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ABSTRACT

In this paper, we have studied the optimal stopping of random process as well as the costing of Swing options,
specially the valuation of electricity market which is considered to an American style option having multiple
practicing rights. Since this type of options are widely used in investing, so it requires some methods for
valuation and that should be as precise as possible. So, we discuss two numerical methods for getting swing
options prices in the field of electricity market, namely Monte Carlo and Finite difference. Finally, we compare
our obtained results numerically and graphically with the help of MATLAB.
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1 Introduction

Commodity market is considered as a physical or virtual marketplace where trading is an interesting type of
investment and gradually gaining approbation, that’s why it attracts our attention specially the energy market.
The market is non-storable and it also fluctuates, so it is quite complicated to handle this market. In order
to handle this market for option pricing, swing option is the best choice and in terms of both cases named
timing and quantity of energy, this option provides us the adaptability in the field of delivery [11, 12]. To
get intermediate-term scopes, traders use various kinds of technical process and among them swing trading is
considered to be the most attractive structure of active trading.

Since swing options are given in various forms, mathematically it sometimes carries same type of charac-
teristics like optimal multiple stopping time problems [9, 14]. Carmona and Touzi [4] clarified the actuality of
multiple exercise policies by having a good analysis over multiple stopping problems.

To examine the various numerical approaches used normally for costing swing options, first we look at the
Monte Carlo (MC) method [17, 18], especially the least squares Monte Carlo (LSM) method which was sug-
gested by Longstaff and Schwartz [6]. In 2003, they used the MC method to simulate the elemental model which
uses random numbers and by using sample averages of random variables it estimates the expectation.
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Finite difference method (FDM) is normally used to find the solution of underlying differential equation by
converting it into a difference equation. Guo and Maria used the Crank-Nicolson FDM and theta method to
price electricity swing options [16].

To know the papers arrangement, we have put the order as follows. In section 2, we describe some initial
definitions and theorems to understand this paper. For pricing options, we have introduced the Monte Carlo
method and Finite Difference method in section 3. Section 4 is designed with the results which have come out
from these two methods and at the same time have the discussions over them. At last section 5 we prepare a
termination of our work in the case of pricing swing options.

Nomenclature

P Constant mean reverting speed
o(t) Time dependent volatility
W,  Standard Brownian motion

Mean reverting level

Interest rate

p
T Maturity time
r
t

Time horizon

2 Preliminaries

In this section, we discuss some basic terms that belongs to financial mathematics for pricing energy market.
To get additional details, we suggest the readers to go through [1, 2, 10].

Definition 1. (Stochastic differential equation (SDE)) In SDE one or more than one expression is a stochastic
process and that’s how the resulting solution is also itself a stochastic process. SDE consisting of one factor can
be written as:

dSt = ,U,(St, t)dt + O'(St, t)th (21)

or in integral form we can put down it as follows which is precise,

t t
Sy = Sy + / w(Sy,u)du +/ 0 (Sy, w)dW, (2.2)
0 0

where in stochastic process p is the drift part and dWy is a standard Winner process.

Definition 2. (Optimal Stopping Time) The optimal stopping also known as early stopping is mainly deal
with the problem of choosing a time when a specific action occurs, for the sake of reducing an expected cost or
upgrading an expected reward. With length g € N, we can write the group of admissible stopping time as follows

Tt(g) = {v(g) = (v1,..09) | >t for m=1,...,9 with vi > T and
Umitl — Um > w form=1,9—1} (2.3)
The swing option payoff process be @(S) : RT™ — R, now consider it satisfies the integrability condition:
E{®(5)"} < oo for > 1 (2.4)
here &(S) = sup;>( $(S¢) and P(S;) =0 for ¢ > T. With starting time ¢, maturity time 7" and initial asset s,

F(g)(t, s) is assumed to be the price of swing option which has up to g exercise rights. At every stopping time,
under Q we denote the least upper bound of expected payoff as F(9)(t,s) and this payoff is discounted i.e.
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g
FO(t,s) = sup EQ{Z:eTWIt Sy )| Si=s (2.5)
v(@ T =1

Vtel0,T].

Theorem 1. [}] Consider g is a natural number and for any g there be a v*, which can be written as v* =
(vf,.,05) € T(g) such that

g

F9(t,s) =E? [ Z e TG (v S5 )| Se = s} (2.6)

m=1
VY (t,s) €0,T] x R* .

Corollary 1. [3] Without creating any arbitrage opportunities the valuation of swing price can be noted as:

g
F(g)(t,s) = sup E© { Z e_r(“m_t)@)(vm, Sv,,) | St = s} (2.7)

(@ e m=1

where T is maturity, ® is the payoff function and for every (t,s) € [0,T] x R .

Definition 3. (Swing options) A swing option is one kind of contract that is normally being used in the field
of energy. Here the option holder takes the opportunity of buying a pre-agreed quantity with a cost which is pre
decided. By doing this the purchaser can reserve a certain degree of adaptability. This adaptability depends on
the purchased quantity and the cost paid. It’s generally conducted through over the counter (OTC) and when
trader uses the right by exercising it, then the pre-agreed volume can’t go below the least daily contract quantity
or go beyond the maximum daily contract quantity.

Corollary 2. (Pricing Formula) Using theorem 1 we can get a series of single stopping time problems [4].
And this can be got by lessening the multiple stopping time problem into it. As a result, for any natural number
g, real number s and t € [0,T] we get,

F9(t,s) = sup EQ|e " )p9) (v, 8,) | S, = s (2.8)

’UETt,T

with
—rw -1 =
P (¢ 5) = D(s) +e ™R FOUD(t+w,81,)| St =5 t<T—-w
d(s) te(T—w,T]

there remains zero exercise right when g =0, so F(©) (t,s) becomes equal to zero.

3 Methodology

In this section we provide an overview on the two numerical methods, which are going to be used, in case of
pricing the swing options and compare them.

3.1 Least Square Method

The simulation starts with the least square Monte Carlo method (LSM), which is a well-known process in
the field of pricing swing options. We can use the corresponding martingale measure to write the dynamics of
Ornstein-Uhlenback process as follows [8, 13]:
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where 0* = 6 — A, the constant (assumed) market cost of risk be A as well as dIW;* be the increment to the

Wiener process.

Now using the log-normal properties we get,
F(S,T)=E[S(T)] = exp (E[X(T)] + ;Var[X(T)]) (3.2)

Then
2
F(S.T) = exp le” IS+ (1=~ )0" + (1~ ewT)]

3.2 Finite Difference method

Here we focus to apply a partial differential equation (PDE) approach using the Ornstein- Uhlenbeck pro-
cess. Now the dynamics of the stochastic part can be written as follow [7, 15]:

dXt = —¢Xtdt + O'(t)th

To find the option price we can form a pde using the theta scheme that regulates the price

O 1 3020522 [w(p(t) ~m($)o ()] 95—V = 0 (33)

1
Assuming that D and ¢ not to be time dependent constants, that’s how we get p = —o? +1In(D) and then the

2¢
PDE simplifies to:
v 1, L0V 1% B
o T30S + U(p m(s))sﬁ rV =0 (3.4)

From this PDE by using finite difference schemes we can get the swing option price. Assume that using the
homogeneous grid points we discretize the time interval, where t, = yAt; y = 0,..., N and we discretize the
spatial domain by S, = hAS, h=0,.... M
We can write the impression for derivatives as follows :

8Vhy Vh y+1 — Vhy
v = Zh : At
ot At + O,

th,y Vh+1,y - Vh—l,y

2S 2AS8

+ O(AS?),

82Vh y Vh+1 y 2Vh Y + Vh—l Y 2
v Thils ! Y 1 O(AS?).
757 AS? TO(AST)

Applying the theta scheme under the price interval [0, Sp] to solve the PDE:

Viy+1 = Vhy 0% o Vhity — 2Viy + Vo1,
At =(1-6) 5 Sh AS?

Vi -V
+(p - ln(Sh))Sh—hH";AS P Vi,
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02 o Vitt,y41 — 2Vhy1 + Vi-1,y41
0 752 Y+ Y+ Y+
T o AS?

Vi — V-
(0 = I(S0)) S~ =iV

By using the tri diagonal matrix H = Hy, = (pp, qn,rn) € RMHTLMHL with

AL‘S}% 2 Y(p —1n(Sy))AtS,

Pr="95x527 2AS ’
ALSE
Ih=""Rg0 ~ rAt,

_AtSE 5 Y(p—In(Sy))AtS,
™= 5a527 T 9AS

4 Results and Discussions

Consider an energy(electricity) market with strike price 7 dollar per MW, 10000 MW is the Daily Contract
Quantity with the criteria of having adaptability of downswing to least of 2500 MW in 24 hours or upturn of
top 15K MW and 15 exercise rights. The following table 4.1 shows the common parameters which are used for
pricing swing options in both methods.

Table 4.1: Parameters used for pricing the option

Parameters Values
Rate of interest, r 0.01
Volatility, o 0.4
Mean reversion speed, ¥ 0.4
Time to maturity, T' 1
Time horizon, t [0,1]

4.1 Pricing by LSM

Since the Longstaff-Schwartz method steps backward from the maturity date, so the method approaches the
continuation value at each exercise date and if the option is non exercised, then it is the price of the option
[5]. From the time when the right is practiced immediately either a downswing happens or an upswing. With
one more less swing right we can compare the pricing of continuation with the sum of payoff and continuance
esteem of a swing. Now when it seems that the sum is lesser, then the option owner chooses a technique which
is optimal. And on that particular date, this technique suggests him not to utilize it.

First we show the result of swing options pricing using a polynomial of order 3rd to suit the retrogression
of the method named Longstaff-Schwartz.
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Figure 4.1: Longstaff-Schwartz regression fit of polynomial

From figure 4.1 we can see that, the regression fit of 3rd order polynomial is not good enough means it
doesn’t well-matched with respect to the continuation value. The value of swing option is 375505.4412 which is
more than the lower bound. Table 4.2 gives us the option price with these upper and lower bound prices.

Table 4.2: Option value

Swing option price Lower bound price (European ) Upper bound price (American)
375505.4412 368048.83 376511.71

In case of 3rd order polynomial, table 4.3 is organized in such a way to show the computational time
variations with respect to various volatilities.

Table 4.3: Time differences for different sigma values

sigma(o) polynomial(sec)

0.16 13.09
0.3 15.08
0.4 12.92
0.5 15.10
0.6 18.55
0.7 14.20
0.8 12.64

As at each exercise date one can practiced only one swing right, so the swing price is less than the American
option price.

To check whether swing option prices remain within the bounds with respect to different - volatilities, number
of trials as well as number of swings, we have shown the lower and upper values in the following table.
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Table 4.4: Option prices with § = 1,n = 1000,k = 7, 15 exercise rights and different sigma values

o Lower bound Swing option price Upper bound

0.16 383506.08 383814.81 384293.16
0.3 375083.48 378080.7076 379029.44
0.4 368048.83 375505.4412 376511.71
0.5 363296.13 377387.989 381006.50
0.6 363415.70 387423.56 392098.83
0.7 369480.07 401323.8002 409178.74
0.8 380647.53 418873.42 433219.09

From table 4.4 we see the case of lying swing option prices in between these two bounds. For example when
sigma value is 0.6, we see the option price is 387423.56 with lower price 363415.70 and upper price 392098.83.
From this we say that swing price lies in between the European and American options. And also from the figure
4.2 which is the graphical representation of table 4.4, we see the same scenario.

x10°
43
42 } 4
Lower Bound 4
41 F = Q= Swing Option 7
Upper Bound /
L4
g ’
T ,
39F o 4
4 e
38F —_— = -,
e R
37
. \ .
0.2 0.3 0.4 0.5 0.6 0.7 0.8
sigma

Figure 4.2: Swing option bounds for different sigma values.

In figure 4.2, blue dotted line indicates the swing prices where black marked points are the option prices of
the respective volatilities and is showing the same result as we described in table 4.4. Now considering the case
of pricing options with respect to different number of trails:

Table 4.5: Option prices with ¢ = .4,k = 7,7 = 0.001, 15 exercise rights and different number of trails

Number of trails Lower bound Swing option price Upper bound

10 310131.55 401737.4623 409511.22
100 369007.39 380316.1123 381970.40
500 369653.47 380290.4686 380390.12
1000 368048.33 375505.4412 376511.71
2000 364328.79 371693.4728 373261.42
5000 366571.21 372669.6965 374229.28
10000 367354.44 372713.2021 375275.93
15000 367545.54 372346.2511 374390.12

50000 368032.44 372206.1352 374585.93
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bounds show the highest prices for all the cases.

4.1

3.9

3.8

3.7

Price

3.6

35

34

33

3.2

3.1

Das and Hossain /| GANIT J.

Bangladesh Math. Soc. 40.2 (2020) 145-155

Figure 4.3: Swing option prices
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From the table 4.5 and figure 4.3 we can say that, with the increasing increment in the number of trails the
swing option prices does not cross the upper bounds. Although the swing option prices varies from up to down,
it always remains within these two bounds.

6
9><10

Lower Bound
= = = = Swing Option

Upper Bound

150 200 250
Number of Swings

50 100

300 350

Figure 4.4: Swing option bounds for different number of swings

Considering different number of swings with all other parameters remain same we observe that the upper

Figure 4.4 is the

graphical representation of the above

statement. All the time the boundaries are determined by assuming that, our swing option with one daily swing
is correspondent to American option as well as in case of regular practice of the option the limits are likely to
European option.

4.2 Pricing by FDM

Here particularly in this method to test the option pricing, some changes are adjusted in it simply to do
comparison with the LSM. The parameters which are specific to the theta scheme are as follows: the spot price
interval be Se(0,40), spot grid points number be 80 denoted by M and the time steps(weekly) number be 52
denoted by N [12]. By using and combining the above parameters we find out the swing option price each time.
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Figure 4.5: Swing option pricing under theta scheme
Figure 4.5 shows the swing option prices using theta value 1 and observing this we can say that the finite

difference fits the continuation value accurately which was missed in figure 4.1. Table 4.6 exhibits the compu-
tational times with respect to various sigma values and when volatility is 0.4, time taken by FDM is 0.0116
sec.

Table 4.6: Time indices for different sigma values

sigma(o) Time(sec)

0.16 0.0604
0.3 0.0153
0.4 0.0116
0.5 0.0117
0.6 0.0066
0.7 0.0115
0.8 0.0072
0.9 0.0069
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Figure 4.6: Time variations due to various volatilities

Figure 4.6 is drawn with the help of the values taken from table 4.6, from this we observe the fluctuations
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of computational times due to various sigma values. Table 4.6 shows the time differences happened due to
different sigma values. Now in order to exhibit the computational time differences between these two methods,
we put table 4.3 and table 4.6 in one figure.

T T
A A & - 1?
10" v v v =
§ 100, +FDM+LSM
=
@
£
S0k
5 10
[
(]
102k
K
. \ . | .

S
&

.
0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sigma values

o
N}

Figure 4.7: Computational time differences

In figure 4.7 the green color line marked with black star, is the computational times taken by FDM. So in
case of taking time to give the pricing values, the figure 4.7 indicates finite difference is faster and shows a big
time differences between these two methods.

5 Conclusions

The electrical power cannot be stored, so we had to proceed with the market valuation and that’s why we’ve
lessened the straight implementation of techniques. Swing option is totally appropriate in the power sector as
the energy market faces high volatilities. On delivery, the swing option owner possess the pliability and it acts
on the amount or volume of delivered energy and the timing. One can reduce the risk by using this adaptability
which can be occurred from the unexpected fluctuation of the underlying resource cost. So in order to managing
risk, swing option is an important tool. For pricing it, LSM and FDM are well-known. By comparing LSM and
FDM, we can conclude that option pricing using LSM does not fit the regression as good as the FDM. While
using scatter point, we also find that finite difference gives far better result than the LSM. And every time
the rate of the swing options lies within the Upper bound( American option ) and the lower bound( European
option ). By changing the values of volatilities and for different number of trails and for various number of
swings, the swing price remains in between these two bounds. In addition, the accuracy of FDM is much higher
than the LSM and at the same time FDM requires less computational time. So we can say that, between these
two methods finite difference is better to deal with in case of pricing swing options.
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