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ABSTRACT

The purpose of this paper is to introduce p-/-rings and a few of their most basic
properties. Then these have been applied to investigate whether the most important properties
like commutativty, being radical class and some other characterizations are preserved
under our defined p-/-rings.
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1. Introduction:

The idea of a /-ring as the generalization of a ring was introduced by N. Nobusawa [§]
and obtained analogues of the Wedderburn Theorem for /-rings with minimum condition
on left ideals. W.E. Barnes [4] improved the idea of N. Nobusawa and gave the definition
of /-rings which are more general than that of N. Nobusawa [8]. The notion of Jacobson
radical was introduced by Coppape and Luh [5] and they developed some radical
properties.

In this paper, we study various properties of p-/-rings. In 3, we obtain a basic theorem
like: if / is an ideal of M, then M/l is a p-I-ring. (Th. 3.2), a p-/-ring is commutative(Th.
3.8) and if if ¥7is a class of all p-/-ring, then ¥ is a radical class (3.12).

In 4, we obtain a couple of necessary and sufficient conditions for p-/-rings (Th.4.1). By
this theorem, we show that every finitely generated ideal is principal and the intersection
of any two principal ideals of R is principal (4.2). Furthermore, we have seen that (1) The
Jacobson radical J(M) of M is zero, (2) M is a semi-simple ring if and only if it is a
Noetherian p-/-ring, (3) The p-/-ring M without zero-divisor is a field, (4) Every ideal of
M is non-singular, (5) M is left and right semi-hereditary (3.3 ). We have also proved: M
is closed under homomorphic image; if % is a class of all p-/-ring, then % is a radical
class.

2. Preliminaries:

Let M and / be additive abelian groups. If there is a mapping Mx/xM—M satisfying, for
all a, b, ceM,; o, B, yeI”
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(i) (a+b)ac=aac+ bac
(i) a(a+ Pb=aab+apfb
(i) aa(b+c)=aab+aac and
(iv) (aab)fc = aa(bfk),
then M is called a /ring. This /=ring is due to Barnes [4].

Ideal of I-rings: A right (left) ideal of a 7-ring M is an additive subgroup 7 of M such
that IIM = {aab | acd acl, beM} < I(MI1 c I). If I is both a right ideal and a left ideal
then we say that / is an ideal, or redundantly, a two-sided ideal of M.

It is clear that the intersection of any number of left (respectively right or two-sided)
ideal of M is also a left (respectively right or two-sided) ideal of M.

All other definitions and standard results used in this paper are due to Barnes [4].
3. p-7-Rings:

Definition: A 7-ring M is said to be a p-7-ring if for every xeM, there exists ye/ such
that (x»)’x = x for some prime p > 1 with px = 0.

Example. Let M= (Zs, +,.) and I'=( Zs, + ). Then M is a p-7-ring.

Lemma 3.1. Let M be a p-/-ring. Then every right ideal / of M is a two-sided ideal of M.

Proof. We first observe that M has no nonzero nilpotent elements. For if x # 0, then (x»)’x
= x implies that (xy)’x # 0 for some prime p and some ye /. Next, let ael and suppose

(apfa= a for some prime p. Then {(apy'a} y{(apy'a} = {(apY " axayy " a = (ap(apy'a
= (apParay)a = afayy*a= (apy'a, so (ayf'a is an idempotent element.

Next, we show that an idempotent element commutes with every elements of M. To
show this let e be an idempotent element of M. Then for any xeM, (xye — epxye)(xye —

epye) =0 = (e — epxye) ey — epxye). Thus, xye —epxye = ex —epye = 0 and so
Xye = epx, i.e., e commutes with every elements of M.

Now, for any reM and ael with (apf’a = a, ra = rfapfa =
ry(ay)™ ' (ay)a = (ay)"'ayrya = (ay)(ay)”ayrya = ay(ay)* 'rya = ayr, where

¥ = (apV"'ryaeM. Since ap’ €1, so does rya and so [ is a two-sided ideal. W

Lemma 3.2. Let M be a p-I'-ring and I an ideal of M. Then M/l is p-I"-ring.
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Proof. Let xeM/I, then x = m + I for all meM with (my)’m = m, p > 1 and yeI'. Now,
(xy)’x = (m+ Dy}P(m + 1) = {my + [P(m + 1) = {(my)” + [}(m + ) = (my)’'m + [ =m +
=X. Thus, M/l is a p-I'-ring. W

Lemma 3.3. Let D be a division p-I'-ring of characteristic p # 0 and let C be the center of

h
D. Suppose that acD, agC is such that (ay)? a =a for some h > 0. Then there exists an

element xeD such that xyayx™' # a.

Proof. We define the mapping /: D — D by f(x) = xya — ajx for every xeD. Now, f 2 (x)
=ffx) =fxya — ayx) = (xya — ayx)ya — afxya — ayx) = xyaya — 2ayxya + ayayx.

Again, f3(x) = fogwpa - 2appa + ajm) = (ap - 2amma + aapm =
(xyapaya — 3amyaya — 3ayapya + ayayayx). Thus, a simple computation yields that

FP(x) = xy(ay)? " a - (ay)? ' ayx, where charD = p, a prime.
Continuing we obtain that
SP ) =xy(ay)” a-(ay)" ayx,
for all £ > 0. Let P denote the prime field of C; since a is algebraic over P, P(a) must be

a finite field having p” elements, say. Hence (ay)? "4 =a and so
17 ) =xyp(ay)” —(ay)” ap=xpa—ap= f(x).

Thus, we see that the function [ P = f.

If reP(a), then f{rux) = (rmx)ya — afryx) = rfxya — apx) = ryfix), since r commutes with
a. If I denotes the identity map on D and 7/ denotes the map defined by (7/)(x) = ryux, we
have that fo(rl) = (rl)of, for all re P(a). Since all elements of P(a) satisfy the polynomial

t” —t, we find that t” —t= I1,.p(s)(t = 7). Since rI commutes with /, we have

that 0 = fp —f = Hrep(a) (f —r), where (f — rD(x) = fix) — rypx. Now, Let
r1 = 0 (one of »’s must be zero), and suppose for each r; # 0, (f — ril) # 0, all xe D, x # 0.
Then [(f —rD)o(f —r3l)o...... o(f - rym D)](x)#0, forall xeD, x # 0. But since

0=f"" —f=fo(f —r,Do(f —ro...... o(f =r 1),
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it follows that f{x) = 0 for all xeD. Thus, 0 = fix) = xya — ayx, whence xya = ayx for all
xeD. Thus, aeC, contradicting the hypothesis. Thus, there is a r; # 0, ;e P(a) and x # 0
in D such that (f— /)(x) =0

ie. (flx)—rH(x)=0
ie.xya—ayx —r;yx =0
Le. Xy — ayx =rix
ie.xpam — apo = rogon!
ie.xyam! =rgo + apx # a, since r; # 0.

This completes the proof. B

Lemma 3.4. If D is a division I'-ring of characteristic p # 0 and G < D is a finite
multiplicative subgroup of D, then G is commutative.

Proof. Let P be the prime field of D and let 4 = {riyg/rieD and gieG}. Clearly 4 is a
finite subgroup of D under addition; moreover, since G is a group under multiplication, 4
is finite sub-/-ring of D. Therefore A is a finite division /-ring, hence is commutative.

Since G < A4, G is also commutative. B

Lemma 3.5. Let D be a division I'-ring such that for every xeD there exists a prime p
such that (xy)’x = x. Then D is commutative.

Proof. Suppose a, beD are such that ¢ = ayb — bya # 0. By hypothesis (cy)"c = ¢ for
some prime m > 1. If n(#0)eC, the center of D, then ryc = rayp — bya) = (rya)yb —
brya), hence by hypothesis, {(ryc)y}’'(rrc)=rpc.Let g=m-Dp-1)+1,m>1,p>
1. Then ¢ > 1 and g is prime. It follows that (c»)?c = ¢ and {(ryc)y}?(ryc) = ryc, hence

{(ric)ynfrye)yfre)y. .. ... up to g times}(ryc) = ryc
iLe. (r)(ep!(rye) = rye,
ie. (Fp (e (em) = e,
ie. (rYlepw=ryp,
ie. r)irype=ryp,
ie. {(rPir—riypx=0.

Since D is a division /-ring and ¢ # 0, so (r)’r = r for every reC, g > 1 depending on r
and y. We know that C is of characteristic p # 0. Let P be the prime field of C. We claim
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that if D is not commutative, we could have chosen our a, b such that not only is ¢ = ay
— bya # 0 but, in fact, ¢ is not even in C. If not, all commutators are in C; hence ce C and
C contains apfayb) — (ayb)ya = afayb) — afbya) = afayb — bya) = ayc. This would place
aeC contrary to ¢ = ayb — bya # 0. Thus, we assume that ¢ = ayb — byag C. Since (cp)"c =

k
¢, c is algebraic over P hence (Cy)p ¢ =c for some k > 0. Thus, all the hypothesis of the

Lemma 3.3 are satisfied for C. Hence we can find xeD such that xjcjx' = ¢| # ¢, that is
xyc = cipx # cyx. In particular, d = xyc — cyx # 0; but dye = xyepe — cyxype = e —
cyeryx = e — ¢y yeyx (since ¢;€C) = ¢ Uxye — cyx) = c1d. As a commutator, (d)'d = d
for some prime ¢ > 1 and dycyd" = ¢;. Thus, the multiplicative subgroup of D generated
by ¢ and d is finite. Hence by Lemma 3.4, the multiplicative subgroup is abelian. This

contradicts cyd # dyc. and proves the lemma. B

Lemma 3.6. Let M be a p-I'-ring with identity 1. Then for x, yeM, xyy — yyx is in the
intersection of the maximal ideals of M.

Proof. We know that every ring has a maximal ideal. Let I be such a maximal ideal. Then
the quotient ring M/[ has an identity, and since / is a maximal right ideal of M, M/I has no
maximal ideals other than 0 and M/I. Thus, M/I is a division ring. Since M is a p-/-ring,
M/I is a p-I+-ring (by Lemma 3.2). Then by Lemma 3.5, M/I is commutative. From this it
follows that xyy — yxel, for all x, ye M. The conclusion of the lemma is now immediate.

|
Lemma 3.7. Let M be p-I'-ring with identity 1. Then M is commutative.

Proof. Suppose x # 0 is in every maximal ideal of M. Then (x»’x = x, and (x»)"'x is an
idempotent, say (x))’'x = e # 0 for all p > 1 and some y<I" and e must also be in every
maximal ideal of M. Now, 1 — e can not be in any proper right ideal of M, for if it were, it
would be in a maximal ideal K of M. Since ecK, 1 = e + (1 — ) would be in K and hence
K = M, a contradiction. Since (1 — e)yM # 0 and since (1 — e)yM is a (right) ideal, it
follows that (1 — e)yM = M, whence (1 — e) = e for some reM. Thus, 0 = el — e)pr =
e, a contradiction. Thus, x can not be in every maximal ideal in M and the intersection of
all the maximal ideals of M is 0. Thus, by Lemma 3.6, xyy — yx€0, x, yeM, that is, xyy =

yux, for all x, yeM. B

Remarks: Since the intersection of all maximal ideals of a commutative /-ring with 1 is
the Jacobson radical, so the Jacobson radical of p-/-ring with 1 is zero.

Theorem 3.8. If M is a p-I'-ring, then M is commutative.
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Proof. Let e be an idempotent in M. Then, eyx = xye for all xe M. Thus, eyM = Mye = T is
also a p-I-ring, but T has an identity, namely e. Hence by Lemma 3.7, T is commutative.
Now, for all x, yeM, xyye = xpyyeye = (xpe)(yye) = (yye)Axye) = yyxye, that is (xpy —
yp)ye = 0. Since {(xpy —yy) i (xpy —yp) = (xpy —yyx) for some prime p > 1, so {(xpy —
yyx)7}* ' (xpy — yx) is an idempotent, say e;. Thus,

0=y —ymer = {(xp -y (e — ym) = xp -y,

that is, xy = yx. Hence, M is commutative B

Lemma 3.9. Let M be a commutative I'-ring. Let I be an ideal of M such that I a p-I'-
ring. Then ey{y — (yy)’y} = 0 for all yeM and some yeI" and el an idempotent.

Proof. Let xel and yeM. Then xpel. Since I is a p-I-ring, (xy’x = x. Also
{7 (xyv) = xpy for some prime p and ye I

Now, {(xm) 7" (xm) = xp,

Le. {Gep)yxm)y. ... .. up to p times}(xp) = xp,
ie. W (xpl(xp) = xyp, since M is commutative,
i.e. (yy)’xyy = xvyy.

Le. {0y -yim =0,

so (P 'xy{y — (ypFy} = 0 and hence eyfy — (ypFy} = 0, where e = (x)’" x is an
idempotent of /. B

Lemma 3.10. Let M be a ['-ring and I an ideal of M. Then M is a p-I"-ring if M/I and |
are p-I'-rings.

Proof. Let M/I and I be p-I-rings. Let xe M, then x + Ie M/I and so
{(x + Dy}’(x + 1) =x + [ for some prime p and ye

ie. (xy+DP(x+1) =x +1,

ie. {(xyf +(x+D)=x+1,

ie. (xy)’x +I=x+1

Thus, (xp)’x — xel. Since [ is a p-I-ring, {(x»)’x —x)y}" {(x»)’x — x} = (xp)’x — x for some
prime m. Let € = {(xy/’x — x)7}"" {(xp)'x — x}. Then ¢ is an idempotent of /. By Lemma
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3.9, €7{(xp)’x —x} = 0 for every xe M. Now, 0 = & y{(x)’x —x} = {(xp)'x —x)}" " {(xpF'x
—x}Apx — x} = {(xpPx — )" {(xp)fx — x} = (xp)'x — x. Hence (xp)’x = x. Therefore
Mis ap-I*ring. &

Lemma 3.11. If [, cl, I3 € - - --- - is an ascending chain of ideals which are
all p-I'-rings, then U,l,, is a p-I'-rings.

Proof. Let xeu,l,, then xel, for some a. Since I, is a p-I-ring, then (xy)/’x = x for some

prime p and ye /. Hence U, l,is a p-I-ring. B
Thus, by Lemma 3.2, Lemma 3.10 and Lemma 3.11, we have the following theorem:

Theorem 3.12. The class of all p-I'-rings is a radical class.

4. Some Characterizations of p-/-rings

Theorem 4.1. Let M be a ring with 1. Let a, xeM such that a = (xy)*?x. Then the
following statements are equivalent:

M is a p-I"-ring.

Every principal ideal Mya is generated by an idempotent.

For every principal ideal Mya of M, there exists an element beM such that M = Mya @
Ryb.

Every principal ideal Mya is a direct summand of M.

Proof. (a) = (b) Let xeM. Then (x»)’x = x for some prime p and ye/. Let aeM such
that @ = (xy)"*x. Now, the principal ideal M is generated by the element xja which is

idempotent; for (xya){xya) = xy{(x P x} Hx (xyf *x} = (P x fxyf *x = x .

(b) = (¢) Let Mya = Mye, where eye = e and a = (xy/*x, xe M. Since 1 =e + (1 — ¢), and
if there exists be M such that aye = b1 — e), then aye = ayeye = b 1 —e)pe=0. So M =
Mye ® Mu(1 —e).

(¢) = (d) Trivial.
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(d) = (a) Let aeM. Then there exists an ideal 7 of M such that M = My @ I. Hence 1 =
xya + b, where bel, so x = xyax + byx. Since a = (xp)’x, byx = x —xpapxeMm N I= 0,
and therefore x = xy{(x»)’>x} yx = (x»)’x. Hence M is a p-Iring.

Theorem 4.2. Let M be a p-I'-ring with 1. Then
Every finitely generated ideal is principal.

The intersection of any two principal ideals of M is principal.

Proof. 1) It is enough to prove that if a, be M, then Mya + Myb is principal. Since M is a
p-Tring, there exists elements x, yeM with a = (x»)"*x and b = (yy¥"”y such that the
elements e; = xya and e, = yyb are the idempotent elements of Mya and Myb respectively
and also My = Mye, and Myb = Mye, by Theorem 4.1(b). Now, Mya + Myb = Mye, +
Mye, = Mye, + Mye; — exye)) because a;ye; + arye; = (a) + azyer)ye) + axfex — exper). If' s
= {(e2— e2721)7}"*(e2 — e21) €M, then

(e2 — exye)) sfer — exper) = {(ex — exper)y}(ex — exper) = (e — exper). Then er= she; —
eyyer)is an idempotent of Myb. Then Mye, + Mye, =

Mye, + Mye, with €, 7e; = ses — exver) ye; = 0.

Finally, we have, aye; + azye/z = (aye; + azj/e/z)y(el + ey — e/zyel), ai, byeM. Thus,
Mye, + M}/e/z = Mne, + ey — e/zyel). Therefore Mya + Myb = My e, + ey - e/zyel). Thus,
Mpya + Myb is a principal ideal.

2) Let Mya and Myb be two principal ideals. Since M is a p-/-ring, there exists elements
x, yeM with a = (xy¢x and b = (y»)’*y such that the elements e, = xja and e, = yyb are
the idempotents of Mya and Myb respectively and also Mya = Mye, and Myb = Mye, by
Theorem 4.1(b). Hence M = Mye, ® M1 — e)) = Mye, ® M1 — e,), and

Mye; = Anny[(1 — e))yM] = {xeM | xA1 - e))yM = 0},
Mye, = Anny[(1 — e))yM] = {xeM | x(1 — e2)yM = 03.
Indeed obviously Mye, < Anny[(1 — e))yM].

Conversely, if xeM and x{(1 — e;) = 0, writing x = a;ye; + b1 — e)), a1, bjeM, we
have

aryei(1 —e) +bry(l —e)y(1 —e) =0, and so
b1 —e) =0, hence x = a,ye; e Mye.

Thus, Mye, N Mye, = Anny[(1 — e))yM + (1 — ey)yM]. Now, there exists e;e M such that
(1 —e)yM+ (1 —e))yM = (1 — e3)yM, and from Mye; = Anny[(1 — e3)yM] we deduce that

Mye, N Myey, = Myes. Thus, Mye; N Mye,= Mya N Myb is a principal ideal. ®
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Semihereditary: A 7-ring M is said to be semihereditary if every finitely generated right
ideal of M is projective M-module.

Nonsingular 7-ring: An ideal / of a /-ring M is called essential if for every nonzero ideal
Ain M, I n A # 0. Let @(M) be the class of all essential ideals in M and Z(M) =
{xeM | xI71=0 for some /e O(M)}. M is called a nonsingular /-ring if Z(M) = 0. For
the case of a classical ring R, we define Z,(R) = {xeR | xI =0 for some Ie Q(R). Then R
is called a non-singular if Z,(R) = 0.

Theorem 4.3. Let M be a p-I'-ring with unity 1. Then
a) The Jacobson radical 3(M) of M is zero.
b) M is a semisimple ring if and only if it is a Noetherian p-I'-ring.
¢) The centre of M is also a p-I'-ring.
d) The p-I'-ring M without zero divisor is a field.
e) Every ideal of M is nonsingular.
f) For any idempotent element ¢ of M, (1 — e)yMye = 0.
g) If M,);el is a family of p-I'-rings then [[ M is a p-T'-ring.
h) M is semihereditary.

Proof. a) Let aeJ(M). Then Mya < I(M). Since Mya = Mye, where e = xya is an
idempotent with a = (x») x, so ecI(M). It follows that (1 — e) is inevitable. So there

exists ye M such that 1 =y1 —e) =y —yje. Hence e=yje — yjeye = yye — yye = 0 and therefore a
=0. Thus, J(M)=0.

b) First suppose that M is finitely generated. Then every ideal of M is finitely generated
and hence a direct summand. So M is a semi-simple.

Conversely, let M be a semisimple ring. Then every principal ideal of M is a direct
summand of M and hence M is a p-I-ring by Theorem 4.1(d). Since Jacobson radical
J(M) is the largest ideal of M and since in a p-/-ring, J(M) = 0, so any ascending chain
of ideals of M must be finite. Hence M is Noetherian.

¢) Since p-/-ring is abelian, so centre of M is M itself, i.e. C(M) = M.

d) Let aeM with a # 0. Then (ayf’a = a for some prime p. Then (apya — a = 0 =
ay{(ay¥a -1} =0. Since a £ 0, so (apf'a —1 = 0 and so (ayy’a is the inverse of a.
Since p-7-ring M is abelian, so M is a field.

e) Suppose that xy7 = 0 for some xe M and / — M is an ideal of M. Let
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Myx be a principal ideal of M. Then there is an idempotent ee M such that Mx = Mye.
Now, since Myeyl = Myxyl = 0, we see that ] € MA1 — e). Then I N eyM = 0, whence
Mpye = 0 and consequently x = 0. Thus, M is nonsingular.

) Since Mye is a two-sided ideal, so (1 — e)yMye = Mye — Myeye = Mye — Mye = 0.
g) Proof is obvious

h) Since a finitely generated ideal of M is a direct summand of M and

so is projective. Hence M is semihereditary. B
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