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ABSTRACT

Of concern in the paper is a numerical study of endovascular drug delivery in a patient-specific atheroscle-
rotic artery through a mathematical model in which the luminal flow is governed by an incompressible vis-
cous Newtonian fluid, and the transport of luminal as well as tissue concentration is modeled as an unsteady
convection-diffusion process. An image processing technique has been successfully adopted to detect the edges
of the computational domain extracted from an asymmetric (about the centerline of the artery) patient-specific
atherosclerotic artery. Considering each pixel as a control volume, the Marker and Cell (MAC) method has
been leveraged to get a quantitative insight of the model considered by exploiting physiologically realistic ini-
tial, boundary as well as interface conditions. Simulated results reveal that the number as well as the length
of separation zone does increase with increasing Re, and the near-wall velocity contour might be important for
estimating the near-wall residence time for the pool of drug molecules available for tissue uptake. Results also
show that the more the tissue porosity and interface roughness do not necessarily imply the more the effective-
ness of delivery, even though they enhance the averaged concentration in the tissue domains, and also the area
under concentration diminishes with increasing Peclet number. Thus, the tissue porosity, the Peclet number
and various geometrical shapes (interface roughness) play a pivotal role in the dispersion and the effectiveness
of drug delivery.
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1 Introduction

Constriction in an artery occurs due to the accumulation of low-density lipoprotein (LDL) and other macro-
molecules and/or the proliferation of smooth muscle cells (SMCs) present in tunica media along the inner lining
of the arterial wall. The formation of such constriction or plaque (stenosis) starts blocking the artery and
reduces the normal flow of blood, medically termed as ‘atherosclerosis’[1]. The study of disturbances arising out
of atherosclerotic flow together with its control is a much-researched topic for the last few decades, however,
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the convection as well as diffusion-driven transport of drug in a patient-specific atherosclerotic artery has been
paid less attention, perhaps due to its inherent complexity in the geometry. During intravenous delivery into
an atherosclerotic artery, clinicians are interested to analyze how the luminal drug is dispersed with the flowing
blood and its subsequent uptake into the arterial tissue, and also the tissue content for the better efficacy of
the delivery.

A large volume of work on the transport of luminal concentration (solute) in the presence of an absorbing wall
(lumen-wall interface) has already been carried out, both theoretically and/or numerically, in various domains
of interest [2, 3, 4, 5, 6, 7, 8, 9]. Taylor [2] and Aris [3] studied the solute dispersion in steady flow through a
circular tube. Gill and Sankarasubramanian [4] carried out the exact analysis of an unsteady convection-diffusion
process. In their study, a fully developed steady laminar flow and the dispersion of an injected solute in each
time without interphase mass transfer across boundaries were analyzed. A more rigorous generalization was
derived by taking the key attributes of solute transfer in the presence of an absorbing boundary [5]. The effect
of wall absorption on shear dispersion in plane and pipe flows was successfully studied by Smith [6]. Purnama
[7] considered the dispersion of solute between a moving region and adjoining immobile medium. Dash et al. [g]
explored the effect of yield stress on solute dispersion in Casson fluid flow. The study of Sarkar and Jayaraman
[9], taking annular and axisymmetric oscillatory flow consecutively into account, was based on irreversible
boundary reaction on the dispersion of solute. Nagarani et al. [10] analyzed the dispersion process in a tube
in the presence of a catheter. The investigation on the mass transport contemplated a steady Poiseuille flow
through a circular tube considering reversible and irreversible reactive boundary condition [11]. In the presence
of reversible and irreversible wall reaction in an annular tube with an oscillatory flow, Mazumder and Paul [12]
analyzed the longitudinal dispersion following Aris’s method of moments. Rana and Murthy [13, 14] analytically
determined the transport coefficients with the help of Gill’s generalized dispersion model and discussed the effect
of yield stress, wall reaction, Womersley parameter and flow pulsatility on the dispersion of solute in a tube and
in two-phase flow respectively. Three layers of fluid having non-Newtonian Casson model in the middle layer
were considered to investigate the effect of yield stress, the thickness of the layer and wall reaction on solute
transport using the Aris-Barton method of moments by Debnath et al. [15].

In all the studies cited above, studies on the solute transport were restricted only in the luminal region. It
is surprising to know that the transport of solute in the lumen as well as in the tissue is not well documented so
far. Few studies have considered the transport of solute followed by its absorption at the lumen-tissue interface
in an idealized (non-realistic and smooth having no surface roughness) wall [16, 17]. In a theoretical study,
Griffiths et al.[16] made an attempt to optimize the mass transport in a thin porous tube. Since the therapeutic
domain is an atherosclerotic artery, Das et al. [17] successfully simulated the dispersion of solute in an idealized
stenotic artery. They showed that the dispersion of solute in the lumen and the tissue is directly related to
the yield stress, the wall absorption parameter and the severity of the stenosis. It is well established that the
uptake of solute from the luminal side depends on the near-wall velocity gradient. Some studies showed the
alteration of flow characteristics in presence of surface irregularities by disregarding the solute transport in the
tissue [18, 19, 20, 21, 22, 23, 24]. These studies, though less flexible, are still of relevance to establish the effects
of roughness on solute transport. Studies related to drug delivery in various geometries have been successfully
carried out in the recent past [25, 26, 27].

Relatively very little is known about the drug transport in the vicinity of a realistic atherosclerotic artery.
An issue of central interest in the present study is the consideration of irregular lumen-tissue interfaces which
promote multi-directional drug uptake from the luminal side as opposed to the smooth interface. In this work, a
longitudinal image of an asymmetric patient-specific atherosclerotic arterial segment obtained from intravascular
ultrasound (IVUS) is taken into consideration [28]. An image processing technique was successfully applied to
obtain the outlines of the computational domain [29]. For a quantitative insight of this coupled fluid-drug
transport model considering the continuity of flux and concentration as the lumen-tissue interface, the well-
known Marker and Cell method is leveraged [30] where each pixel of the longitudinal image is considered as a
control volume. It may be recorded that this asymmetric geometry consisting varying irregularities at the upper
and lower interfaces contributes much to the varying uptake of drug therein. Our study differs considerably from
the studies cited above by taking additional consideration of an unsteady drug transport in tissue domains having
varying lumen-tissue interface roughness in the upper and lower domains. The transport of drug molecules with
the streaming blood in the lumen after injected at the luminal inlet and its subsequent uptake at the irregular
lumen-tissue interface followed by diffusion in the tissue is relevant in the study of arterial pharmacokinetics.
The objective of the present computational study is to investigate the convective and diffusive transport of drug
in an irregular asymmetric patient-specific atherosclerotic artery and to estimate various physiological factors
like velocity, wall shear stress, pressure drop, streamlines, concentration in their respective irregular domains as
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well as the effectiveness of delivery. The novelty of the present study lies in the inclusion of a patient-specific
asymmetric atherosclerotic artery with varying irregularities at the lumen-tissue interfaces and the dispersion
of the drug molecules in the lumen and tissue in general, and the choice of solute administration at the luminal
inlet for three different geometrical models which more closely resembles the physiological situation relevant to
intravenous drug delivery. The possible implications of the results are discussed.

2 Formulation of the Problem

2.1 Geometry Reconstruction

The three different models of an atherosclerotic vessel shown in Fig. 1 (a-c) have been examined. The ‘Orig-
inal’ shape considered here is the patient-specific asymmetric model (Fig 1(c)) [28]. The ‘Toy’ model considered
is a much simpler smooth version of the original shape (Fig. 1(a)). Finally, by gradually adding interface rough-
ness to the toy model, a new stenosis model, termed as ‘Smooth’ model, is obtained which exhibits the same
general form as the original model with few surface roughness elements are present (Fig. 1(b)). The computa-
tional domain for the original model was constructed from a single, patient-specific asymmetric arterial vessel
obtained from Konig and Klauss [28]. In this case, intravascular ultrasound (IVUS) imaging was performed to
obtain a longitudinal cross-section of the vessel followed by virtual histology on the derived image to identify
the outlines of the computational domain. An image segmentation technique was leveraged to automatically
identify different outlines of the image [29]. IVUS is a tomographic imaging tool that allows visualization of
atherosclerosis, its length and area, plaque compositions and coronary remodeling. The motivation of select-
ing this image is simply due to its availability and it allows us to define boundary and interface conditions
straightforwardly. We limited our formulation in a two-dimensional geometry of an asymmetric
patient-specific atherosclerotic artery due to its availability in the literature [28].

2.2 Governing Equations

Although blood, being a suspension of enumerable corpuscles, behaves like a non-Newtonian
fluid while flowing through smaller vessels, but in larger arteries, the rheology of the streaming
blood may be treated as Newtonian [31]. In our study, the luminal blood flow is treated as
unsteady and two-dimensional which is characterized by Newtonian model. The dimensionless
governing equations representing the trasport of momentum (eqns. 1,2) and conservation of mass (eqn. 3) for
viscous incompressible fluid in Cartesian coordinates system (z,y) may be written in the conservative form as

2 2 2
ou , Ouv)  Our - 10p 1 (0w 07w\ (2.1)
ot Oy ox pOxr Re \0x?  0Oy?
ov 00 O(uv) _ 1op 1 (v 0% (2.2)
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DL (2.3)

where x and y are the dimensionless coordinates, scaled with respect to the proximal diameter d of the artery
with the x axis placed along the centreline of the asymmetric artery, v and v are the axial and the transverse
components of dimensionless velocity scaled with the centreline velocity Uy respectively. Here, p represents the
density of flowing blood and p, the viscosity coefficient. The dimensionless time (t), the pressure (p) may be
defined as

Ut p*d

t =,
a0

Here, Re(= %) stands for the Reynolds number.
The respective convection-diffusion equations representing the transport of drug in the domains considered,
namely, the lumen, the upper tissue and the lower tissue, may be written in dimensionless forms as

I R W o
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Sayantan Biswas, Sarifuddin and Prashanta Kumar Mandal / GANIT J. Bangladesh Math. Soc. 41.1 (2021) 62-77 65

aCtl aCtl 1 (82025[ athl ) (2 6)

— + V5 ——+ =

ot fitt Oy Pey \ 0x2 Oy?
where the volume-averaged concentrations of free drug in the lumen(¢;), in the upper tissue(ct,, ) and in the lower
tissue(cy;) are scaled with respect to the inlet concentration c¢g. Here, Vi (= v{]"“’) represents the dimnesionless

o

tranmural filtration velocity in the upper and lower tissue regions and Pe;(= %ﬁ),Petu(: g%ff), Pey (= %Of)
stand for the Peclet number for the lumen, the upper tissue and the lower tissue respectively, with the diffusion

coefficients D; in the lumen, Dy, in the upper tissue, Dy; in the lower tissue.

2.3 Initial, Boundary and lumen-tissue Interface Conditions

An asymmetric velocity profile at the inlet(T';) may be taken as

(y — R,)(y — Ri)

v (Rm - Ru)(Rm - Rl)7

v=0 on I}, (2.7)

where R; (i = u,1) be the proximal lumen radii (upper and lower) of the arterial segment and R, (= fuFf) is
the mean radius at the luminal inlet.
At the downstream (T',), the flow is left free which is mathematically represented by
ou Ov
— =0=—onl,. 2.8
Ox oz "o (28)
At the lumen-tissue interfaces (I'¥,T'%), the usual no-slip condition of velocity-vector is given by
u=0=uv onT¥TL (2.9)

At the proximal(Fg,Fé) and distal (I'4,T%,) boundaries of the tissue domains, the no flux conditions for free
drug are as follows:

dcru o

80; —0on T TY, (2.10)
)

% —0onTh, T, (2.11)

At the perivascular end(I',,I';), a perfectly sink condition may be written mathematically as [10]

¢ty =0on Ty, (2.12)
cy =0onTy. (2.13)

At the lumen-tissue interfaces (I‘;‘,Fﬁ% the continuity of drug concentrations and fluxes are assumed whose
mathematical representations are as [10]

1508 Ocyy,
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where n is the transmural unit normal vector, oy = %;‘ and as = gb%tll; ¢ designates the porosity of the tissue

medium. Due to nonavailability of data, equal porosity and equal diftusivity for both the tissue regions have
been assumed, and hence we assume, in the sequel, a7 = as = «. Initially, it is assumed that there is no drug
inside the domains (lumen and tissue), except the dimensionless concentration of injected drug at the luminal
inlet is constant (unity). Therefore,

g=1latx =0, Vtand ¢; = ¢z, = ¢y = 0, elsewhere, at t = 0 (2.16)
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3 Method of Solution
3.1 The MAC Methodology

The governing equations along with the physiologically realistic conditions are solved numerically by a finite-
difference method in staggered grids. The computational geometry is comprised of 71,876 pixels encompassing
the patient-specific atherosclerotic vessel where each pixel is considered as a control volume (Fig. 2). Concerning
the second order spatial accuracy of the boundary conditions, some fictitious grid points outside the domain
have been taken into consideration. Here, we set x; = i0z,y; = joy and t;, = kdt in which k refers to the time
direction, dt, the time increment. Here, dx and dy are the dimensions of the pixels. The discretized versions of the
governing equations are not given here, for the sake of brevity, however, the interested readers may be referred
to [32]. The discretized equation for calculating pressure-field as obtained from the discretized momentum and
continuity equations is solved by Successive-over-Relaxation(SOR) method ehere the value of over-relaxation
parameter is 1.2. Using the principle of conservation of mass, we calculate the divergence of the velocity-field
at each cell and check for its prescribed tolerance. If the divergence does not satisfy the tolerance limit, then
the pressure and velocity components are corrected. The discretized versions of the governing equations are not
given here, for the sake of brevity, however, the interested readers may be referred to [32]. The computational
code has successfully been programmed in FORTRAN language.

3.2 Pressure and velocity correction

To reduce the computational cost for each cycle, we limit the number of iterations in the S.O.R scheme to
10 to get pressure-field. So the velocity-field obtained using this inaccurate pressure-field will not, in general,
satisfy the continuity equation which prompts us to correct the pressure as well as velocity-field. If the cell-
divergence is found to be greater than the prescribed tolerance value (10~8) at any cell in an absolute sense, the
pressure and, subsequently, the velocity components are immediately corrected at each cell using the formulae
below:

prj = Dij+wipi,

—Div} ;
26t (shz+5)
w(< 0.5) represents the relaxation parameter for S.0.R. scheme and Div; ; stands for derived divergence of the

where dp; ; = , P ; is the obtained pressure from the Poisson equation using limited iterations,

velocity-field at (i, 7)*" cell.
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where u ;,u;_y ;,v];,v; ;_; stand for the updated velocity-field.

3.3 Numerical Stability: Time-Stepping Procedure

Welch et al.[33] suggested the stability criterion by imposing restriction on time step (4¢;) involving Reynolds
number as

(3.1)

25,2
i,j

2 022 + 6y?
This condition for stability is related to viscous effect which can be applied directly in order to select an
appropriate time step [34].

Another approach for stability criterion is that no fluid particles should cross more than one cell boundary
in a given interval of time (§t3) (Markham and Proctor [35]), which may be written mathematically as

5ty < Min (517 5y) (3.2)
ij

Jul " [v]
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Courant-Friedrichs-Lewy (CFL) stability criteria [38] based on various diffusivities of the drug and dimension
of the control volume provide the time step (dt3).
Finally, the variable time step (dt) to be applied at a given point in the calculation will be

ot = dlMiH (Stl, 5t2, 5t3) 5 (33)

where the reason for this extra factor dy, (0 < dy < 1) is to reduce the computational cost [35].

4 Numerical Results and Discussion

The computational domain is considered of non-dimensional length of 8.5 in which extra non-stenotic lengths
at the upstream and downstream are added in a bid to justify the boundary conditions assumed at the proximal
and distal end of the arterial segment. The computational domain is comprised of 71,876 pixels encompassing
a patient-specific asymmetric atherosclerotic vessel where each pixel is considered as a control volume. Steady
states have been achieved when the divergence of the velocity-field was less than 1078 and a reduction of
5.0 x 10~7 in the solute transport residual. For simulation purposes, the following plausible baseline values have
been made use of [4, 18, 36, 37]:

Re = 300, Pe; = 1000, Pey,, = 10000, Pey; = 10000, o« = 0.1, Ve = O(1079)

4.1 Model Validation

Direct validation of our model with ones available in the literature is almost impossible as, to the authors’
knowledge, not a single article is available in the literature which accounts for the mass and momentum transport
in the domains considered, however, a sincere attempt is made in Figure 3 to qualitatively compare the variation
of normalized pressure drop with Reynolds number. The pressure drop is computed across the patient-specific
irregular stenosis, and one can easily verify from Fig. 3 that the obtained result does significantly differ from
those of [18, 22] who studied the model in cylindrical coordinates system with different plaque geometry, but
a similar trend is observed that the predicted pressure drop decreases with increasing Reynolds number. The
distinction among these findings is certainly due to the length, the severity and the different irregularities of
atherosclerotic plaque considered herein.

4.2 Velocity Contour, Wall Shear Stress and Streamlines

The effect of Reynolds number on the vorticity contours of the flow characteristics in an asymmetric patient-
specific atherosclerotic vessel can be recorded from the results of Figure 4. The velocity profiles at the throats
are significantly distorted as shown in these patterns. These distortions span downstream with increasing Re.
The velocity contours have some interesting features to note that the magnitude of the velocity in the vicinity
of the plaque is negative indicating the existence of flow separation regions at those sites and the area of the
regions having negative velocity does increase with increasing Re. The correct prediction of the near-wall velocity
contour might be important for estimating near-wall residence time for the pool of drug molecules available for
tissue uptake. Thus the flow velocity (specifically near the wall) contributes much to the uptake of drug from
the luminal side.

The wall shear stress plays a significant role in the genesis and progression of atherosclerosis. The variations
of the wall shear stress along the asymmetric as well as irregular vessel for the upper and lower walls for different
Re are portrayed in Figure 5(a-b) respectively. The multiple peak values of the wall shear stress occur at the
multiple throats of the stenosis and the maximum value is noted where the arterial narrowing is maximum, and
also, this peak value increases with increasing Re. It may also be noted that the number, as well as the length of
recirculation/ separation region, do increase with increasing Re which may have a pivotal role for the aggravation
of the disease (cf. Figs. 6). It is also interesting to note that the number as well as the length of separation
zone increases in the upper wall as compared to the lower wall due to more interface irregularities present in
the upper interface. Hence, proper importance should be given to the interface irregularities in the context of
the atherosclerotic lesion. The elevated wall shear stress is responsible for endothelial damage and activates
cellular proliferation mechanism too, and the complex separation regions are responsible for the aggregation
sites of macromolecules as opined by Asakura and Karino [39]. The results of Figure 6(a-c) showing patterns of
streamlines for an irregular atherosclerotic plaque for different Re clearly indicate that the streamlines are less
perturbed for Re = 100, however, with an increase of Re, the formation of several complex recirculation regions
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is observed due to an increase fluid inertia which is responsible for the establishment of an adverse pressure
gradient. This adverse pressure gradient does reverse the flow. The figure also highlights that the streamlines at
the lower wall are less perturbed as compared to the upper wall for a particular Re which is due to less surface
roughness present in the lower wall. This, however, at least describes quantitatively what happens for flows in
blood vessels when the inertia is important. Thus, based on the patterns of the streamlines, one may conclude
that the irregularity of the inner lining of the vessel wall affects the streamlines significantly and hence proper
importance should be given to the irregular stenosis model in the context of atherosclerotic lesion.

4.3 Effect of diffusivity (Peclet number), tissue porosity («) and interface rough-
ness on drug dispersion

Figure 7(a-c) exhibits the distributions of local drug concentrations in the axial direction of the atherosclerotic
artery at three distinct transluminal positions, namely, y = 0.2 for lumen, y = 1.15 for upper tissue and
y = —1.15 for lower tissue, while Figure 8(a-c) displays the spatiotemporal patterns of drug concentration for
the whole domain (lumen as well as tissue). Figure 7a shows that the value of the luminal concentration for
different luminal Peclet numbers (Pe;) starts from one due to all-time constant value (¢; = 1, eq. 2.16) at
the inlet, and thereafter increases followed by a gradual decline at the downstream. Figures 7(b-c) gives an
idea on how the local concentration is perturbed for different tissue Peclet numbers (Pey,, Pey). This figure
establishes the fact that the drug concentration reduces significantly with the increasing Peclet number. One
interesting feature may be noted that the concentration profiles reveal asymmetric distribution between regions
distal and proximal to the plaque due to the convective nature of drug transport as well as varying thickness
and roughness of the domains. Simulations predicted that recirculation regions create pockets of stagnant drug-
laden blood that allow more drug accumulation at lumen-tissue interfaces, and eventually more uptake of drug
from the luminal side into the arterial tissue [32]. All these findings are in conformity with the spatiotemporal
patterns of drug concentration as depicted in Figure 8(a-c). Here too, the concentration of drug diminishes, more
specifically, the area under concentration (AUC) diminishes with increasing Peclet number, and the penetration
of drug into the tissue domains is more from the sites of recirculation regions and the more the thickness of the
domains, the less the concentration at a particular instant of time.

Temporal variations of averaged concentration of drug for different values of Peclet number and tissue
porosity for the upper and lower tissue regions are sketched in Figure 9(a-b) respectively. It is found that the
averaged concentration increases from zero, thereafter reaches a steady state with the advancement of time.
It is worthwhile to note that the averaged tissue concentration reaches its quasi-steady state more quickly for
lesser Peclet number (i.e. for higher diffusivity). As anticipated, the averaged concentration decreases with
the increase of Peclet number. Moreover, as the porosity in the tissue a (= (bDDtl“ = qﬁ%tll) increases from
0.05 to 0.1, the averaged concentration of drug in both the tissue domains increases which may be justified in
the sense that with the increase of porosity in the tissue, the diffusive flux of luminal concentration into the
tissue domain increases, which in turn, diminishes the luminal concentration (cf. Fig. 11(a-c)) and enhances the
averaged concentration in the arterial tissue. The averaged concentrations of drug for three different geometrical
models (Toy model having no interface roughness, smooth model having few interface roughness and original
model having much roughness; cf. Sec. 2.1, Fig. 1(a-c)) for the upper and lower tissue regions are depicted in
Figure 10(a-b). The three models differ from each other in terms of interface roughness, and eventually, the
length of the interface of the domains changes as the more the roughness present at the interface, the more the
lumen-tissue interface length. The curves from both figures are analogous in nature. It is to be noted that the
concentration is all-time lower for the toy model, as compared to the smooth and original model for both the
tissue domains. This observation makes sense that the smaller interface roughness (interface length) for the toy
model gives rise to lesser absorption of drug in the tissue and hence, it may be concluded that the more the
interface roughness, the more the absorption of drug, and finally, the more the averaged concentration in the
tissue.

4.4 Effect of diffusivity (Peclet number), tissue porosity (a) and interface rough-
ness on the effectiveness of delivery

Following Saltzman [40], the effectiveness of delivery in the target tissue is defined as the ratio of the averaged
concentration and maximum concentration. He also opined that the higher value of this ratio implies good
effectiveness. Figure 12(a-b) depicts the influence of the Peclet number (diffusivity) and the tissue porosity («)
on the effectiveness of endovascular drug delivery for upper and lower therapeutic domains over time respectively.
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As anticipated, the effectiveness of delivery diminishes with increasing Peclet number, which is in tune with
the averaged concentration for various Peclet numbers (cf. Fig. 9), but a reverse trend is observed in case of
varying porosity. Although the averaged concentration increases with increasing tissue porosity in the upper
and lower tissue regions, the effectiveness of delivery decreases. Figure 13(a-b) exhibits the effect of geometrical
shape, i.e., interface roughness or interface length on the effectiveness of endovascular drug delivery. Simulated
results show that the effectiveness of drug delivery diminishes with increasing interface roughness as opposed
to the averaged concentration in both the tissue domains (cf. Fig 10). This observation may be justified in
the sense that with the increase of tissue porosity and the interface roughness, the averaged concentration in
the tissue domains does increase, but the higher porosity and roughness implying higher tissue uptake of the
injected drug give much higher maximum concentration in the tissue, and eventually, the ratio (effectiveness)
decreases.

5 Conclusion and future direction

Endovascular delivery through a patient-specific atherosclerotic arterial segment has been considered in the
present study. The drug which is transported with the luminal flow and its subsequent uptake into the porous
tissue regions clearly resemble intravenous delivery in a realistic situation. Image processing technique has
been successfully used to determine the boundary of the domain of study. The luminal fluid is
modeled as an incompressible Newtonian fluid governed by Navier-Stokes equations. The transport of drug in
the lumen and tissue domains are modeled as an unsteady advection-diffusion process. Considering each pixel
as a control volume, the Marker and Cell (MAC) method has been leveraged to get a quantitative insight of
the model considered by exploiting physiologically realistic initial, boundary as well as interface conditions.
Simulated results predict that the number as well as the length of separation zones increases with increasing
Re and the near-wall velocity contour plays a pivotal role for estimating the residence times for the pool of
drug molecules available for tissue uptake. One interesting phenomenon may be noted that although the tissue
porosity and the interface roughness do enhance the averaged concentration of drug in both the tissue domains,
it may not enhance the effectiveness of delivery. Hence, the porosity as well as the interface roughness of the
asymmetric therapeutic domains play a pivotal role in the dispersion and the effectiveness of drug delivery.

To model endovascular drug delivery in a complex physiological system is an uphill task, still a sincere
attempt is made to study such a problem in a tractable form by making a lot of assumptions. Our model did
not consider the rheological effects on dispersion. The consideration of the retention of drug in the therapeutic
domains together with its endocytosis (internalization) in the heterogeneous compositions of the plaque may be
taken into account in our future endeavor. We intend to revisit these topics mentioned in this section as part
of our future research.
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Figure 1: Computational domain, (a) Toy model, (b) Smooth model, (c¢) Original model, outline of the geometry
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