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ABSTRACT 

A simplified exposition and its consequence are given for the dimensional analysis. We have 
first discussed Buckingham’s π theorem, which provides a guide to the number of dimensions 
parameters required to specify any particular phenomenon. The influence of dimensional 
analysis on air-water flow system is described in details and is applied to scaling the 
measurements of void fraction distributions in vertical circular plunging jets. This study 
highlights the dimensional analysis on air-water flow system, which is a convenient technique 
for estimating the magnitudes of various terms in the governing equations. 
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1. Introduction 

Dimensional analysis is a branch of mathematics, which deals with the dimensions of 
quantities. Each physical phenomenon can be explained by an equation giving the 
relationships between different quantities of dimensional or non-dimensional. In general, 
any variable present in a physical phenomenon will be a dimensional quantity (e.g. 
density, velocity, pressure etc.). 

The dimensions of properties, which are involved in studying, related to hydraulics and 
fluid mechanics partial analysis is known as dimensional analysis. The studies of air-
water flows are complex because of a large number of relevant equations is involved. To 
reduce the number of variables and also equations, dimensional analysis is necessary. 
Dimensional analysis alone, however, is inadequate, but the equations can serve as a 
supplement. The basis of dimensional is that, each quantity is made up of the 
fundamental dimensions of mass, length and time and that any relationship between 
variables must be homogeneous in these fundamental dimensions, the units attached to 
those quantities are called fundamental units. 

In the study of air-water flows, the relevant parameters needed for any dimensional 
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analysis come from the following groups: (a) fluid properties and physical constant, (b) 
flow geometry, (c) geometry of air supply system, (d) air-water flow properties, (e) 
upstream flow properties and (f) entrained air bubble characteristics. 

Dimensional analysis is very much related to the air-water flow properties (Chanson et 
al.4, Liggett6, Thomson7). Although the dimensionless number was named after William 
Froude (1810-1879), several French researchers used it before (Chanson2). Ferdinand 
Reech (1805-1880) introduced the dimensionless number for testing ships and propellers 
in 1852, and the number should really be called the Reech-Froude number. The 
mechanisms of air entrainment depend upon the jet velocity at impact, the physical 
properties of fluid, the jet nozzle design, the length of free-falling jet and the jet 
turbulence. For small velocities, air is entrained in the form of individual air bubbles and 
at larger jet velocities, large packets of air are entrained and broken up subsequently in 
the shear flow (e.g. Bin1, Chanson and Brattberg5). 

It is the purpose of the present paper to attempt a simple exposition, setting forth the 
nature and uses of the dimensional analysis. 

2. Physical Properties of Air-Water Flow 

2.1 Dimensional analysis 

Analytical and numerical studies of air entrapment and diffusion processes are complex 
because of the large number of relevant parameters and equations. The basic parameters 
needed for any dimensional analysis (Fig. 1) in hydraulic models are concerned in terms 
of a system having properties all of which can be grouped into three categories. 
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Figure 1:  Sketch of basic flow parameters 

Dimensional analysis method is based largely on the work of Fourier who developed the 
principle of dimensional homogeneity. Essentially this states that any equation is correct 
only if all terms of the equation have the same dimensions. More specifically, because the 
dimensions of any term can be represented as multiples of mass (M), length (L) and time 
(T), it means that the exponents of the mass, length and time dimensions must be the 
same in each term of the equation. 
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2.2 Air-water flow 

In a nature free-surface aerated flows are encountered at waterfalls and when wave 
breaking occurs on the ocean surface. During the air entrainment, free surface becomes 
almost white by air bubbles, which is always visible to the naked eye (Fig. 2). The 
mechanisms of bubble entrainment depend upon the jet velocity at impact, the physical 
properties of fluid and jet turbulence (Bin1). Many researchers showed interest to 
investigate of air entrainment in vertical plunging jets (hydraulic structure), but only a 
small number of researchers studied this in the surf zone.  

 

(a) 
 

(b) 
Figure 2:  Photographs of air entrainment: (a) in the surf zone; (b) at a vertical plunging jet 

Air-water flow properties consist of the void fraction distributions and velocity 
distributions. Chanson et al.4 presented the measurements of void fraction data and 
investigated the comparison among the three-scale model. Further, physical modeling of 
plunging jet flows remains subject to scaling effects which have not been properly 
explained. 

3. Application of Dimensional Analysis  

In practice, most hydraulic models are scaled with either a Froude or a Reynolds 
similitude, i.e. the selected dimensionless number is the same in the model and in the 
prototype.  Buckingham’s theorem provides a guide to the number of dimensions 
parameters required to specify any particular phenomenon. Taking into account all basic 
parameters, dimensional analysis yields; 

                 ( ) 0,,,,,,,1 =ΔPVLgEF bσμρ                                                                         (1) 

There are eight basic parameters and the dimensions of these can be grouped into three 
categories. The Buckingham π-theorem implies that the quantities can be grouped into 
five (5 = 8-3) independent dimensionless parameters: 
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That is,     ( ) 0;Re;;;2 =MaWeEuFrF  

The first ratio is the Froude number Fr, characterizing the ration of the inertial force to 
gravity force. Eu is the Euler number, proportional to the ration of inertial force to 
pressure force. The third dimensionless parameter is the Reynolds number Re which 
characterizes the ratio of inertial force to viscous force. The Weber number We is 
proportional to the ratio of inertial force to capillary force. The last parameter is the 
Sarrau-Mach number, characterizing the ratio of inertial force to elastic force. 

Any combination of the dimensionless numbers involved in Eq. (2) is also dimensionless 
and may be used to replace one of the combinations. It can be shown that one parameter 
can be replaced by the Morton number M0 = (gμ4)/(ρσ3), also called liquid parameter, 
since: 
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The Morton number is a function of fluid properties and gravity constant. For the same 
fluids (air and water) in both model and prototype, the Morton number is a constant. 

Considering the simpler steady, the vertical circular plunging jet, Eq. (1) may be 
simplified into: 
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In Eq. (3), C is the dimensionless parameter and subscript ‘1’ is the inflow conditions. 
Equations (2) and (3) demonstrate the dynamic similarity of air bubble entrainment at 
plunging jets is impossible with geometrically similar models. In free-surface flow and 
wave motion, most laboratory studies are based upon a Froude similitude (Chanson2). 
But the entrapment of air bubbles and the mechanisms of air bubble breakup and 
coalescence are dominated by surface tension effects implying the need for Weber 
similitude. For geometrical similar models, Froude and Weber similarities can’t be 
satisfied simultaneously.  

Solving practical design problems in fluid mechanics usually requires both theoretical 
developments and experimental results. By grouping significant quantities into 
dimensionless parameters, it is possible to reduce the number of variables appearing and 
to make this compact result (equations or data plots) applicable to all similar situations. 

Example 

An example of the use of dimensional analysis and its advantages is given by considering 
the circular plunging jet, treated in the diffusion equation for this case: 

The diffusion of air bubbles in a turbulent plunging jet flow can be approximated by an 
analytical solution of diffusion equation (Chanson 1997). For a circular plunging jet, the 
diffusion equation in cylindrical co-ordinates is:  
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where x is the longitudinal distance measured from the nozzle, r is the normal direction, 
C is the void fraction, Vx is the longitudinal velocity component in the x-direction and Dr 
is the turbulent diffusivity in the normal direction. 

For a uniform velocity distribution, i.e. Vx=V0 and diffusion co-efficient Dr independent 
of the longitudinal location then the simple diffusion equation is 
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where Dt is the diffusivity term averages the effects of the turbulent diffusion and of the 
longitudinal velocity gradient, i.e.  

                 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+= xrt V
x

C
xC

DD *11*
                                                                (6)          

The boundary conditions are C(x<0, r)=0 and circular source of total strength Qa at 
( )0,0 rrx == . Applying a superposition method, the solution of the air bubble diffusion 
equation becomes 
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where x is the longitudinal distance measured from the nozzle, x1 is water jet length, r is 
the normal direction, r1 is the impact water jet thickness, Qw is the flow rate, Qa is the 
volume of air flux, D# is a dimensionless diffusivity (Dt/(V1r1)) and I0 is the modified 
Bessel function of the first kind of order zero (Chanson3). 

Figures 3 and 4 represent the typical dimensionless void fraction data and dimensional 
bubble count rates for vertical circular plunging jet, respectively. The data of void 
fraction of Chanson et al.4 may be fitted by a simple analytical solution of the advective 
diffusion equation (7) for air bubbles. 
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Figure 3: Distributions of void fraction C for vertical plunging jet 
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     x-x1= 2.5 cm 
Figure 4:  Distributions of dimensionless bubble count rate fab = Fr1/V1 

4. Summary and Conclusion 

Dimensional analysis for air water flow has been presented systematically based upon a 
Buckingham’s π-theorem. The dimensionless equations of fluid mechanics are 
particularly important since their solution is independent of the units of measurement and 
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the scale of the problem. The basis of dimensional is that each quantity is made up of the 
fundamental dimensions of mass, length and time and that any relationship between 
variables must be homogeneous in these fundamental dimensions. Two important 
proposals are given; (i) the dimensionless equations highlight the important effects in any 
flow problem and indicate which terms are small enough to be neglected if the complete 
equations cannot be solved, (ii) similarity and dissimilarity between two related flow 
systems, model and prototype, are indicated by the dimensionless equations. In practice, 
most hydraulic models are scaled with either a Froude or a Reynolds similitude: i.e. the 
selected dimensionless number is the same in the model and in prototype (i.e. full-scale). 

The equations are an important guide for experiment and experimentation is essential in 
fluid mechanics. The equations indicate the correct approximation; the magnitude of the 
error, and sometimes the verification of the approximation must come from experiment. 
This study demonstrated the dimensional analysis on air-water flow system which is a 
convenient technique for estimating the magnitudes of various terms in the governing 
equations. 

Notation 

The following symbols are used in this paper: 

C air concentration defined as the volume of air per unit volume of air and water; 

it is also called void fraction; 

Cmax maximum void fraction in a cross-section; 

Dr turbulent diffusivity in the normal direction; 

Dt turbulent diffusivity of air bubbles in air-water flow; 

D# dimensionless turbulent diffusivity; 

d1 jet thickness at plunge point; 

Eb pipe roughness; 

Eu Euler number; 

Fr Froude number; 

g gravity constant; 

I0 modified Bessel function of the first kind of order zero; 

L longitudinal distance; 

Ma Mach number; 

M0 Morton number; 

P pressure; 

Qa volume of air flux; 



18 Khan and Hoque 
 

Qw flow rate; 

r radial distance from the centerline; 

r1 impact water jet thickness; 

Re Reynolds number; 

Tu turbulence intensity; 

Tu1 turbulence intensity at jet impact measured on the centreline; 

V velocity; 

Vx longitudinal velocity component in the x-direction; 

We Weber number; 

We1 Weber number at impingement; 

x longitudinal distance measured from the nozzle; 

x1 distance between nozzle and impingement point; 

Greek symbols 

μ  

ρ  

σ  

dynamic viscosity; 

density; 

surface tension between air and water; 

Abbreviations 

r∂∂  

x∂∂  

partial derivative with respect to r; 

partial derivative with respect to x; 
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