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ABSTRACT 

In this paper, we establish an existence criterion of positive solution for a nonlinear weighted bi-harmonic 

system of elliptic partial differential equations in the unit ball in ( dimensionaleuclideanspace)n n . The 

analysis of this paper is based on a topological method (a fixed-point argument). Initially, we establish a priori 

solution estimates, and then use a fixed-point theorem for deducing the existence of positive solutions. Finally, 

we prove a non-existence criterion as the complement of existence criterion.  
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1. Introduction  

The nonlinear partial differential equations (PDEs for short) have proved to be valuable tools for the modeling 

of many physical, chemical and biological phenomena, see for instance [27, 32, 34] and references therein. In 

the last few decays, there has been a noticeable interest on the study of existence of solution to nonlinear elliptic 
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systems, especially when the nonlinear term appears as a source in the equation with the Dirichlet’s or 

Neumann’s boundary conditions, see for instance [13, 28, 32] and references therein. Nonlinear systems are 

divided into two broad classes, first one is with a variational structure, namely Hamiltonian or gradients systems, 

see for instance [1, 16, 18] and second one is the class of non-variational problems, which can be maintained 

through the topological methods (fixed-point arguments), see for instance [2, 4, 9, 10].  In this paper, we deal 

with the existence of non-variational boundary value problem (BVP for short) for a given system using a 

topological method (a fixed-point argument).  

The single fourth order nonlinear PDEs arise in various physical phenomenon such as study of travelling 

waves in suspension bridges [20], micro electro mechanical systems [24], radar imaging [3], bending behaviour 

of a thin elastic rectangular plate [31], geometric and functional design [5, 6, 29] etc. In this paper, we consider 

the following nonlinear weighted bi-harmonic system of elliptic PDEs 
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( ) ( )

2

2
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0 , 0 on ,
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  

                                      (1.1) 

where B  denotes the unit ball in ℝ𝑁 , (𝑁 > 4) with boundary ,B   is open, smooth and bounded subset of 

ℝ𝑁 ,   is a positive parameter, 𝑎, 𝑏:Ω → ℝ (set of real numbers) are sign changing weights, 𝑓, 𝑔: 0,∞) → ℝ are 

continuous nonlinearities with ( ) ( )0 0, 0 0f g= = . 

The system designated by (1.1) is omnipresent in physics and chemistry where steady-states are answers to 

problematic questions in a great diversity of systems of reaction-diffusion equations. This system interacts 

everywhere in nature and this interaction takes place in such unequal phenomena as the proliferation of virile 

mutants over a substantially wide habitat, the dispersion of fire flames in roomy forests, in combustion 

chambers, or in nuclear reactors where neutron populations evolve and develop. Lions [21] studied the existence 

of a positive solution to the following Dirichlet problem 

 
( ) ( ) in ,

0 on ,

u a x f u

u

− = 


= 

                               (1.2) 

with weight function and nonlinearity satisfy 0, 0,a f  respectively. Problem with indefinite weights was 

studied by Brown et al. [7], Brown and Tertikas [8], Cac et al. [11], Hai [19] and their references. Dalmasso 

[14] studied the following BVP 

 

( ) ( )

( ) ( )

in ,

in ,

0 on ,

u a x f v

v b x g u

u v





− = 

− = 


= = 

                               (1.3) 

for ( ) ( )1, 1, 1,a x b x = = = and established the existence of a positive solution to the BVP (1.3) using 

Schauder fixed-point theorem [30].  After Dalmasso [14], several authors studied the BVP (1.3) using different 

techniques and theorems for different values of ( ) ( ), , 1,a x b x  =  see for instance Chen [12] and their 

references. In 2014 Dwivedi [13] studied the existence of positive solutions to BVP (1.1) by using Leray-

Schauder fixed-point theorem.  Recently, Soltani and Yazidi [4] established the existence and non-existence of 

positive solutions to the following system of bi-Laplacian equations 
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                  (1.4) 
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applying a topological method (fixed-point argument) [15, 25].  

Inspired by above mentioned works, in the present paper we study the existence and non-existence of positive 

solutions to (1.1) by using a topological method (fixed-point argument) [15, 25]. The priori estimates of positive 

solutions for elliptic partial differential equations gives a sufficient information about the existence of positive 

solutions, see for instance [9, 22, 23]. From this context, first we establish a priori estimates of solutions to our 

problem given by (1.1) and then we prove the existence and non-existence criteria of positive solutions 

depending on that priori estimate. The rest of this work is furnished as follows:  

In Section 2, we establish some preliminary facts which will be needed to prove our main results. Section 3 is 

devoted to state and prove the existence and non-existence criteria of solutions to the nonlinear biharmonic 

system of elliptic PDEs given by (1.1). In the end of Section 3 we provide two illustrative examples to support 

our analytic proof. 

 

2. Preliminary Notes 

In this section, we recall some preliminary results related to the bi-Laplacian problem and sate a fixed-point 

theorem which will help us to prove our main results. 

Let us consider the problem (1.1) for radially symmetric solutions, and let ( ), ,r x u u r= = ( ) ,v v r=  

( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( )( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(4)

2 3

(4)

2 3

2 1 1 3 1 3
, 0 for 0,1 ,

2 1 1 3 1 3
, 0 for 0,1 ,

0 0 0 , 0 0 0 , 1 0 1 , 1 0 1 .

N N N N N
u u u u a x g v v r

r r r

N N N N N
v v v v b x f u u r

r r r

u v u v u v u v





 − − − − −
  + + − =  


 − − − − −

  + + − =  

      = = = = = = = =



   (2.1) 

Then any solution ( ) ( )( ) ( ) ( )4 4, 0,1 0,1u r v r C C   of (2.1) is a radial symmetric solution of (1.1). 

Now, we recall the following lemma from [23, Lemma 2], which gives more information regarding the 

eigenvalue problem for the operator 
2 .  

Lemma 2.1 [23]: There is a 0  such that the problem  

 2 in , on
v

v v B v B
v




 = = 


 

possesses a positive, radial symmetric solution ( )x  which satisfies for some positive constants 1 2andc c ,  

 ( ) ( ) ( )
2 2

1 21 1 , .c x x c x x B−   −                   (2.2) 

From [23] as well as [17], we recall the Green’s function ( ),G r s  for the corresponding linear problem of 

(2.1) is given by 

 ( )
( ) ( )

( ) ( ) ( )( )

2

1 2

, for 0 1
,

, for 0 1,

N N

N

N N

A s r B s r s
G r s

s r A r s B r s r
−

 +   
= 

+   

              (2.3) 

where 

 ( )
( )( )

( ) ( )
3

2 42 4 2
4 2 4

N N
N

t
A t N t N t

N N

− − = + − − −
 − −

                   (2.4) 

and 
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 ( )
( )

( )2 2 2
4 2

N N
N

t
B t Nt N t

N N

− = − − −
 −

.                                  (2.5) 

From [23] we also observed that the Green’s function ( ),G r s has the following properties: 

There exists a positive constant d  such that 

 ( ) ( ) ( )( )
4210 , 1 max , ,

NNG r s ds s r s
−−  −                 (2.6) 

 ( ), 0,G r s
r





                   (2.7) 

and  

 ( ) ( )
2

1 2

2

1

1
, 1 .

2

N

r

G r s s s
r

−

=


= −


                 (2.8) 

Hence, the BVP (2.1) is transformed into the following integral equations: 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1

0

1

0
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, .

u r G r s a s g v s ds
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




=



 =
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


                (2.9) 

It is well established that the BVP (2.1) and the problem (2.9) are equivalent. For the study of BVP (1.1), we 

need the following eigenvalue problem: 
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               (2.10) 

where 1 2, 0   . 

Now we establish following lemma to comment on the solution of the eigenvalue problem (2.10). 

Lemma 2.2: Let 1 be the corresponding eigenfunction of   which is the first eigenvalue of 2 on the unit 

ball B  and 2
1 2  = . Then the eigenvalue problem (2.10) has a positive solution ( ),   satisfying (modulo 

a constant) 1 1

1 2

1 1
and   

 
= = . 

Proof. Using the idea established in [33] for a Laplacian eigenvalue problem, we define 

 1 1 ,w  =                  (2.11) 

 2 2w  = .                 (2.12) 

Combining (2.11), (2.12) and the eigenvalue problem (2.10), we obtain 
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2 1 2 1

1 2
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w a x w B
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 

 

 
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Adding and subtracting the equations and the equation of boundary conditions of the problem (2.13), we 

have 

 

( ) ( ) ( )( )

( )

2
1 2 1 2 2 1

1 2
1 2

in ,

0, 0 on .

w w a x w b x w B

w w
w w B

 



 + = +

  +
 + = = 



             (2.14) 

and 

 

( ) ( ) ( )( )

( )

2
1 2 1 2 2 1

1 2
1 2

in ,

0, 0 on .

w w a x w b x w B

w w
w w B

 



 − = −

  −
 − = = 



             (2.15) 

Multiply both sides of (2.15) by 1 2w w−  and take integration by parts, we obtain 

 ( ) ( ) ( )( )( )
2

1 2 1 2 2 1 1 2

B B

w w dx a x w b x w w w dx  − = − − −  .           (2.16) 

Since ( )a x  and ( )b x are sign changing weights, then (2.16) can be written as  

 ( )
2 2

1 2 1 2 1 2 .

B B

w w dx w w dx  − = − −                (2.17) 

which prove that 1 2 inw w B= . Since 1 2  =  and by the properties of eigenvalue problem for the bi-

Laplacian, we obtain that the BVP (2.14) has the first eigenfunction 1  as the only solution. Then for any 

positive constant ,c  we have 1 2 1.w w c= =  Thus 1 1

1 2

1 1
andc c   

 
= = .  

This completes the proof.  

Lemma 2.3: Let andF G  be primitives of andf g respectively with ( ) ( )0 0 and 0 0.F G= = Suppose that 

( ),u v be a solution of the system given by (1.1) and ,   are some positive constants. Then we have the 

following identity: 

 

( )( ) ( ) ( ) ( ) ( )( )

( )( ) ( )( )

, ,

4 , , .

x
B B

B

u v x v d NF u NG v auf u bvg v dx

N u v x v dx

  

 



  = + − −

+ − − +  

 


          (2.18) 

Proof. Using [26, proposition 4], [33, theorem 2.1] and after some easy computations, we obtain the following 

identity: 

 

( ) ( )
2

1 2 ,

ij ij

i l i ij

l l
i k l l i r k l l r

i k j j k

l l
i x l l u l p l r

i i j

u u
x L x a u L p L x a u L

x x x x x

u u
NL x L a u L a L a L

x x x

        
 − + − − − +               

 
= + − − + − +

  

                   (2.19) 

where ( ), , ,L L x U p r= is a Lagrangian with ( ) ( ) ( )1 2, , , , ,k k k
i i ij

i

u
U u u p p p r r

x


= = = =


 1,2, ,i N=

and 1 2,a a are some constants.  
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Applying the identity (2.19) to the Lagrangian associate with problem (1.1), we get 

  ( ) ( ) ( ) ( ) 1 2, , , , , , .L L x U U U u v F u G v a a =   =   + + = =  

Integrating (2.19) over the unit ball B  and using the conditions 0 , 0 on
u v

u v B
 

 
= = = = 

 
, we get 

(2.18).  

This completes the proof.   

Remark 2.1: Putting 4N + = −  in (2.18), we obtain the critical conditions on andf g are 

( ) ( ) ( ) ( ) ( )0 and 4 0,NF u uf u NG v N vg v − = − − − =  then we have  

 
( )

( )

( )

( )

( )4
and .

f u g v N NN

F u u G v v

 − −
= =               (2.20) 

Hence, for some positive constants 1 2and ,c c we obtain 

 ( ) ( )
1 1

4
1 2and .

N N

Nf u c u g v c v 
− −

− −= =               (2.21) 

Definition 2.1 ([35]): Let ( ), .X  be a real Banach space and C be a nonempty closed convex subset of X . 

This subset C  is called a cone of X  if it satisfies the following conditions: 

(i) , 0x C    implies ;x C    (ii)  ,x C x C −   implies 0x = . 

Now, we state a fixed-point theorem due to Figueiredo et al. [15] and Peletier and van der Vorst [25], which 

will be used as the main tool to prove our main results. 

Theorem 2.1 ([15, 25]): Let C be a cone in a Banach space X and :T X X→  be a compact map such that 

( )0 0T = . Assume that there exist the numbers 0 r R   such that 

(a)  ( )  for 0,1 and ,x T x x r   =  

(b)  there exists a compact map  ): 0,RS B C  →  such that  

 

( ) ( )

( )

( ) 0

,0 , ,

, , and 0 ,

, , and .R

S x T x if x R

S x x if x R

S x x if x B

 

  

= =

 =   

  

 

Then if    : and : ,U x C r x R B x C x =    =    we have  

 ( ) ( ) ( ), 0, , 1, , 1,C R C r Ci T B i T B i T U= = = −  

where ( ),Ci T  denotes the index of T with respect to  . In particular, T has a fixed point in U . 

 

3. Results and Discussions
 

This section is devoted to establish the existence and non-existence criterion of positive solutions to 

nonlinear weighted bi-harmonic system of elliptic PDEs given by (1.1). 

Assume that the nonlinearities andf g  satisfies the following hypothesis:  

( )1H   
( ) ( )

( ) ( )

1 0 1

2 0 2

liminf , limsup ,

liminf , limsup ,

s s

s s

f s s f s s

g s s g s s

 

 

→ →

→ →

 

 
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( )2H   ( ) ( ) ( )1 , 0NF s sf s sf s s −   for some 1 0,   ( ) ( ) ( )2 , 0NG s sg s sg s s −   for   

            some 2 0,   and and   are positive real numbers satisfying 4N + = − . 

To establish our main results, we need the following priori estimates:  

( )3H   there exists a constant 0d  such that for every positive solution ( ),u v of the problem  

          given (1) verifies and .u d v d
 
   

Now we are in position to present and prove our main results. 

Theorem 3.1: If the hypothesis ( ) ( ) ( )1 2 3, andH H H hold, then the nonlinear weighted bi-harmonic system of 

elliptic PDEs given by (1.1) has a positive solution. 

Poof. We prove this theorem by applying theorem 2.1. Consider a Banach space ( ) ( )* *0,1 0,1 ,X C C=   where 

( )* 0,1C denote the space of continuous bounded functions defined on ( )0,1 , endowed with the norm 

( ) ( )0,1
sup

t
u u t


= . We define a cone onC X  by  

 ( ) ( ) : 0, for all 0,1 ,C w X w t t=     

where ( ), 0 means that 0 and 0w y z y z=    . We also define a compact map :T X X→  by 

  ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
1

0
, , where , .T w r G r s h w s ds h w a x g v b x f u= =               (3.1) 

It is clear that a fixed point of T  is a solution of the integral equations given by (2.9) and hence a fixed point 

of T  is a solution of our problem (1.1). 

Now, we will prove that all the conditions of theorem 2.1 for hypothesis ( ) ( ) ( )1 2 3, andH H H . 

From the hypothesis ( )1 ,H we have there exists positive constants 1 21 and 1q q   such that

( )( ) ( ) ( )( ) ( )1 1 2 2andf u x q u x g v x q v x   . Then we have  

 ( )2 2
2 1 1va dx v dx v dx bf u dx q ub dx        =  =  =      .             (3.2) 

On the other hand,  

 ( )2 2
1 2 2ub dx u dx u dx ag v dx q va dx        =  =  =      .                (3.3) 

Combining the inequalities (3.2) and (3.3), we get 

 2
2 1 2 2 ,va dx q q va dx                        (3.4) 

 2
1 1 2 1ub dx q q ub dx      .                  (3.5) 

Since   is a positive parameter, then from (3.4) and (3.5), we obtain 1 2 1q q  . Hence the inequalities (3.4) 

and (3.5) give a contradiction as because the integrals are nonzero. Moreover, if  andu v  are replaced by 

andu v  respectively, where  0,1  , then the inequalities (3.4) and (3.5) also give a contradiction.  

Therefore, we have  

 ( ) ( )( )  with 0,1 , , .w t T w t w r w C   =   

Hence the condition (a) of theorem 2.1 holds. 

Now, define a compact map  ): 0,S C C  →  by  

 ( )( ) ( )( ), .S w r T w r = +                   (3.6) 
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Then it is easy to see that ( ) ( ),0 .S w T w=  This prove the first condition of (b) of theorem 2.1.  

Again, the hypothesis ( )1H , gives that  there exists positive constants 1 1 2 2,k k   0and 0   such 

that ( ) ( ) ( ) ( )1 2 0and , for all and , 0,0f y k y g z k z y z   +  +    . Then we have  

 ( )2 2
2 1 1va dx v dx v dx bf u dx k ub dx ub dx         =  =  =        .              (3.7) 

Or 

 ( )2 2
1 2ub dx u dx u dx ag v dx k va dx       =  =  =      .                 (3.8) 

Combining the inequalities (3.7) and (3.8), we get 

 
2

2 2a v dx k a v dx     .                 (3.9) 

Similarly, we can prove that 

 
2

1 1b u dx k b u dx     .               (3.10) 

Since   is a positive parameter,  anda b  are  sign changing weights, the integrals v dx  and u dx  are 

nonzero and 1 1 2 2, ,k k   then the inequalities (3.4) and (3.5) give a contradiction. Therefore, there exists 

a constant 0 0  such that  

 ( )( ) ( ) 0, , for all and .S w t w t w C                  (3.11) 

This proves the third condition of (b) of theorem 2.1. Now, we prove the second condition of (b) of theorem 

2.1 and to prove it, we consider the family of nonlinearities ( ) ( )( ) 0, for 0, ,f y g z   + +     using a 

priori estimates hypothesis ( )3H  which does not depend on  . Hence, for R r  large enough, we get 

 ( )( ) ( ) 0, , for all and 0, , .S w r w r w C w R     =               (3.12) 

Therefore, the relations (3.11) and (3.12) prove the second condition of (b) of theorem 2.1. That is all the 

conditions of theorem 2.1 are satisfied. Thus, by theorem 2.1 and hypothesis ( )2H , we conclude that the 

problem (2.9) exists a nontrivial positive solution and hence the nonlinear weighted bi-harmonic system of 

elliptic PDEs given by (1.1) has a positive solution.  

This completes the proof.         

Now, we introduce the following critical exponents associated to the nonlinear weighted bi-harmonic system 

(1.1) by 

 ( )( )* * 4
, , where 4 2, 2 .

4

N
p q N N

N

 


 

− +
= =  −

− −
            (3.13) 

Then it is clear that  

 
* *

1 1 4
.

41 1

N

p q

−
+ =

+ +
                (3.14) 

Remark 3.1: From the hypothesis ( ) ( )1 2and ,H H  we have  

 ( ) ( )
* *

lim 0 and lim 0.p q
t tf t t g t t→ →= =  

Certainly, from ( )1 ,H  we have there exists 0 0t  such that ( ) ( ) 00 and 0 forf t g t t t   . Hence, for 

0 ,t t from ( )2H we can write 

 ( ) ( ) ( ) ( )1 2and ,NF t tf t NG t tg t    − +  − +              (3.15) 
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where 1 2and     = + = + . Therefore,  

 ( ) ( ) ( ) ( )1 2and .
N N

F t F t G t G t
t t t t

 

   
 −  −               (3.16) 

Multiplying the inequalities of (3.16) by and

N N

t t 
− −

respectively, we get 

  ( ) ( )
1 1

1 2and .

N N N N
d d

t F t t t G t t
dt dt

    

 

− − − − − −   
    
   
   

 

Hence for some positive constants 1 2and ,d d  we deduce that 

 ( ) ( )1 2and .N NF t d t G t d t                  (3.17) 

For large enough t  and for some positive constants and ,D D  from (3.15) and (3.17), we have  

 ( ) ( )
1 1

and .

N N

f t Dt g t Dt 
− −

                 (3.18) 

Or since 1 2 1 2, , , 0, and 4,N         = + = +  + = − then we have  

 4.N +  −  

The following theorem verify the priori estimates hypothesis given by ( )3H .  

Theorem 3.2: Under the hypothesis ( ) ( )1 2andH H on nonlinearities andf g , the priori estimates hypothesis 

( )3H is satisfied, namely, every positive solution of nonlinear weighted bi-harmonic system given by (1.1) is 

bounded in .L  

Proof. We prove this theorem using following four steps. 

Step 1.  In this step we claim that there exist four positive constants 1 2 3 4, , ,c c c c  such that  

 ( ) ( )1 2, ,
B B

bf u dx c ag v dx c                    (3.19) 

 3 4, .
B B

bu dx c av dx c                     (3.20) 

Using the first two equations of our problem (1.1), we have 

 ( ) 2 2
2

B B B B
bf u dx v dx v dx va dx     =  =  =    .            (3.21) 

According to the hypothesis ( )1H , there exist 2 2 and 0k A   such that ( ) 2g v k v A − . Hence, for a 

positive constant ,c  from (3.21) we have 

 ( ) ( )2
2

2

.
B B B

bf u dx va dx c ag v dx
k


    =  +                                     (3.22) 

Similarly, using hypothesis ( )1H  and for a positive constant d , we obtain 

 ( ) ( )1
1

1

.
B B B

ag v dx bu dx d bf u dx
k


    =  +                                   (3.23) 

Combining (3.22) and (3.23), and for positive constants 1 2andm m , we have 
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( ) ( )

( ) ( )

1 2
1

1 2

1 2
2

1 2

,

.

B B

B B

bf u dx m bf u dx
k k

ag v dx m ag v dx
k k

 
  

 
  


 +



  +


 

 
              (3.24) 

Since 1 2

1 2

1,
k k

 
  hence we deduce (3.19) form (3.24). In the similar way by using the hypothesis ( )1H , we 

can easily obtain (3.20). 

Step 2. In this step we claim that there exist four positive constants 1 2 3 4, , ,d d d d  such that 

 ( ) ( )1 2

2
, , for 1,

3
u r d v r d r                   (3.25) 

 ( ) ( )3 41 , 1 .u d v d                   (3.26) 

Using (2.6) and (2.7), we observed that ( ),r G r s→ is decreasing, hence we deduce that ( ) ( )andu r v r  are 

decreasing in r  and for arbitrary 
2

1,
3

r   we have 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 3 1
21

1 3 0

1
21

0

2
3 1

3

1 ,

N

N

u r u a s u s ds d s s b s u s ds

d s s b s u s ds

 



−

−

 
   − 

 

 + −

 


            (3.27) 

where d is a positive constant. 

From (2.2) and lemma 2.2 and (3.27), we obtain 

 ( ) ( ) ( ) ( )
1

21

0

1 1 1 .N

B

u r d s s b s u s ds d b udx  −   
 + −  +   

  
   

Thus by (3.20), we yield that ( ) 1,u r d  for 
2

1,
3

r   and in the similar way we can prove that ( ) 2 ,v r d  

for 
2

1
3

r  . 

Now, differentiating the relations of (2.9) two times with respect to r , we have  

( )
( )

( ) ( )( ) ( )
( )

( ) ( )( )
2 21 1

2 2
0 0

, ,
, .

G r s G r s
u r a s g v s ds v r b s f u s ds

r r
 

 
 = =

               (3.28) 

Since the integrals of (3.28) converge, then taking limit as 1r → and we obtain 

 ( )
( )

( ) ( )( ) ( )
( )

( ) ( )( )
2 2

1 1

2 20 0

1 1

, ,
1 , 1 .

r r

G r s G r s
u a s g v s ds v b s f u s ds

r r
 

= =

 
 = =

    

Using (2.8), we get 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
1 1

1 2 1 2

0 0

1 1
1 1 , 1 1 .

2 2

N Nu s s a s g v s ds v s s b s f u s ds − − = − = −             (3.29) 

Now, for some positive constant ,d from (2.2) and lemma 2.2 and (3.29), we obtain that  

 ( ) ( ) ( ) ( )1 , 1
B B

u d a g v dx v d b f u dx       .              (3.30) 

Combining (3.15) and (3.30), we have  
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 ( ) ( )3 41 , 1 .u d v d    

This proves (3.26). 

Step 3. In this step we claim that for a small number 0 1  , there exists positive constants 1 2 3 4, , ,e e e e such 

that  

 ( ) ( )( ) ( ) ( )( )1 1

1 2
0 0

, ,N Ns b s f u s ds e s a s g v s ds e
 

 − −               (3.31) 

 ( ) ( )3 4, .
B B

buf u dx e avg v dx e                   (3.32) 

For proving (3.31), we follow the proof of (3.19) and (3.20), and using lemma 2.1 and lemma 2.2 and for 

the small number  0 1  , we get  

 

( ) ( )( )

( )

( )
( ) ( )( )

( )
( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1

0

2

21 1

2 20 0

1

1 1
0

1 1
1

1 1

,

N

N N

N

B

s b s f u s ds

s
s b s f u s ds s s b s f u s ds

d s b s s f u s ds d b f u dx dc e



 





 
 

   

−

− −

−

−
  −

− −

 =  =



 

 

 

( ) ( )( )

( )

( )
( ) ( )( )

( )
( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

1

0

2

21 1

2 20 0

1

2 2
0

1 1
1

1 1

,

N

N N

N

B

s a s g v s ds

s
s a s g v s ds s s a s g v s ds

d s a s s g v s ds d a g v dx dc e



 





 
 

   

−

− −

−

−
  −

− −

 =  =



 

 

 

where ,d d  are some constants. These prove (3.31). 

For proving (3.32), rewrite the identity (2.18) of lemma 2.3 and considering the fact that 4N + = − , we 

have 

( ) ( )( ) ( ) ( )( ) ( )( ), , .x
B B B

NF u buf u dx NG v avg v dx u v x v d  


− + − =              (3.33) 

Using the hypothesis ( )2H  in the left-hand side of (3.33) and after easy computation, we get  

 ( ) ( ) ( ) ( )1 2 1 1 ,
B B

buf u dx avg v dx eu v     +                (3.34) 

where e  is generic constant and 1 2and   are constants given in hypothesis ( )2H . Thus (3.34) can be written 

as 

 ( ) ( )1 2 .
B B

buf u dx avg v dx e   +                 (3.35) 

Since the two integrals of (3.35) are positive separately, hence we obtain (3.32) directly from (3.35). 

Step 4. In this step using the hypothesis ( ) ( )1 2andH H , we claim that there exist two positive constants 

1 2andc c  such that, for any solution ( ),u v of our problem given by (1.1), 

 1 2, .u c v c
 
                   (3.36) 

For u , we have 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 1 23

0 0

1 1
3 3 3

0 0

0 0, 1

,
t

t

u u G s a s g v s ds c s s a s g v s ds

c s a s g v s ds c s a s g v s ds c s a s g v s ds

 

  


   −

  +

 

  
         (3.37) 

where ( )0,1t   is arbitrary and c  is a positive constant whose value may vary. 

Let ( )   ( )0,
max

s m
g m g s


= for ( )0,m  , and applying Hölder’s inequality in (3.37), we get 

( ) ( )
( )( )

( ) ( )
( )( ) ( )( )( )

*

* * *
1

*

*
* *

1 *

1

1 11 1 14 1

1
1 11 11 14 1 ,

q

q q qN

t t

q

qq q N q

t t

u c at g v c a s ds s g v s ds

c at g v c a s ds s g v s g v s ds





 

 

+ + +−

 

++ + −



   
 +    

  

  
  +       

 

 

 

where ( )
*

1 *
3 1

1

q
N

q
 = − −

+
.  

From remark 3.1, we have a positive constant D such that  

 
( ) ( )

( ) ( )

*

*

1 , for all 0,

1 , for all 0.

q

p

g s D s s

f s D s s

 + 

 + 

               (3.38) 

Hence, we get 

 

( ) ( )
( )( ) ( )( )

( ) ( )
( ) ( ) ( )( )

*

* * **
1

*

* *
* *1

11
1 11 1 14 1

11
1 1 14 1

1

.

q

q q qNq

t t

q
q qq q

t B B

u c at g v D c a s ds s g v s v s ds

c at g v D c a s ds g v dx g v v x dx





 

 

+ + +−

 

+ + +



   
 + +   

  

 
 + + 

 

 

  

            (3.39) 

Using (3.31) and (3.32) in (3.39), we get 

 ( ) ( )* *
1

1

1 1 14 .
q q

t
u c at g v c a s ds


 

+ +

 

 
 +  

 
              (3.40) 

Similarly, for v , we get 

 ( ) ( )* *
2

1

1 1 14 ,
p p

t
v c bt f u c b s ds


 

+ +

 

 
 +  

 
              (3.41) 

where ( )
*

2 *
3 1

1

p
N

p
 = − −

+
.  

We consider that in all the next inequalities c  will always represent a positive constant.  

Now, after some easy computations from (3.40) and (3.41), we get 

 ( )
( ) *

*

4 4

4 1 ,

N q

qu c at g v c at 

+ −

+

 
 +               (3.42) 
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 ( )
( ) *

*

4 4

4 1 .

N p

pv c bt f u c bt 

+ −

+

 
 +               (3.43) 

Note that if f  and  g  are bounded then (3.36) comes directly from (3.42) and (3.43). But if g  is not 

bounded then, by remark 3.1, we have there exists a positive constant ,K as like (3.38) such that 

( ) ( )
*

, for all 1
q

g r K r r   .  Thus, we can write (3.42) as  

 ( )
( ) *

*
*

4 4

4 1 .

N q
q

qu c at v c at 

+ −

+

 
 +               (3.44) 

Now, inserting (3.43) in (3.44), and using the inequality ( ) ( )n n n
na b c a b+  +  for , , 0,a b n  where nc  

is a positive constant depending on n , we yield  

 
( ) ( )( )

( ) ( )
* * *

**
* *

4 4 4 4
4

14 1 1 .

N p q N q
qq p qu c at f u c at c at  

 + − + − 
+

+ + +

 
 + +            (3.45) 

But it is easy to show that  

 
( ) ( )

* * * *

* * * *

4 4 4 4
4 4 .

1 1 1 1

N p q N q N Nq

p q p q

 + − + − 
+ = = − = −

+ + + +
                         (3.46) 

Hence from (3.45), we have  

 
( ) ( )( )

*

**
*

4
14 1

Nq
qq qu c at f u c at 

−
+ +

 
 +                     (3.47) 

Let ( )*4 1r q= + . Since ( )0,1t  , then from (3.47) we have 

 ( )( )
*

*
*

4
1 .

Nq
q

r qu c at f u c at 
−

+

 
 +                

Now, if we let ( ) ( )( )
*

*
*

4
1 .

Nq
q

r qh t t f u t
−

+


= +  Then the function h  gives its minimum value at  

 ( )( )
( )

( )( )

* *

* *

1

4 1
0

q q

r q Nqt c a f u

+
−

− + +


= , 

and we have 

 ( )( )
( )

( )( ) ( )( )
( )

( )( )

* * * *
*

*

** * * *

1 1
4

14 1 4 1 .

q q r q q Nq
q

qr q Nq r q Nqu c a f u c a f u 

− + − +  
+ −  +− + + − + +  

  
 +           (3.48) 

But it is easy to show that  

 
( )

( )( )
( )

( )( )

* * * *
*

*

* ** * * *

1 1 1
4 .

14 1 4 1

q q r q q Nq
q

q pr q Nq r q Nq

− + − +  
+ = − =  +− + + − + +  

 

Hence from (3.48), we get 

  ( )( ) *

1

.pu c a f u
 
                 (3.49) 
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On the other hand, from remark 3.1, we have ( ) ( )
*pf x o x= for ,x →  hence the inequality (3.49) 

becomes 

 ( )( )1 ,u c a o u
 
 +  

which proves that u


 is bounded. Therefore, by (3.43) we have v


 is bounded.  

This completes the proof of this step.    

Theorem 3.3: If the nonlinearities andf g  satisfies the following conditions:  

 ( ) ( ) 0NF t tf t−  and ( ) ( ) 0, for 0,NG t tg t t−     

where and   are positive real numbers satisfying 4N + = − , then the problem given by (1.1) has no 

any nontrivial solution ( ) ( ) ( )4 4,u v C B C B  . 

Proof. If we put 4N + = −  in the identity (2.18), then by remark 2.1 and the boundary conditions of (1.1), 

we obtain that 

 ( )
2 2

2 2
, .

u v
u v

v v

 
  =

 
 

Now, if ( ) ( ) ( )4 4,u v C B C B   is a nontrivial solution of (1.1) and since B is star-shaped domain about 0, 

then we have , 0 onu v B  . In this case if we apply the given conditions ( ) ( ) 0NF t tf t−  and 

( ) ( ) 0, for 0,NG t tg t t−    then the identity (2.18) raised a contradiction. Hence the problem given by (1.1) 

may not have any nontrivial solution ( ) ( ) ( )4 4,u v C B C B  .  

This completes the proof. 

Now, we discuss two illustrative examples to verify our main results. 

Example 3.1: Let B denotes the unit ball in n . Consider the weight functions anda b are defined as  

 ( ) ( )
2 2

and , for all ,a x x b x x x B= =   

and the nonlinear functions andf g are defined as  

 ( ) ( )  )3 2and , for all 0, .f x x g x x x= =    

Then there exists a positive parameter   such the following nonlinear weighted bi-harmonic system of elliptic 

PDEs 

 

22 2

22 3

, 0 in ,

, 0 in ,

0 , 0 on ,

u x v v B

v x u u B

u v
u v B





 


 = 

 = 


  = = = = 
  

                             (3.50) 

has a positive solution. 

Proof. From the definition of andf g , it is clear that the hypothesis ( )1H  holds. If we fix the dimension of 

the space 5N = , then the corresponding problem for radially symmetric solution is as follows: 
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( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2(4) 2

2 3

2(4) 3

2 3

2 5 1 5 1 5 3 5 1 5 3
, for 0,1 ,

2 5 1 5 1 5 3 5 1 5 3
, for 0,1 ,

0 0 0 , 0 0 0 , 1 0 1 , 1 0 1 .

u u u u x v r
r r r

v v v v x u r
r r r

u v u v u v u v





 − − − − −
  + + − = 


 − − − − −

  + + − = 

      = = = = = = = =



              (3.51) 

Then any solution ( ) ( )( ) ( ) ( )4 4, 0,1 0,1u r v r C C   of (3.51) is a radial symmetric solution of (3.50).  

Now, it easy to verify that for a suitable choice of values of 1 2, , and    , the hypothesis ( )2H and ( )3H

are holds. Since, all the hypothesis of theorem 3.1 are satisfied, then an application of theorem 3.1 gives a 

positive solution of the problem given by (3.50).  

Example 3.2: Let B denotes the unit ball in ℝ𝑛. Consider the weight functions anda b  same as to example 

3.1 and the nonlinear functions andf g are defined as  

 ( ) ( )  )3 2 2and , for all 0, .f x x x x g x x x x= + + = +    

Then there exists a positive parameter   such the following nonlinear weighted bi-harmonic system of elliptic 

PDEs 

 

22 2

22 3 2

, 0 in ,

, 0 in ,

0 , 0 on ,

u x v v v B

v x u u u u B

u v
u v B





 


 = + 

 = + + 


  = = = = 
  

                            (3.52) 

has a positive solution. 

Proof. From the definition of andf g , it is clear that the hypothesis ( )1H  holds. If we fix the dimension of 

the space 5N = , then the corresponding problem for radially symmetric solution is as follows: 

( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2(4) 2

2 3

2(4) 3 2

2 3

2 5 1 5 1 5 3 5 1 5 3
, for 0,1 ,

2 5 1 5 1 5 3 5 1 5 3
, for 0,1 ,

0 0 0 , 0 0 0 , 1 0 1 , 1 0 1 .

u u u u x v v r
r r r

v v v v x u u u r
r r r

u v u v u v u v





 − − − − −
  + + − = + 


 − − − − −

  + + − = + + 

      = = = = = = = =



           (3.53) 

Then any solution ( ) ( )( ) ( ) ( )4 4, 0,1 0,1u r v r C C   of (3.53) is a radial symmetric solution of (3.52).  

Now, it easy to verify that for a suitable choice of values of 1 2, , and    , the hypothesis ( )2H and ( )3H

are holds. Since, all the hypothesis of theorem 3.1 are satisfied, then an application of theorem 3.1 gives a 

positive solution of the problem given by (3.52).  

 

4. Conclusion 

In this study, we have proven the existence and non-existence criteria for the solution of nonlinear weighted 

bi-harmonic system of elliptic PDEs given by (1.1) applying a fixed-point theorem due to Figueiredo et al. [15] 
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and Peletier and van der Vorst [25]. A priori solution estimates of the considered problem have been established 

which is proved in theorem 3.2.  Using theorem 3.1, one can easily be checked the existence of positive solution 

of nonlinear weighted bi-harmonic system of elliptic PDEs given by (1.1) and theorem 3.3 ensure the case of 

non-existence of solutions of that same system. The established results provide an easy and straightforward 

technique to cheek the existence and non-existence of solution to nonlinear weighted bi-harmonic system of 

elliptic PDEs given by (1.1). Furthermore, the results of this research extend the corresponding results of Soltani 

and Yazidi [28] and Dwivedi [13]. 
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