have $g(u) \in U \subseteq V \subseteq W$. Therefore, α is the required separating morphism of x and y with $\alpha(x) = 1 \le \alpha(y) = 0$. Hence M_4 is standard modulo Priestley. \square

REFERENCES

- 1. S.N. Begum, *A Study of the Standardness Problem for Ordered Unary Algebras*, Masters Thesis, La Trobe University, Australia, (2003).
- 2. S.N. Begum, Standardness for two element Boolean ordered unars, SUST Studies, 6, no. 1 (2005), 77-83.
- 3. S.N. Begum, Standard Modulo Priestley for two-element topological ordered unar, SUST Studies, 7, no. 1, 43-51, (2007).
- 4. S.N. Begum, D.M. Clark, B.A. Davey and N. Perkal, Standardness for ordered unary algebras, in preparation.
- D.M. Clark and B.A. Davey, Natural Dualities for the Working Algebraist, Cambridge University Press, Cambridge, (1998).
- 6. D.M. Clark, B.A. Davey, M. Haviar, J.G. Pitkethley and M.R. Talukder, *Stan-dard topological quasi-varieties*, Houstan Journal of Mathematics, **29**, 859-887, (2003).
- 7. B.A. Davey and H.A. Priestley, *Introduction to Lattices and Order*, second edition, Cambridge University Press, Cambridge, (2002).
- 8. H.A. Priestley, *Representation of distributive lattices by means of ordered Stone spaces*, Bull. London Math. Soc. 2, 186-190, (1970).
- 9. H.A. Priestley, *Ordered topological spaces and the representation of distributive lattices*, Proc. London Math. Soc. (3) **24**, 507-530, (1972).
- 10. Stralka, A partially ordered space which is not a Priestley space, Semigroup Forum 20, 293-297, (1980).