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ABSTRACT

The present study is connected to the analysis of a nonlinear system that covered a wide range of mathematical
biology in terms of competition, cooperation, and symbiosis interactions between two species. We focus on how
populations change their densities when two different species follow the non-symmetric logistic growth laws.
We have investigated the stability of the corresponding densities of population, and to control the convergence
of solutions by proper choice of interacting constant and periodic parameters. It shows the effect of crowding
tolerance on both species. It will show that there exists an infinite number of coexistence solutions if the
resource distributions are identical for both populations. If the carrying capacity of the first species exceeds the
rest one, then eventually the second population drops down to extinction. The results are presented studying
the Lyapunov functional, phase portraits, and in a series of numerical examples.
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1 Introduction

The study of competition among different species is a prevailing feature in ecology. Different biological con-
siderations are known to develop two-species competition models using different growth functions. Competition
arises whenever at least two species strive for a goal that cannot be shared, where one’s gain is the other’s
loss. When they are only affected by their populations, then this type of competition is defined as intraspecific
competition [1]. When resources are limited, several species may depend on these resources. Thus, each of
the species competes with the others to gain access to the resources and this type of competition is known as
interspecific competition [2, 3, 4]. In interspecific competition species less suited to compete for the resources
may die out unless they adapt by character dislocation. In the literature, the well developed and most popular
growth laws were established in [5, 6, 7, 8, 9, 10]. In this paper, we develop a basic competition model based on
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two different species either intraspecific or interspecific competition with two different growth rates and their
carrying capacities are non-identical. Taking into account of two different species, we consider the following
system of nonlinear differential equations with initial conditions:

du
dt

= r1(t)u(t)

(
1− u(t) + v(t)

k1(t)

)
, t > 0,

dv
dt

= r2(t)u(t)

(
1− u(t) + v(t)

k2(t)

)
, t > 0,

u(t0) = u0 > 0, v(t0) = v0 > 0.

(1.1)

This system of equations (1.1) consists of functions that are smooth and continuous. Here u and v denote the
population density of two species and k1, k2 represent their respective carrying capacity. Similarly, r1 and r2 are
the specific growth rates of u and v respectively. It is assumed that both functions defined in (1.1) are smooth
enough, e.g., C1+α, 0 < α < 1 over time domain. The density of u and v is always positive since we assume
that population density is not negative. Henceforth (1.1) is an initial value problem with conditions u(t0) > 0
and v(t0) > 0. Since the carrying capacity and growth rates of the two populations are distinct, the dynamics
will show the crowding effect behavior which is an important observation in the study. It is also remarked that
the carrying capacities and intrinsic growth rates are time-periodic as well as constant. If carrying capacity is
higher in a habitat then the movement of the population will increase in the niche compared to other habitats;
biologically the dynamics of the crowding effect will arise. We will discuss here how growth rates change due
to the change in carrying capacity and also give some illustrations on the stability of the population. Among
various methods for analyzing the stability of nonlinear systems, we use here a well-known method of Lyapunov
functional.

Instead of logistic growth, let us consider the following function

f(t, u, k,M) = r(t)u(t)

(
1− u(t)

k(t)

)(
u(t)

M(t)
− 1

)
, t > 0, (1.2)

where, r is the intrinsic growth rate, and k is the carrying capacity for population u. The function M is the
sparse function and shows the Allee effect [11, 12, 13]. If 0 < M < k then there is a weak Allee effect while the
strong Allee effect is visible for M < 0 < k. If we consider the mathematical model introducing the function
defined in (1.2), both crowding and Allee effect study can be observed. It is noted that the crowding out in
ecology is a result of competition by parasites within a host for finite resources. Typically, the severity of this
effect increases with increasing numbers of parasites within a host and manifests in reduced body size and thus
fitness. A strong Allee effect moves the species to extinction even for a weak Allee effect in many cases.

It is also noted that we introduced the linearization techniques [14] and linear differential equation theory
to analyze the steady states of our considered model. Often, mathematical models of real-world phenomena
are formulated in terms of systems of nonlinear differential equations [15, 16], which can be difficult to solve
explicitly. To overcome this barrier, we take a qualitative approach to the analysis of solutions to nonlinear
systems by making phase portraits and using stability analysis [17, 18, 19, 20]. We demonstrate these techniques
in the analysis of an individual problem in the area of nonlinear differential equations. The model is originally
motivated by population models in mathematical biology when solutions are required to be non-negative, but
the differential equations can be understood outside of this traditional scope of population models.

In mathematical modeling of ecology, the asymptotic behavior of the solutions of two species interacting
population has been central to understanding the coexistence and spatial dissociation of two species [21, 22,
23]. In the weak competition case, the positive stationary solution (u, v) is globally asymptotically stable
independent of the diffusion coefficients. Materially, there exists a Lyapunov functional which allows for a
long-time asymptotic analysis [24]. The recent study has been proven that the directed dispersal organism has
evolutionary advantages to designing its own habitat for a competition coupled species model [25, 26].

We represent the stability of equilibria of the model in various parameters; at least two important constants
or periodic parameters that make the difference in the logistic growth model. It is found that if the competition
favors the latter species, there is still a range of parameters for which there is coexistence. Numerical investiga-
tion shows the long term behavior of the complete model that characterizes the population densities on several
levels. Throughout the entire study, we come to a conclusion of the stability of different competing species.

The rest of the paper is organized in the following way. In Section 2, we discuss the basic study of Lyapunov
stability and Lyapunov functional. Section 3 presents the process of finding Lyapunov functional and techniques
of stability analysis through the Lyapunov function for a general system. In Section 4, we discuss the local
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and global stability of equilibriums with phase portrait. A number of examples are presented in Section 5 for
applications. Finally, Section 6 concludes the summary of the results and future discussions.

2 Preliminaries

In this section, we introduce some auxiliary results which are available in the literature [2, 7, 27, 28], and
these features will be used throughout the paper.

2.1 Lyapunov stability

Linear stability analysis tells us how a system behaves near an equilibrium point. It does not however tell
us anything about what happens farther away from equilibrium. Phase-plane analysis combined with linear
stability analysis can generally give us a full picture of the dynamics, but things become much more difficult
in higher-dimensional spaces. In this section, we consider a technique due to Lyapunov which can be used to
determine the stability of an equilibrium point [10, 16, 29]. This method forms the basis of much of modern
nonlinear control theory and also provides a theoretical justification for using local linear control techniques.
Lyapunov stability is an intuitive approach to analyzing the stability and convergence of dynamic systems
without explicitly computing the solutions of their differential equations.

To discuss Lyapunov stability for nonlinear equations we need to demonstrate some important definitions
which are given below:

Definition 1. [27] A point x∗ is said to be an equilibrium point of

dx

dt
= f(t, x) (2.1)

at time t0 if for all t ≥ t0, f(t, x∗) = 0.

Definition 2. [27] The equilibrium x = 0 of (2.1) is stable if, for each time t0, and for every constant R > 0,
there exists some r(R, t0) such that

||x(t0)|| < r implies, ||x(t)|| < R for all t ≥ t0.

It is uniformly stable if r is independent of t0. The equilibrium is unstable if it is not stable.

Definition 3. [27] The equilibrium x = 0 of (2.1) is asymptotically stable if: (a) it is stable, and (b) for each
time t0 there exists some r(t0) > 0 such that

||x(t0)|| < r ⇒ ||x(t)|| → 0 as t→∞

It is uniformly asymptotically stable if it is asymptotically stable and both r is independent of t0.

2.2 Lyapunov’s method

In many cases, it is possible to determine whether an equilibrium of a nonlinear system is locally stable
by examining the stability of the linear approximation to the nonlinear dynamics about the equilibrium point.
This approach is known as Lyapunov’s method.

Theorem 1. [27, 28] Let ẋ = f(x), f(x∗) = 0 where ẋ = dx
dt and x∗ is in the interior of Ω ⊂ Rn. Assume that

V : Ω→ R is a function and

(i) V (x∗) = 0.

(ii) V (x) > 0 for all x ∈ Ω, x 6= x∗.
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(iii) V̇ (x) ≤ 0 along all trajectories of the system in Ω.

(iv) V̇ < 0 for all x ∈ Ω, x 6= x∗.

If (i)-(iii) is satisfing then x∗ is said to be locally stable and if (iv) is also satisfied then x∗ is said to be locally
asymptotically stable.

A function that fulfills condition (i)-(iii) is called Lyapunov function.

2.3 Hartman-Grobman theorem

The Hartman-Grobman theorem is another important result in the local qualitative theory of ordinary
differential equations (ODEs). The theorem shows that ẋ = f(x) with f(0) = 0 and its linearized system
ẋ = Df(x)x have the same qualitative structures near a hyperbolic equilibrium.

Definition 4. [27] Let A and B be subsets of Rn. A homomorphism A onto B is a continuous one-to-one map
H : A→ B such that H−1 : B → A. The two sets A and B are called homomorphic or topologically equivalent.
Consider

ẋ = f(x) (2.2)

Where x = 0 is a hyperbolic equilibrium. The linearized system

ẋ = Ax (2.3)

where A = Df(0).

Theorem 2. [27] If x = 0 is a hyperbolic equilibrium (2.2) and (2.3), then there exists a homomorphism H of
an open set U containing the origin onto an open set V containing the origin such that for each x0 ∈ U , there
exists an open interval I0 ⊂ R containing the origin such that for all t ∈ I0

H ◦ φt(x0) = eAtH(x0)

3 Lyapunov Functional and Techniques of Stability Analysis

3.1 Construction of Lyapunov function

We can construct a Lyapunov function by two methods-one is a variable gradient method, and the other
is Krasovskii’s generalized method. In this paper, we grab the first method for analyzing the solution of the
proposed model.

Assume that the gradient of the Lyapunov function V (x) is known up to some parameters.

∇V (x) = [V1, · · · · · · , Vn]T =

[
∂V

∂x1
, · · · · · · , ∂V

∂xn

]T

∇Vi =

n∑
j=1

hijxj , i = 1, · · · · · · , n

Using the curl conditions ∂2V
∂xi∂xj

= ∂∇Vi

∂xj
=

∂∇Vj

∂xi
simplify the coefficients hij for i, j = 1, · · · , n and hence

obtain V̇ (x) ≡ ∂V
∂x . Then integrate it to obtain V (x) as shown below

V (x) =

x∫
0

∇V (x) dx

Executing this method, we have to keep in mind that the value of hij , i, j = 1, · · · , n should be chosen so that

V (x) is positive definite and V̇ (x) is negative definite.
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3.2 Techniques for solving nonlinear systems using eigenvalues

Consider a nonlinear system of differential equations using dummy variables x and y:{
x′ = f(x, y)

y′ = g(x, y)
(3.1)

Where f and g are functions of two variables x = x(t) and y = y(t) such that f and g are not both linear
functions of x and y. It is also noted that the notation x′ = dx

dt and y′ = dy
dt .

Unlike a linear system, a nonlinear system could have none, one, two, three, or any number of critical points.
However, the critical points are found setting x′ = y′ = 0, and solve the resulting system

f(x, y) = 0

g(x, y) = 0

And every solution of this system of algebraic equations is an equilibrium point of the given system (3.1). Since
there might be multiple equilibrium points present in the phase portrait, each trajectory could be influenced by
more than one equilibrium point. These results have a much more chaotic appearance of the phase portrait [29].
We will approximate the behavior of the nearby trajectories using the linearizations of f and g. The technique
converts the nonlinear system into a linear system whose phase portrait approximates the local behavior of the
original nonlinear system near the equilibrium point.

Consider the Taylor series expansion about the equilibrium point (x, y) = (α, β) and we have

x′ = f(x, y) ≈ f(α, β) + fx(α, β)(x− α) + fy(α, β)(y − β)

y′ = g(x, y) ≈ g(α, β) + gx(α, β)(x− α) + gy(α, β)(y − β)

Since f(α, β) = 0 = g(α, β), the above linearizations become

x′ = f(x, y) = fx(α, β)(x− α) + fy(α, β)(y − β)

y′ = g(x, y) = gx(α, β)(x− α) + gy(α, β)(y − β)

Now it is a homogeneous linear system with a coefficient matrix

A =

(
fx(α, β) fy(α, β)
gx(α, β) gy(α, β)

)
Above matrix is calculated by putting x = α, and y = β into the matrix of first partial derivatives

J(x, y) =

(
fx fy
gx gy

)
This matrix J(x, y) is often called the Jacobian matrix. It needs to be calculated once for each nonlinear system.
For each critical point of the system, all we need to do is to compute the coefficient matrix of the linearized
system about the equilibrium point (x, y) = (α, β) and then use its eigenvalues to determine the stability.

4 Local and Global Stability Analysis

4.1 Linearization of the System

First, we have to linearize the system for further analysis. Rewrite the functions of equation (1.1) to find
the Lyapunov function as 

r1(t)u(t)

(
1− u(t) + v(t)

k1(t)

)
= f(u, v)

r2(t)u(t)

(
1− u(t) + v(t)

k2(t)

)
= g(u, v)

(4.1)
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To find the linearization matrices at the equilibria, we differentiate the equations of (4.1) and then obtain,

∂f

∂u
=
r1
k1

(k1 − 2u− v)

∂f

∂v
= − r1

k1
u

∂g

∂u
= − r2

k2
v

∂g

∂v
=
r2
k2

(k2 − u− 2v)

These partial functions produce the linearization matrix ∇V (u, v), and hence

∇V (u, v) =

 ∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

( u
v

)

and finally which yields

∇V (u, v) =

( r1
k1

(k1 − 2u− v) − r1
k1
u

− r2
k2
v r2

k2
(k2 − u− 2v)

)(
u
v

)
(4.2)

Substituting the coordinates of the equilibrium points (0, 0), (k1, 0), (0, k2) and (u∗, v∗) into this formula, we
obtain the linearization matrices to discuss the stability analysis of our main problem (1.1).

In the following section, we will consider all the equilibrium points to find stability or instability conditions.

4.2 Steady states analysis

Trivial equilibrium (0, 0): At the equilibrium point (u, v) = (0, 0), four partial derivatives are
∂f
∂u

= r1,

∂f
∂v

= 0,
∂g
∂u

= 0,
∂g
∂v

= r2. Inserting these values in (4.2), we execute ∇(u, v):

∇V (u, v) =

(
r1 0
0 r2

)(
u
v

)
=

(
r1u
r2v

)
Integrating the gradient function yields the Lyapunov function V such that

V (u, v) =

u∫
0

r1x dx+

v∫
0

r2y dy

= r1
u2

2
+ r2

v2

2
> 0, r1 > 0, r2 > 0.

Let us now differentiate the previous function V (u, v), and we obtain

∂V

∂t
= r1u

du

dt
+ r2v

dv

dt

=
r21
k1
u2(k1 − u− v) +

r22
k2
v2(k2 − u− v), using (1.1)

If ∂V
∂t

> 0 by considering u > 0, v > 0 as Lyapunov stability conditions, it can be concluded that the equilibrium

point (0, 0) is locally unstable.
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Due to the graphical analysis, the linearization matrix at (0, 0) is

A(0,0) =

(
r1 0
0 r2

)
(4.3)

We consider both r1 > r2 and r1 < r2. Let us first consider r1 = 2 and r2 = 1 which gives eigenvalues
λ1 = 2, λ2 = 1 and the corresponding eigenvectors(

1
0

)
and

(
0
1

)
respectively.
Here both eigenvalues are real and positive which concludes that the equilibrium point (0, 0) is a repeller.
Biologically, when both of the species are present in the same ecological circumference they will repel each other
and leave the sub-domain of the habitat until other factors are considered. Similar conclusions can be made by
considering r1 = 2 and r2 = 3. At this critical point, the system is always unstable which is showing in Figure
4.1.

Figure 4.1: Phase portrait of the linear system of (1.1) near (0, 0) for (left) r1 = 2, r2 = 1 and (right) r1 = 2,
r2 = 3.

Semi-trivial equilibrium (k1, 0): At the equilibrium point (u, v) = (k1, 0), the partial derivatives are
∂f
∂u

=

−r1,
∂f
∂v

= −r1,
∂g
∂u

= 0,
∂g
∂v

= r2
k2

(k2 − k1). To execute ∇(u, v), substitute all partials in (4.2) and we obtain

∇V (u, v) =

(
−r1 −r1

0 r2
k2

(k2 − k1)

)(
u
v

)
=

(
−r1u− r1v
r2
k2

(k2 − k1)v

)

On integration, we will find Lyapunov function V given below,

V (u, v) =

u∫
0

(−r1x) dx+

v∫
0

r2
k2

(k2 − k1)y dy

= −r1
u2

2
+
r2
k2

(k2 − k1)
v2

2

For stability, we must find the criterion such that V is always positive. Assume r1 = r2 and hence V > 0 which
implies

− r1
u2

2
+
r2
k2

(k2 − k1)
v2

2
> 0
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⇒ −u2k2 + (k2 − k1)v2 > 0, since r1 > 0, r2 > 0

⇒ (k2 − k1)

k2
>
u2

v2
> 0.

which implies that k2 > k1. Now, differentiating the function V , we have

∂V

∂t
= −r1u

du

dt
+
r2
k2

(k2 − k1)v
dv

dt

= − r
2
1

k1
u2(k1 − u− v) +

(
r2
k2

)2

(k2 − k1)v2(k2 − u− v)

For satisfying the Lyapunov condition, we must consider ∂V
∂t

< 0. Hence either

− r21
k1

(k1u
2 − u3 − vu2) < 0

⇒ k1 > u+ v, r1 > 0, k1 > 0

Or (
r2
k2

)2

(k2 − k1)v2(k2 − u− v) < 0

⇒ 0 < k2 < u+ v if k2 > k1

However if k1 > k2 then we obtain the following inequalities

k2 > u+ v

Considering conditions, it can be clarified that for the case k1 > k2, the equilibrium point (k1, 0) is locally as
well as globally asymptotically stable independently of initial densities, see Figure 5.3(right).

Remark 1. It is noticed that both u > 0 and v > 0 throughout this section to satisfy all the inequalities of
stability analysis.

For the shake of graphical analysis, consider the linearization matrix at (k1, 0):

A(k1,0) =

(
−r1 −r1

0 r2
k2

(k2 − k1)

)
(4.4)

where corresponding eigenvalues are λ1 = −r1 and λ2 = r2
k2

(k2 − k1). Here λ2 > 0 if k2 > k1 and λ2 < 0 for

k2 < k1. Initially we consider r1 = r2 = 1 and k2 > k1, where k1 = 1, k2 = 2 and we obtain the eigenvalues
λ1 = −1 and λ2 = 0.5 and corresponding eigenvectors are(

1
0

)
and

(
−0.83077
0.556666

)
respectively. Since both eigenvalues are negative, we can summarize the critical point (k1, 0) is an asymptotically
stable point shown in Figure 4.2 (right). So, in this case, as the species, v is extinct from the given ecological
territory, whereas the species u is the sole winner.
Semi-trivial equilibrium (0, k2): At the equilibrium point (u, v) = (0, k2), the corresponding partial deriva-

tives are
∂f
∂u

= r1
k1

(k1 − k2),
∂f
∂v

= 0,
∂g
∂u

= −r2,
∂g
∂v

= −r2. Substituting these values in (4.2), one can

implement ∇V (u, v) as:

∇V (u, v) =

(
r1
k1

(k1 − k2) 0

−r2 −r2

)(
u
v

)
=

(
r1
k1

(k1 − k2)u

−r2u− r2v

)
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Figure 4.2: Phase portrait of the linear system of (1.1) for r1 = r2 = 1 and (left) k2 > k1, k1 = 1, k2 = 2 and
(right) k1 > k2, k1 = 4, k2 = 3.

On integration provides the suitable Lyapunov function V such that

V (u, v) =

u∫
0

r1
k1

(k1 − k2)x dx+

v∫
0

(−r2y) dy

=
r1
k1

(k1 − k2)
u2

2
− r2

v2

2

Assume r1 = r2, and consider the stability criteria V > 0 which due to the following inequalities

r1
k1

(k1 − k2)
u2

2
− r2

v2

2
> 0

⇒ (k1 − k2)

k1
>
v2

u2

⇒ k1 > k2, while u > 0, v > 0.

Now differentiating V , we have

∂V

∂t
=
r1
k1

(k1 − k2)u
du

dt
− r2v

dv

dt

=

(
r21
k1

)2

(k1 − k2)(k1u
2 − u3 − vu2)− r2

k2
(k2v

2 − uv2 − v3)

For satisfying the Lyapunov condition, let us consider ∂V
∂t

< 0. Therefore, either(
r21
k1

)2

(k1 − k2)(k1u
2 − u3 − vu2) < 0

⇒ 0 < k1 <
u3 + vu2

u2

Or

− r2
k2

(k2v
2 − uv2 − v3) < 0

⇒ k2 >
uv2 + v3

v2
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Considering these two inequalities, we can conclude that if k2 > k1 then the equilibrium point (0, k2) is both
locally and globally asymptotically stable for any non-negative and non-trivial initial values, see Figure 5.3(left).

To study the graphical analysis via phase plane, let us check the linearization matrix at (0, k2) such that

A(0,k2) =

(
r1
k1

(k1 − k2) 0

−r2 −r2

)
(4.5)

where λ1 = r1/k1(k1 − k2) and λ2 = −r2 are respective eigenvalues. The eigenvalues λ1 > 0 if k1 > k2 and
λ1 < 0 if k2 > k1. It is also seen that the eigenvalue λ2 is always negative. For instantaneous example, consider
r1 = r2 and k1 > k2; specifically let us assume that k1 = 3, k2 = 2 and r1 = r2 = 1 and the respective
eigenvalues are λ1 = −1 and λ2 = 0.33 with corresponding eigenvectors:(

0
1

)
and

(
0.799278
−0.600961

)
Two eigenvalues of the matrix A(0,k2) are both real and have opposite signs. Thus the equilibrium (0, k2) is an
unstable saddle point as shown in Figure 4.3 (left).

Similarly, we consider r1 = r2 = 1 and k2 > k1. Put k1 = 2, k2 = 3 and in this case the eigenvalues are
λ1 = −1 and λ2 = −0.5 and corresponding eigenvectors are(

0
1

)
and

(
0.447214
−0.894427

)
respectively. Since both eigenvalues λ1 and λ2 are negative, the critical point (0, k2) is an asymptotically stable
node as depicted in Figure 4.3 (right). Therefore, if the second species, v has more accessibility to the resources
then the first population, u goes to extinction.

Figure 4.3: Phase portrait of the linear system of (1.1) for r1 = r2 = 1 with (left) k1 > k2, k1 = 3, k2 = 2 and
(right) k2 > k1, k1 = 2, k2 = 3.

Coexistence equilibrium (u∗, v∗): Since we do not know the exact coexistence equilibrium point, so it is
not possible to find the general Lyapunov function at coexistence point (u∗, v∗). If we place some assumptions
regarding parameters, then we can formulate a local Lyapunov function or region.

Let k1 = k2 = k in some non-empty open domain of nature. Then we have the equilibrium point (u∗, v∗) =
(αk, (1 − α)k), with α ∈ (0, 1). Then at equilibrium (αk, (1 − α)k), the corresponding partial derivatives are
∂f
∂u

= −r1α,
∂f
∂v

= −r1α,
∂g
∂u

= −r2(1−α),
∂g
∂v

= −r2(1−α). By putting these values in (4.2), the gradient of

V (u, v) is defined as follows

∇V (u, v) =

(
−r1α −r1α

−r2(1− α) −r2(1− α)

)(
u
v

)
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=

(
−r1α(u+ v)

−r2(1− α)(u+ v)

)
Integrating ∇V provides the following Lyapunov function V such that

V (u, v) =

u∫
0

(−r1α)x dx+

v∫
0

(−r2(1− α))y dy

= −r1α
u2

2
− r2(1− α)

v2

2

Regarding the stability analysis, we must find the criterion such that V is always positive. Assume r1 = r2 = r
and V > 0 implies

− rαu
2

2
− r(1− α)

v2

2
> 0

⇒ −α
(1− α)

>
v2

u2

⇒ −α
(1− α)

> 0, while u > 0, v > 0

⇒ 1− α > 0⇒ 0 < α < 1

So V will be positive for α ∈ (0, 1), which was our primary assumption of coexistence solution. To check the
local or global stability of the coexistence solution, differentiate the function V , and we have

∂V

∂t
= −r1αu

du

dt
− r2(1− α)v

dv

dt

= −r
2
1

k
α(ku2 − u3 − vu2)− r22

k
(1− α)(kv2 − uv2 − v3)

For satisfying the Lyapunov strategy, the necessary condition is ∂V
∂t

< 0 and hence, either

− r21
k
α(ku2 − u3 − vu2) < 0

⇒ k >
u3 + vu2

u2

Or

− r22
k

(1− α)(kv2 − uv2 − v3) < 0

⇒ k >
uv2 + v3

v2

Considering these two conditions it can be illuminated that when α ∈ (0, 1), the equilibrium point (αk, (1−α)k)
is globally asymptotically stable, see Figure 5.3(middle).

Consider the linearization matrix at (αk, (1− α)k) such that

A(αk,(1−α)k) =

(
−r1α −r1α

−r2(1− α) −r2(1− α)

)
(4.6)

where λ1 = 0 and λ2 = −(r1α+ r2(1− α)) are respective eigenvalues. Since one eigenvalue is zero, so here we
do not have any point attractor or a point from which it will be repelled.

Here λ1 = 0 and since both r1, r2 > 0 and α ∈ (0, 1) so λ2 < 0, that is λ2 is always negative. For instance,
let us consider r1 = r2 = 1 and the respective eigenvalues for α = 0.8 are λ1 = 0 and λ2 = −1 and for these
eigenvalues we have infinitesimal eigenvectors for different choice of u or v.

Since eigenvalue λ2 are negative, the critical point (αk, (1− α)k) is an asymptotically stable node shown in
Figure 4.4. Therefore, the coexistence of both species is reliable when the resources are equals to both.
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Figure 4.4: Phase portrait of the linear system of (1.1) for r1 = r2 = 1 and k1 = k2 = 1 with (left) α = 0.8, and
(right) α = 0.5.

5 Numerical Results and Discussions

In this section, we discuss some examples of numerical solutions of the initial value problem (IVP) (1.1).
The parameters like specific growth and resource function play a significant role to change population density.

Example 1. Consider the influence of carrying capacity on the density of two competing species u and v where
intrinsic growth rates r1 and r2 of two species are considered to be identical. Assume r1 = r2 = 1.0 and k1 > k2.
Here we fix the value of k1 as k1 = 2 + sin(t) and varies k2 = 1.1, 1.5 and 1.7.
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Figure 5.1: Numerical solutions of (1.1) for r1 = r2 = 1.0 and k1 = 2.0 + sin(t), k2 = 1.1, 1.5 and 1.7 with (left)
the density of u, and (right) the density of v, where initial densities are u0 = 0.9 and v0 = 0.9.

Comparing the different values of k2, there is an equilibrium with the increasing values of u, and decreasing
values of v as the carrying capacity of u is higher than that of v in a time domain and lower for a time
sub-domain. When time is increasing, then the coexistence is not possible, the population with lower carrying
capacity is repelling gradually.

As a result, the species u survives, and species v is going to extinct. See Figure 5.1 for graphical presentation.

Example 2. Consider the influence of periodic carrying capacities on the density of two competing species u
and v where intrinsic growth rates r1, r2 of two species are considered to be same. Assume r1 = r2 = 1.0 and
k2 > k1. Here we consider the value of k2 as k2 = 2.5+sin(t) while k1 = 1.1+sin(t), 1.5+sin(t) and 2.0+sin(t).
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Considering these different values of k1 there is an equilibrium with the decreasing values of u and increasing
values of v as the carrying capacity of u is considered to be lower than that of v, see Figure 5.2.
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Figure 5.2: Numerical solutions of (1.1) for r1 = r2 = 1.0 and k1 = 1.1 + sin(t), 1.5 + sin(t) and 2.0 + sin(t)
when k2 = 2.5 + sin(t) with (left) the density of u, and (right) the density of v, where (u0, v0) = (1.0, 1.0).

Figure 5.2 is the case when the carrying capacity of k2 has a higher value than k1 in some non-empty open
time domain. This situation will cause species u to extinction.

If we consider k2 a little lower than the previous one and as far the time increases, the species u repelled
and v survives periodically.

Example 3. Assume that growth rate of both species u and v are identical, that is r1 = r2. Here we considered
three cases, at first assume that carrying capacities are not same and v has better environment than u, so
k2 > k1. In this case we let initial density of u as u0 = 1.5 and v as v0 = 0.1, then for k1 = 2 and k2 = 4 we
see in first figure of Figure 5.3 that u is in extinction and v is converging to k2.
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Figure 5.3: Numerical solutions of (1.1) for r1 = r2 = 1.0 where in (left) k1 = 2.0, k2 = 4.0 with (u0, v0) =
(1.5, 0.1), in (middle) k1 = k2 = 4.0 with u0 = v0 = 0.5 and in (right) k1 = 4.0, k2 = 2.0 with (u0, v0) =
(0.1, 1.5).

In the second case, we let carrying capacities and initial densities are equal. In particular we choose k1 =
k2 = 4 and u0 = v0 = 0.5, we have coexistence and both species converges to same direction (see middle figure
of Figure 5.3).
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Lastly we consider the contrary case of the first one. We assumed that k1 > k2 and by choosing k1 = 4,
k2 = 2 and initial densities as (u0, v0) = (0.1, 1.5) then in the last figure of Figure 5.3 shows that one species
is in extinction and the another one is converging towards carrying capacity. For this properties species v is in
extinction and species u converges to k1.

Example 4. Consider the equal carrying capacities for both species; for example, k1 = k2 = 2.0 + sin(t). Here
we show that the effects of intrinsic growth rates on the density of populations by varying growth rates for each
species.
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Figure 5.4: Numerical solutions of (1.1) for k1 = k2 = 2.0 + sin(t) and r1 = 4.0, r2 = 1.0, 2.0 and 3.5 with (left)
the density of u, and (right) the density of v, where initial densities are u0 = v0 = 1.0.

If we fix r1 = 4.0 and varies r2 = 1.0, 2.0 and 3.5, then we have a coexistence steady state which shows that
the density of the first species will increase with a higher growth rate compared to the rest one, v, see Figure 5.4.

Example 5. Consider the equal and time-periodic carrying capacity for both species, for example, k1 = k2 =
4.0 + cos(t), and we want to observe the effects of specific growth rates.
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Figure 5.5: Numerical solutions of (1.1) for k1 = k2 = 4.0 + cos(t) and r1 = 1.0, 2.0, 2.8, r2 = 3.0 with (left)
density of u, and (right) density of v, where (u0, v0) = (1.0, 1.0).

If we fix r2 = 3.0 and consider r1 = 1.0, 2.0 and 2.8, then we have seen that if the growth rate of the first
species is lower compared to the second one, the density u of the first species decreases and larger values of r1
leads to the increasing value of u in the coexistence equilibrium. In this case, density v of the second species is
always increasing, see Figure 5.5.
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6 Conclusions

In this paper, we studied a two-species competition population model both analytically and numerically.
The results were presented for local and global cases using phase diagrams and periodic functions. It was seen
that in many cases it is possible to determine whether an equilibrium of a nonlinear system is locally stable
or globally asymptotically stable simply by Lyapunov’s theorem. This method relies on the observation that
asymptotic stability is intimately linked to the existence of a Lyapunov function. The system is asymptotically
stable means that the equilibrium state at the origin is asymptotically stable, if and only if the eigenvalues have
negative real parts. By this stability analysis, we will get a clear conception about the growth and extinction
of various competitive species. Numerical investigations both confirmed and completed the theoretical results
while comparing the density of two different species. Here we have seen that the considered model suggests that
carrying capacity plays an important role in the determination of the competition outcome between two species
in a given ecological circumference. If the carrying capacity remains the same for two species, the population
with a larger growth rate grows high and the population with a smaller growth rate decreases gradually. When
growth rates are considered identical, the population with a larger carrying capacity has higher density and is
the sole winner. Dynamical behavior of the system was investigated at equilibrium points. As one parameter is
varied, the dynamics of the system near to this solution change the stability. Both analytically and numerically,
the results showed that the model sensitively depends on the parameter values and initial conditions. For future
studies, it would be interesting if one can study these models for particular species in any habitats.
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