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ABSTRACT 

A theoretical study of the hydromagnetic instability due to slow hydromagnetic waves has 
been carried out after simplifying the complexity of governing equations. A series of stability 
conditions have been derived for wide range of magnetic field profiles. It has been shown that 
regardless of the magnetic field profile, any unstable disturbances propagate against the basic 
rotation.  

1. Introduction 

Acheson [1] considered the Magnetohydrodynamic (MHD) stability of a unifrom rotating 
fluid in the annular region between two concentric infinitely long cylinders. Following 
his analysis a detailed MHD stability of this system has been examined theoretically in 
this paper. Michael [2] earlier had shown that for sufficiently rapid rotation the system is 
stable if the magnetic field is azimuthal and the disturbances are axisymmetric. Couette 
[3] initiated the investigation of flow in an annulus region between two rotating cylinders. 
Acheson [4] examined the hydromagnetic stability of a radially stratified fluid rotating 
between two co-axial cylinders, with particular emphasis on the case when the angular 
velocity exceeds both buoyant and Alfven′  frequencies.  Sung [5] concerns the stability 
of the Von-Kar′man′  swirling flow between two coaxial disks in the presence of an axial 
and toroidal magnetic field. Howard and Gupta [6] investigated the stability of inviscid 
flows between two concentric cylinders which have an axial velocity component 
depending only on r in addition to a swirl velocity component in the direction of 
increasing azimuthal angle θ. Bhattacharyya et al. [7] studied the hydro-magnetic 
stability of a non dissipative flow of an incompressible conducting fluid for non-
axisymmetric disturbances. Zhang and Busse [8] investigated the instability of an 
electrically conducting fluid of magnetic diffusivity and viscosity in a rapidly rotating 
spherical container in the presence of a toroidal magnetic field. The transformation of 
initially turbulent flow of electrically incompressible viscous fluid under the influence of 
an imposed homogeneous magnetic field is investigated using direct numerical 
simulation by Zikanov and Thess [9]. Vorobev et al. [10] investigated fluid flow of low 
magnetic Reynolds number using direct numerical simulations large eddy forced flow in 
a periodic box. A series of simulation is performed with different strengths of the 
magnetic field, varying Reynolds number. Instability and transition to turbulence in a 
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temporally evolving free shear layer of an electrically conducting fluid affected by an 
imposed parallel magnetic field is investigated numerically by Vorobev and Zikanov 
[11]. Kenny [12] investigated the flow experience a degree of breaking, mostly in the 
vicinity of the neutral point, owing to the effect of Lorentz forces acting upon the liquid-
metal. Thess and Zikanov [13] investigated of the robustness of two-dimensional inviscid 
magnetohydrodynamic flows at low magnetic Reynolds numbers with respect to three 
dimensional perturbations. In the presence of a vertical magnetic field, convection may 
occur in vigorous cells separated by regions of strong magnetic field. This occurrence 
was studied by Dawes [14]. 

Investigation of the MHD instability in this paper due to slow hydromagnetic waves in 
the rotating fluid is encountered with complicated mathematics. However after 
simplifying the governing equations, we have a series of stability conditions. 
Simplifications have led us to investigate a very wide range of magnetic field profiles. It 
has been shown that regardless of the magnetic field profile, any unstable disturbances 
must have (Angular velocity)/(phase velocity in the azimuthal direction) with negative 
sign and must therefore propagate against the basic rotation. Sufficient stability 
conditions for azimuthal magnetic field have also been deduced. 

 

2. Mathematical Formulation  

To investigate the hydromagnetic stability of an inviscid, perfectly conducting 
incompressible and homogeneous fluid rotating with angular velocity  Ω, it is convenient 
to choose a set of uniformly rotating cylindrical polar co-ordinates  (r, θ, z) relative to 
which the fluid is at rest. The imposed magnetic field H0 = (0, A/rn, B/rn) varies in both 
magnitude and direction with distance from the rotational axis and the fluid is bounded 
by two infinitely long cylinders  r = r1  and   r = r2.  The appropriate MHD equations 
relative to the rotating co-ordinate system are. 
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 is the velocity vector,  t, p, ρ , μ , and H
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magnetic permeability, and magnetic intensity of the fluid, respectively. The basic state 
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We perturb this basic state by small amounts v
r and  h

r
 respectively, linearize the 

equations in the usual way and seek solutions in which all perturbation quantities ψ may 
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be written 
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where ω is in general complex number, m  is an integer and k is any real number. We 
thus find 
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Eliminating zv̂   from equations (4) we get 
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therefore equation (5) becomes 
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To replace )(ˆ rψ  by the more economical symbol )(rψ which then satisfies the following 
differential equation 
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and 
k
ml =  

Subsequent section will be concerned with the properties of  this equation subject to the 
boundary conditions of no flow through the container walls, i.e, v(r1) = v(r2) = 0. 

 

2.1 Azimuthal propagation of non-axisymmetric unstable modes 

Equation (10) may be written 
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Multiplying (12) by the complex congugate of v and integrating between the boundaries  
r = r1 and   r = r1  (at which v must vanish) we find 
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Now let c = cr +ici , and multiply  (13) by  c2. Equating the imaginary part of the left hand 
side to zero, we conclude that 
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In the absence of rotation (Ω = 0) the integrand in  (14) is positive throughout the interval  
r1 ≤ r  ≤ r2  ( since the azimuthal wave number m may take only integral values), the 
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integral therefore cannot vanish, (i) cr = 0  but   ci ≠ 0 , in this case the motion is stable 
and does not propagate, (ii) cr ≠ 0 but   ci = 0 , in this case the motion becomes 
oscillatory, (iii) cr = ci = 0,  in this case there is no propagation, i.e. trivial solution. 

On the other hand, non-axisymmetric disturbances may both grow in amplitude and 
propagate, and we now turn attention to such modes, for which  cr ci ≠ 0.  First consider 
that  S1(r)  is always positive and that 
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unless the inequality 
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is satisfied somewhere in the interval  r1 ≤  r ≤ r2  the integrand in (14) is everywhere 
positive, the integrand cannot vanish, and with out initial assumption   cr ci  ≠  0  we are 
led to a contradiction. We thus conclude that modes with  cr ci ≠  0   must be such that    
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 somewhere in the interval   r1 ≤  r ≤ r2 . If the magnetic field is purely azimuthal then 
(19) becomes 
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whence it is clear that, regardless of the details of the magnetic field profile, any unstable 
disturbances must have 

0
r r r
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where  cθr =  ωr / m   is the phase velocity in the azimuthal direction, and must therefore 
propagate against the basic rotation, i.e.`westward'. Comparing (20) and (21) it is also 
clear that this result still holds even if the magnetic field varies in both magnitude and 
direction with distance from the axis of rotation  provided that  |Mz| ≤ |mMθ/rk| 
everywhere in the interval  r1 ≤  r ≤  r2. If the axial and azimuthal dimensions of an 



46 Jasmine 

 

unstable disturbance are comparable it must therefore propagate westward, provided only 
that the axial magnetic field is somewhat less than the azimuthal field everywhere. 

 

Finally we note that all unstable disturbances do in fact propagate westward when the 
magnetic field is purely axial, then (19) becomes 
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interval  r1 ≤  r ≤ r2  and must therefore propagate against the basic rotation i.e. 
`westward'. 

 

2.2 Sufficient conditions for stability: azimuthal magnetic field 

We first note certain sufficient conditions under which unstable non-axisymmetric modes 
must propagate (in contrast to the non-rotating case). Supposing that they do not (i.e  cr = 
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we thus obtain a contradiction (for the left hand side cannot then vanish) if either (i) the 
field is purely aximuthal, (ii) the field is purely axial, or (iii) both components are 
present, but  |Mz| < |mMθ /rk| everywhere in the interval  r1 ≤  r ≤ r2  and accordingly  
under any of these three conditions non-axisymmetric unstable disturbances in a rotating 
fluid must propagate. 

We confine attention in the remainder of this section to the case in which the field is 
entirely azimuthal. When investigating non-axisymmetric unstable modes it is therefore 
appropriate to take both cr and ci  as non-zero. In this case the imaginary part of (13) 
becomes 
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 As far as non-axisymmetric disturbances are concerned we know from the previous 
section that all unstable modes drift west. So consider here Ωmωr < 0. If  Mθm2 > 3 r2 ωr
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everywhere in the interval the second term on the right hand side of (25) will be positive. 
The final term exceeds. 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−+⎟

⎠

⎞
⎜
⎝

⎛
−

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+
−

−+

−+

1)72(41
||)(

44)(
||

2
22

2
2

2
22

22222

22

2

2

2221222

22

m
kr

mm
m

rk
krr
Am

m
k

kmr
rS

r
Am

n

n

ωρ
μ

ωρ
μ

                                (27) 

which for |m| > 1  (and, of course, integral) is patently positive. Inspection of (24)  then 
leads to the conclusion that unstable non-axisymmetric modes, such that   

2222 3 ωθ rmM >  everywhere and  |m| > 1, can only occur if 22 / rM θ  increases with 
radius somewhere in the interval r1  ≤  r  ≤ r2. 

 

2.3 Local stability analysis: Azimuthal magnetic field  

2.3.1 Axisymmetric disturbances  
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Now consider the local solution of  (28) in the neighbourhood of a particular radius  r = r0 
so that the  co-efficients may be regarded as uniform (to a first approximation) in that 
neighbourhood. The equation then admits solution  v =elir  where l  is a local radial wave 
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ω2 is positive, implies that ω is real. The system will be oscillatory. 

 

2.3.2 Non-axisymmetric disturbances  

Setting  Mz = 0  in (10) assuming  E'(r0) ∼ E(r0)/r0 and  l >> 2π r0 
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We find 
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Our main interest lies in the `slow' hydromagnetic waves that propagate in a `rapidly' 
rotating fluid. We do not yet know the growth rate of such waves. It is helpful at this 

stage to replace 1
222

22
−=

+nr
AmE

ρω
μ  by 

222

22

+nr
Am

ρω
μ . We shall have to justify this step a 
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posteriori. Equation (30) then becomes a quadratic equation for ω with roots given by 
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 Noting that 
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 if |m| > 1, we conclude that when ( ) 0/
/222

0
≤=

+
rr

nrA μ  all modes with |m| > 1 are stable 

and may propagate both east and west if ( )/222 / +nrA μ  is positive and sufficiently large, 
however, then unstable modes will result and such waves propagate westward in accord 
with the  much more general conclusions. For unstable modes we clearly require 
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and since ( for a local analysis to be appropriate), we must have  l2 >>  r0
2, (33) can only 

be satisfied if  m2 /  k2 r0   << 1 ( assuming  ( )/222
0 0

/ rr
nrAr =

+ ρμ   ∼ ( )
0

222 / rr
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+ ρμ . The 
character of the unstable waves is therefore displayed by a somewhat simplified version 
of  (31) 
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k1, k2 and D are real. If k1 <  k2, then equating real and imaginary parts from (34) 
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(i) the motion is stable when ωi  > 0 ,  and  (ii) the motion is unstable when ωi  < 0 . 

Conclusion 

A series of stability conditions have been derived for wide range of magnetic field 
profiles. It has been shown that regardless of the magnetic field profile, any unstable 
disturbances must have Ω/cθr < 0   and must therefore propagate against the basic 
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rotation. This result still holds even if the magnetic field varies in both magnitude and 
direction with distance from the rotational axis provided that  |Mz| ≤ |mMθ/rk| everywhere 
in the interval r1 ≤  r ≤ r1. If the axial and azimuthal dimensions of an unstable 
disturbances are comparable it must therefore propagate westward, provided only that the 
axial magnetic fields is somewhat less than the azimuthal field everywhere. All unstable 
disturbances propagate westward when the magnetic field is purely axial. We conclude 
that when ( ) 0/

/222
0

≤=
+

rr
nrA μ    all modes with  |m| > 1  are stable and propagate both east 

and west. When  ( )/222
0

/ +nrA μ   is positive and sufficiently large, however, then unstable 
modes will result and such waves propagate westward in accord with the very much more 
general conclusions. 
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