
Available online at https://www.banglajol.info/index.php/GANIT/index

GANIT: Journal of Bangladesh Mathematical Society

GANIT J. Bangladesh Math. Soc. 40.1 (2020) 43–53

DOI: https://doi.org/10.3329/ganit.v40i1.48194

On the Convergence of Newton-like Method for Variational Inclusions

under Pseudo-Lipschitz Mapping

Mst. Zamilla Khatona, M. H. Rashid∗b, and M. I. Hossainc

a,b,cDepartment of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh
aDepartment of Mathematics, BCS General Education, DSHE, Dhaka, Bangladesh

ABSTRACT

In the present paper, we study a Newton-like method for solving the variational inclusion defined by the sums
of a Fréchet differentiable function, divided difference admissible function and a set-valued mapping with closed
graph. Under some suitable assumptions on the Fréchet derivative of the differentiable function and divided
difference admissible function, we establish the existence of any sequence generated by the Newton-like method
and prove that the sequence generated by this method converges linearly and superlinearly to a solution of
the variational inclusion. Specifically, when the Fréchet derivative of the differentiable function is continuous,
Lipschitz continuous, divided difference admissible function admits first order divided difference and the set-
valued mapping is pseudo-Lipschitz continuous, we show the linear and superlinear convergence of the method.
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1 Introduction

Let X and Y be real or complex Banach spaces. In this study, we are concerned with the problem of finding
a solution x∗ ∈ Ω satisfying the variational inclusion of the form

0 ∈ f(x) + g(x) + F (x), (1.1)

where f : Ω ⊆ X → Y is a single-valued function which is Fréchet differentiable in a neighborhood Ω of a
solution x∗ of (1.1), g : Ω ⊆ X → Y is differentiable at x∗ but may not differentiable in Ω and F : X ⇒ Y is a
set-valued mapping with closed graph.

Let us remark that the variational inclusion type (1.1), were introduced by Robinson [25,26], is an abstract
model for various problems and it has been explored as a general tool for describing, analyzing, and solving
different problems in a unified manner. These type of inclusion problems have been studied extensively; see for
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examples [6,8–10,12–15,18]. There have many applications of variational inclusion (1.1) in systems of inequal-
ities, variational inequalities, linear and nonlinear complementarity problems, systems of nonlinear equations,
equilibrium problems, etc.; see for example [8].

When F = 0, (1.1) is reduced to the classical problem of solving systems of nonlinear equations: 0 ∈
f(x) + g(x). Cătinas [2] proposed the following method for solving 0 ∈ f(x) + g(x) by using the combination
of Newton’s method with the secants method when f is differentiable and g is a continuous function admitting
first and second order divided differences:

0 ∈ f(xk) + g(xk) +
(
Df(xk) + [xk−1, xk; g]

)
(xk+1 − xk), k = 1, 2, . . . ,

where Df(x) denotes the Fréchet derivative of f at x and [x, y; g] is the first order divided difference of g on
the points x and y.

For solving (1.1), Jean-Alexis and Pietrus [11] presented the following method:

0 ∈ f(xk) + g(xk) +
(
Df(xk) + [2xk+1 − xk, xk; g]

)
(xk+1 − xk) + F (xk+1). (1.2)

They proved that this sequence generated by (1.2) converges superlinearly by considering that Df and the first
order divided difference of g are p-Hölder continuous around a solution x∗ and that (f + g + F )−1 is pseudo-
Lipschitz around (0, x∗) with F having closed graph. In recent time, Rashid et al. [24] have been presented
the improvement of the result corresponding one in Jean-Alexis and Piétrus [11] and show that if Df and the
first order divided difference of g are p-Hölder continuous at a solution x∗, then the method (1.2) converges
superlinearly. A vast number of iterative procedures have been introduced and studied for solving (1.1); see for
details in [19–23].

When g = 0, the inclusion (1.1) reduce to a variational inclusion of the form

0 ∈ f(x) + F (x). (1.3)

Various iterative methods have been studied for solving (1.3). Dontchev [3] established a quadratically conver-
gent Newton-type method under a pseudo-Lipschitz property for set-valued mapping when Df is Lipschitz on
a neighborhood of a solution x∗ of (1.3) and subsequently he [5] proved the stability of this method. When
Df is Hölder on a neighborhood of x∗, Pietrus [17] obtained superlinear convergence by following Dontchev’s
method and later he [16] proved the stability of this method in this mild differentiability context. In the case
g = 0, Geoffroy et al. [9] considered a second degree Taylor polynomial expansion of f under suitable first and
second order differentiability assumptions and showed that the existence of a sequence cubically converging to
the solution of (1.1). But we cannot apply the above methods, because the lack of regularity of g. To carry out
our objective, we propose a combination of Newton’s method with the secant’s one. When the single-valued
functions involved in (1.1) is differentiable, Newton-type method can be considered to solve this variational
inclusion, such an approach has been used in many contributions to this subject; see for example [1,3,4,7]. To
solve the problem (1.1), Geoffroy and Pietrus [11] associated in the following iterative method

0 ∈ f(xk) + g(xk) +
(
Df(xk) + [xk−1, xk; g]

)
(xk+1 − xk) + F (xk+1) (1.4)

and studied this method by using the assumptions that Df and the second-order divided difference of g are
Lipschitz continuous around a solution x∗. They proved that the sequence generated by (1.4) converges super-
linearly.

The aim of this study is to extend the result given in [11] by using the concept of the first-order divided
difference of g and Df is continuous and Lipschitz continuous and then we prove the existence of a sequence
generated by the method (1.4) and show the linear and superlinear convergence of the method for solving the
variational inclusion (1.1).

This work is organized as follows: In Section 2, we recall few preliminary results that will be used in the
next sections. In Section 3, we make some fundamental assumptions on Df and g and prove the existence of
a sequence {xk} satisfying (1.4). Moreover, we show that the sequence {xk} generated by the method (1.4)
converges linearly and superlinearly to the solution x∗ of (1.1). In Section 4, we will give conclusion of the
major results obtained in this study.

2 Notations and Preliminary Results

Let X and Y be real or complex Banach spaces. Suppose that f : X → Y is a Fréchet differentiable
function and F : X ⇒ Y is a set-valued mapping with closed graph. The Graph of F is defined by the set
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gphF := {(x, y) ∈ X × Y : y ∈ F (x)} and the inverse of F is defined by F−1(y) := {x ∈ X : y ∈ F (x)}. All the
norms are denoted by ‖ · ‖. The closed ball centered at x with radius r > 0 is denoted by Br(x) and L(X , Y)
stands for the set of all bounded linear operators from X to Y . Let A,B ⊆ X. The distance from a point x to
a set A is defined by dist(x,A) := inf{‖x − a‖ : a ∈ A} for each x ∈ X while the excess e from the set A to a
set B is defined by e(B,A) := sup{dist(x,A) : x ∈ B}.

The following definitions of continuity, Lipschitz continuity and Hölder continuity are taken from the book [2].

Definition 1. A map f : Ω ⊆ X → Y is said to be continuous at x̄ ∈ Ω if for every ε > 0, there exist a δ > 0
such that

‖f(x)− f(x̄)‖ < ε, for all x ∈ Ω, for which ‖x− x̄‖ < δ.

Definition 2. A map f : Ω ⊆ X → Y is said to be Lipschitz continuous if there exists constant 0 < c < 1 such
that

‖f(x)− f(y)‖ ≤ c‖x− y‖, for all x and y in the domain of f.

The following definitions of linear convergence and quadratic convergence are taken from the book [11].

Definition 3. Let {xn} be a sequence which converges to the number x̄. Then the sequence {xn} is said to be
converges linearly to x̄, if there exists a number 0 < c < 1 such that

‖xn+1 − x̄‖ ≤ c‖xn − x̄‖.

Definition 4. Let {xn} be a sequence which converges to the number x̄. Then the sequence {xn} is said to be
converges quadratically to x̄, if there exists a number 0 < c < 1 such that

‖xn+1 − x̄‖ ≤ c‖xn − x̄‖2.

The following definition is taken from Dontchev and Hager [7].

Definition 5. Let F : X ⇒ Y be a set-valued mapping. Then F is said to be pseudo-Lipschitz around
(x0, y0) ∈ gphF with constant M > 0 if there exist α > 0 and β > 0 such that the following inequality holds:

e(F (x1) ∩ Bβ(y0), F (x2)) ≤M‖x1 − x2‖ for any x1, x2 ∈ Bα(x0).

When F is single-valued, this corresponds to the usual concept of Lipschitz continuity. The definition of
Lipschitz continuity is equivalent to the definition of Aubin continuity, which is given below:

A set-valued map Γ : Y ⇒ X is Aubin continuous at (y0, x0) ∈ gphΓ with positive constants α, β and M if
for every y1, y2 ∈ Bβ(y0) and for every x1 ∈ Γ(y1) ∩ Bα(x0), there exists an x2 ∈ Γ(y2) such that

‖x1 − x2‖ ≤M‖y1 − y2‖.

The constant M is called the modulus of Aubin continuity.
The definition of the first order divided difference is collected from [24]:

Definition 6. An operator, belonging to the space L(X , Y) denoted by [x0, y0; g], is called the first order divided
difference of the operator g : X → Y on the points x0, y0 ∈ X if both of the following properties hold:

(a) [x0, y0; g](y0 − x0) = g(y0)− g(x0) for x0 6= y0;

(b) If g is Fréchet differentiable at x0 ∈ X then [x0, x0; g] = g′(x0).

The following Lemma is known as Banach fixed-point theorem, which has been proved by Dontchev and
Hagger in [7] . This fixed-point lemma is the vital mechanism to prove the existence of any sequence generated
by (1.4).

Lemma 1. Let Φ : X ⇒ X be a set-valued mapping and let η0 ∈ X, r > 0 and 0 < λ < 1 be such that

(a) dist(η0,Φ(η0)) < r(1− λ) and

(b) e(Φ(x1) ∩ Br(η0),Φ(x2)) ≤ λ‖x1 − x2‖ for any x1, x2 ∈ Br(η0).

Then Φ has a fixed point in Br(η0), that is, there exists x ∈ Br(η0) such that x ∈ Φ(x). If Φ is single-valued,
then x is the unique fixed point of Φ in Br(η0).



46 Zamilla Khaton et al. / GANIT J. Bangladesh Math. Soc. 40.1 (2020) 43–53

3 Convergence Analysis

This section is devoted to study the existence and the convergence of any sequence generated by the method
(1.4) for the variational inclusion (1.1). Let f : X → Y be a single valued continuous function, g : X → Y
admits first order divided difference and F : X ⇒ Y be a set-valued mapping. Let x∗ be a solution of (1.1).
Let x ∈ X and define a set valued mapping Qx∗ : X ⇒ Y by

Qx∗(·) := f(x∗) + g(·) +Df(x∗)(· − x∗) + F (·). (3.1)

Consider the following assumptions:

(A0) F has closed graph;

(A1) f is Fréchet differentiable in a neighborhood of x∗;

(A2) g is differentiable at x∗;

(A3) The set valued map Q−1x∗ is M -pseudo-Lipschitz around (0, x∗).

Define a single valued function Zk : X → Y , for k ∈ N and xk ∈ X, by

Zk(x)(=)f(x∗) + g(x) +Df(x∗)(x− x∗)− f(xk)− g(xk)− (Df(xk) + [xk−1, xk; g])(x− xk), (3.2)

Also, define a set valued mapping Φk : X ⇒ X by

Φk(x) = Q−1x∗ [Zk(x)]. (3.3)

3.1 Linear Convergence

This subsection is devoted to study linear convergence result of the Newton-like method (1.4). To do this
we will take the following assumptions:

(A4) Df is continuous in a neighbourhood of x∗ with constant ε > 0 i.e. for every ε > 0, there exists δ > 0
such that

‖Df(x)−Df(y)‖ < ε, whenever ‖x− y‖ ≤ δ;

(A5) g admits first order divided difference i.e. there exists κ > 0 such that, for all x, y, x′, y′ ∈ Ω,

‖[x, y; g]− [x′, y′; g]‖ ≤ κ(‖x− x′‖+ ‖y − y′‖) with x′ 6= x, y′ 6= y.

Let M, ε and κ be defined in (A3), (A4) and (A5) respectively satisfying the relation 14M(ε+ 4κ) < 3.

Set C :=
7M(ε+ 4κ)

3
. (3.4)

This together with above inequality implies that C <
1

2
.

Lemma 2. Let x∗ be a solution of (1.1). Suppose that assumptions (A0)-(A5) are hold.. Let C be defined by
(3.4 ). Then for every such C, there exists δ > 0 such that for every distinct starting points x0, x1 ∈ Bδ(x∗),
there exists a sequence {x2}, defined by

0 ∈ f(x1) + g(x1) + (Df(x1) + [x0, x1; g])(x2 − x1) + F (x2), (3.5)

and the map Φ1 has a fixed point x2 in Bδ(x
∗), which satisfies

‖x2 − x∗‖ ≤ C‖x1 − x∗‖. (3.6)
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Proof. The assumption (A3) implies that the mapping Q−1x∗ is M -pseudo-Lipschitz around (0, x∗). Hence there
exists rx∗ > 0 and r0 > 0 such that

e(Q∗x
−1(y1) ∩ Brx∗ (x∗), Q−1x∗ (y2)) ≤M‖y1 − y2‖ for any y1, y2 ∈ Br0(0). (3.7)

Let δ > 0 be such that

δ ≤ max
{
rx∗ ,

r0
3ε+ 8κ

,
4− 7Mε

28Mκ
, 1
}
. (3.8)

Fix x0, x1 ∈ Bδ(x∗) such that x0 6= x1 6= x∗, and define

rx2
= C‖x1 − x∗‖.

Since C <
1

2
from (3.4) and for x0, x1 ∈ Bδ(x∗), we have

rx2 = C ‖x1 − x∗‖ ≤ c · δ ≤
δ

2
.

This shows that rx2 ≤ δ ≤ rx∗ .

We will apply Lemma 1 to the map Φ1 with η0 := x∗ and r := rx2 and λ :=
4

7
to conclude that there exists

a fixed point x2 ∈ Brx2
(x∗) such that x2 ∈ Φ1(x2), that is, Z1(x2) ∈ Qx∗

−1(x2), which implies that

0 ∈ f(x1) + g(x1) + (Df(x1) + [x0, x1; g])(x2 − x1) + F (x2), (3.9)

i.e. (3.5) holds. Furthermore, x2 ∈ Brx2
(x∗) ⊆ Bδ(x∗) and so

‖x2 − x∗‖ ≤ rx2
= C ‖x1 − x∗‖,

i.e. (3.6) holds. Thus, to complete the proof, it is sufficient to show that Lemma 1 is applicable for the map

Φ1 with η0 := x∗ and r := rx2
and λ :=

4

7
. To do this, it remains to prove that both assertions (a) and (b) of

Lemma 1 hold. It is obvious that x∗ ∈ Q−1x∗ (0) ∩ Brx2
(x∗). According to the definition of the excess e, we have

dist
(
x∗,Φ1(x∗)

)
≤ e

(
Qx∗

−1(0) ∩ Brx2
(x∗),Φ1(x∗)

)
. (3.10)

Moreover, for all x0, x1 ∈ Brx2
(x∗) such that x0,x1 and x∗ are distinct, we have from (3.2) that

‖Z1(x∗)‖ = ‖f(x∗) + g(x∗)− f(x1)− g(x1)−
(
Df(x1) + [x0, x1; g]

)
(x∗ − x1)

≤ ‖f(x∗)− f(x1)−Df(x1)(x∗ − x1)‖+ ‖g(x∗)− g(x1)− [x0, x1; g](x∗ − x1)‖
≤ ‖f(x∗)− f(x1)−Df(x1)(x∗ − x1)‖+ ‖[x1, x∗; g](x∗ − x1)− [x0, x1; g](x∗ − x1)‖

[By using definition (6)].

≤ ‖f(x∗)− f(x1)−Df(x1)(x∗ − x1)‖+ ‖
(
[x1, x

∗; g]− [x0, x1; g]
)
(x∗ − x1)‖

Since f(x∗)− f(x1)−Df(x1)(x∗ − x1) =
∫ 1

0
[Df(x1 + t(x∗ − x1))−Df(x1)](x∗ − x1)dt, we have that

‖Z1(x∗)‖ ≤
∫ 1

0

‖[Df(x1 + t(x∗ − x1))−Df(x1)](x∗ − x1)‖dt+ ‖[x1, x∗; g]− [x0, x1; g](x∗ − x1)‖

≤ ε

∫ 1

0

‖x∗ − x1‖dt+ κ
(
‖x1 − x0‖+ ‖x∗ − x0‖

)
‖x∗ − x1‖

[By using assumptions (A4) & (A5)]

= ε‖x∗ − x1‖
∫ 1

0

dt+ κ
(
‖x1 − x0‖+ ‖x∗ − x0‖

)
‖x∗ − x1‖ (3.11)

≤ ε‖x∗ − x1‖+ κ
(
‖x1 − x∗ + x∗ − x0‖+ ‖x∗ − x1‖

)
‖x∗ − x1‖

= εδ + κ(2δ + δ)δ = εδ + 3κδ2

≤ εδ + 3κδ = (ε+ 3κ)δ < r0, by (3.8).



48 Zamilla Khaton et al. / GANIT J. Bangladesh Math. Soc. 40.1 (2020) 43–53

This together with (3.7) and (3.10) (with y1 = 0 and y2 = Z1(x∗)) implies that

dist
(
x∗,Φ1(x∗)

)
≤ M‖y1 − y2‖ ≤M‖Z1(x∗)‖

≤ M
(
ε‖x∗ − x1‖+ κ

(
‖x1 − x0‖+ ‖x∗ − x0‖

)
‖x∗ − x1‖

)
, by using (3.11)

≤ M
(
ε+ 2κ‖x1 − x0‖

)
‖x1 − x∗‖

≤ M
(
ε+ 4κδ

)
‖x1 − x∗‖

≤ M
(
ε+ 4κ

)
‖x1 − x∗‖, Since δ ≤ 1 (by using 3.8)

≤ (1− 4

7
)rx2

= r(1− λ).

Hence assertion (a) of Lemma 1 is satisfied.
Now, we show that assertion (b) of Lemma 1 is also satisfied. Let x ∈ Bδ(x∗). Then

‖Z1(x)‖ = ‖f(x∗) + g(x)−Df(x∗)(x∗ − x)− f(x1)− g(x1)−
(
Df(x1) + [x0, x1; g]

)
(x− x1)‖

= ‖f(x∗)− f(x) + f(x)− f(x1)−Df(x∗)(x∗ − x) + g(x)− g(x1)

− (Df(x1)(x− x1)− [x0, x1; g])(x− x1)‖
≤ ‖f(x∗)− f(x)−Df(x∗)(x∗ − x)‖+ ‖f(x)− f(x1)−Df(x1)(x− x1)‖

+ ‖g(x)− g(x1)− [x0, x1; g](x− x1)‖
≤ ε‖x− x∗‖+ ε‖x− x1‖+ ‖[x1, x; g](x− x1)− [x0, x1; g](x− x1)‖
+ ε‖x− x∗‖+ ε‖x− x1‖+ ‖[x1, x; g]− [x0, x1; g]‖‖x− x1‖
≤ ε‖x− x∗‖+ ε‖x− x1‖+ κ

(
‖x1 − x0‖+ ‖x− x1‖

)
‖x− x1‖

≤ εδ + 2εδ + κ(2δ + 2δ)2δ = 3εδ + 8κδ2

≤ 3εδ + 8κδ, since δ ≤ 1

= (3ε+ 8κ)δ < r0 by (3.8).

Hence we deduce that for all x ∈ Bδ(x∗), Z1(x) ∈ Br0(0). Let x′, x′′ ∈ Bδ(x∗) . This together with (3.7) (with
y1 = Z1(x′), and y2 = Z1(x′′)) implies that

e
(

Φ1(x′) ∩ Brx2
(x∗), Φ1(x′′)

)
≤ e
(

Φ1(x′) ∩ Bδ(x∗), Φx(x′′)
)

= e
(
Qx∗

−1
[Z1(x′)] ∩ Bδ(x∗), Qx∗

−1[Z1(x′′)]
)

≤ M‖Z1(x′)− Z1(x′′)‖
≤ M‖

(
Df(x∗)−Df(x1)

)
(x′ − x′′) +M‖g(x′)− g(x′′)− [x0, x1; g](x′ − x′′)‖

≤ Mε‖x′ − x′′‖+M‖[x′′ − x′; g](x′ − x′′)− [x0, x1; g](x′ − x′′)‖
≤ Mε‖x′ − x′′‖+M‖

(
[x′′ − x′; g]− [x0, x1; g]

)
(x′ − x′′)‖

≤ Mε‖x′ − x′′‖+M‖κ
(
‖x′′ − x0‖+ ‖x′ − x1‖

)
‖‖x′ − x′′‖

≤ Mε‖x′ − x′′‖+Mκ(2δ + 2δ)‖x′ − x′′‖
≤ M(ε+ 4κδ)‖x′ − x′′‖. (3.12)

Due to the relation 28Mκδ ≤ 4− 7Mε in (3.8), we obtain from (3.12) that

e
(

Φ1(x′) ∩ Brx2
(x∗), Φ1(x′′)

)
≤ 4

7
‖x′ − x′′‖ = λ‖x′ − x′′‖.

Thus assertion (b) of Lemma 1 is satisfied. This completes the proof of the Lemma.

Theorem 1. Let x∗ be a solution of (1.1). Suppose that assumptions (A0)-(A5) are satisfied. Let C be defined
in (3.4). Then for every C, there exists δ > 0 such that for every starting point x0, x1, ∈ Bδ(x∗), there exists
a sequence {xk} generated by (1.4) with initial point x0, x1 which converges to x∗ and satisfies the following
inequality

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖ for each k = 1, 2, ... (3.13)
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Proof. By Lemma 2, for every C, there exists δ > 0 such that for each x0, x1 ∈ Bδ(x∗), there is x2 ∈ Bδ(x∗)
such that (3.5) and (3.6) hold. Let x0, x1 ∈ Bδ(x∗). It follows from Lemma 2 that there exists x2 ∈ Bδ(x∗)
such that

0 ∈ f(x1) + g(x1) + (Df(x1) + [x0, x1; g])(x2 − x1) + F (x2)

and
‖x2 − x∗‖ ≤ rx2 ≤ C‖x1 − x∗‖,

and so (3.13) holds for k = 1. We will proceed by induction. Now assume that x0, x1, . . . , xk are generated by
(1.4) satisfying (3.13). Then by Lemma 2, we can choose xk+1 ∈ Bδ(x∗) such that

0 ∈ f(xk) + g(xk) + (Df(xk) + [xk−1, xk; g])(xk+1 − xk) + F (xk+1)

and
‖xk+1 − x∗‖ ≤ rx2

≤ C‖xk − x∗‖,

and so (3.13) holds for all k ≥ 1. This completes the proof of the Theorem.

3.2 Superlinear Convergence

This subsection is devoted to study the superlinear convergence result of the Newton-like method (1.4). To
do this, we will take the following assumptions:

(A6) Df is Lipschitz continuous in a neighbourhood Ω of x∗ with constant L i.e. for every x, y ∈ Ω, we have
that

‖Df(x)−Df(y)‖ < L‖x− y‖;

(A7) g admits first order divided difference i.e. there exists κ > 0 such that, for all x, y, x′, y′ ∈ Ω,

‖[x, y; g]− [x′, y′; g]‖leqκ(‖x− x′‖2 + ‖y − y′‖2) with x′ 6= x, y′ 6= y.

Let M, L and κ be defined in (A3), (A6) and (A7) such that 3M(L+ 8κ) < 1. Let

Set γ :=
3M(L+ 8κ)

2
. (3.14)

Then we obtain that γ <
1

2
.

Lemma 3. Let x∗ be a solution of (1.1). Suppose that assumptions (A0)-(A3), (A6) and (A7) are hold.. Let
γ be defined by (3.14 ). Then for every such γ, there exists δ > 0 such that for every distinct starting point
x0, x1 ∈ Bδ(x∗), there exists a sequence {x2}, defined by

0 ∈ f(x1) + g(x1) + (Df(x1) + [x0, x1; g])(x2 − x1) + F (x2) (3.15)

and the map Φ1 has a fixed point x2 in Bδ(x
∗), which satisfies

‖x2 − x∗‖ ≤ γ‖x1 − x∗‖max{‖x1 − x∗‖, ‖x1 − x0‖}. (3.16)

Proof. The assumption (A3) implies that the mapping Q−1x∗ is M -pseudo-Lipschitz around (0, x∗). Hence there
exists rx∗ > 0 and r0 > 0 such that

e(Q∗x
−1(y1) ∩ Brx∗ (x∗), Q−1x∗ (y2)) ≤M‖y1 − y2‖ for any y1, y2 ∈ Br0(0). (3.17)

Let δ > 0 be such that

δ ≤ max
{
rx∗ ,

√
2r0

5L+ 32κ
,

2

3M(5L+ 8κ)
, 1
}
. (3.18)

Fix x0, x1 ∈ Bδ(x∗) such that x0 6= x1 6= x∗, and define

rx2 = γ‖x1 − x∗‖max{‖x1 − x∗‖, ‖x1 − x0‖}.
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This implies that rx2
≤ γδ.δ ≤ γδ ≤ δ and hence rx2

≤ δ ≤ rx∗ . We will apply Lemma 1 to the map Φ1

with η0 := x∗ and r := rx2
and λ :=

2

3
to conclude that there exists a fixed point x2 ∈ Brx2

(x∗) such that

x2 ∈ Φ1(x2), that is, Z1(x2) ∈ Qx∗
−1(x2), which implies that

0 ∈ f(x1) + g(x1) + (Df(x1) + [x0, x1; g])(x2 − x1) + F (x2),

Furthermore, x2 ∈ Brx2
(x∗) ⊆ Bδ(x∗) and so

‖x2 − x∗‖ ≤ rx2 ≤ γ‖x1 − x∗‖max{‖x1 − x∗‖, ‖x1 − x0‖}.

Thus, to complete the proof, it is sufficient to show that Lemma 1 is applicable for the map Φ1 with η0 := x∗

and r := rx2
and λ :=

2

3
. To do this, it remains to prove that both assertions (a) and (b) of Lemma 1 hold. It

is obvious that x∗ ∈ Qx∗
−1(0) ∩ Brx2

(x∗). According to the definition of the excess e, we have

dist
(
x∗,Φ1(x∗)

)
≤ e

(
Qx∗

−1(0) ∩ Brx2
(x∗),Φ1(x∗)

)
. (3.19)

Moreover, for all x0, x1 ∈ Brx2
(x∗) such that x0,x1 and x∗ are distinct, we have from (3.2) that

‖Z1(x∗)‖ = ‖f(x∗) + g(x∗)− f(x1)− g(x1)−
(
Df(x1) + [x0, x1; g]

)
(x∗ − x1)

≤ ‖f(x∗)− f(x1)−Df(x1)(x∗ − x1)‖+ ‖g(x∗)− g(x1)− [x0, x1; g](x∗ − x1)‖
[By using definition (6)].

= ‖f(x∗)− f(x1)−Df(x1)(x∗ − x1)‖+ ‖[x1, x∗; g](x∗ − x1)− [x0, x1; g](x∗ − x1)‖
= ‖f(x∗)− f(x1)−Df(x1)(x∗ − x1)‖+ ‖

(
[x1, x

∗; g]− [x0, x1; g]
)
(x∗ − x1)‖

Since f(x∗)− f(x1)−Df(x1)(x∗ − x1) =
∫ 1

0
[Df(x1 + t(x∗ − x1))−Df(x1)](x∗ − x1)dt,

‖Z1(x∗)‖ ≤
∫ 1

0

[Df(x1 + t(x∗ − x1))−Df(x1)](x∗ − x1)dt+ ‖[x1, x∗; g]− [x0, x1; g]‖‖x∗ − x1‖

≤
∫ 1

0

L‖
(
x1 + t(x∗ − x1)− x1

)
‖‖x∗ − x1‖dt+ κ

(
‖x1 − x0‖2 + ‖x∗ − x0‖2

)
‖x∗ − x1‖

[By using assumption (A6) and (A7)]

=

∫ 1

0

L‖t(x∗ − x1)‖dt‖x∗ − x1‖+ κ
(
‖x1 − x0‖2 + ‖x∗ − x0‖2

)
‖x∗ − x1‖

≤ L

2
‖x∗ − x1‖2 + 2κ‖x1 − x0‖2‖x∗ − x1‖

≤ L

2
‖x∗ − x1‖2 + 2κ.2δ‖x1 − x0‖‖x∗ − x1‖

≤ L

2
‖x∗ − x1‖2 + 4κ‖x1 − x0‖‖x∗ − x1‖, since δ ≤ 1 (3.20)

≤ L

2
δ2 + 8κ.δ.δ = (

L

2
+ 8κ)δ2

< r0 by (3.18).

This together with (3.17) and (3.19) (with y1 = 0 and y2 = Z1(x∗)) implies that

dist
(
x∗,Φ1(x∗)

)
≤ M‖y1 − y2‖ ≤M‖Z1(x∗)‖

≤ M
(L

2
‖x∗ − x1‖2 + 4κ‖x1 − x0‖ ‖x∗ − x1‖

)
by using (3.20)

≤ M
(L

2
+ 4κ

)
‖x1 − x∗‖max{‖x1 − x∗‖, ‖x1 − x0‖}

=
(

1− 2

3

)3M(L+ 8κ)

2
‖x1 − x∗‖max{‖x1 − x∗‖, ‖x1 − x0‖}.

=
(

1− 2

3

)
rx2

= r(1− λ).
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Hence assertion (a) of Lemma 1 is satisfied.
Now, we show that assertion (b) of Lemma 1 is also satisfied. Let x ∈ Brx2

(x∗) ⊆ Bδ(x∗). Then

‖Z1(x)‖ = ‖f(x∗) + g(x)−Df(x∗)(x∗ − x)− f(x1)− g(x1)−
(
Df(x1) + [x0, x1; g]

)
(x∗ − x1)‖

= ‖f(x∗)− f(x) + f(x)− f(x1)−Df(x∗)(x∗ − x) + g(x)− g(x1)

−
(
Df(x1)(x− x1)− [x0, x1; g]

)
(x− x1)‖

≤ ‖f(x∗)− f(x)−Df(x∗)(x∗ − x)‖+ ‖f(x)− f(x1)−Df(x1)(x− x1)‖
+‖g(x)− g(x1)− [x0, x1; g](x− x1)‖

≤ L

2
‖x− x∗‖2 +

L

2
‖x− x1‖2 + ‖[x1, x; g](x− x1)− [x0, x1; g](x− x1)‖

=
L

2
‖x− x∗‖2 +

L

2
‖x− x1‖2 + ‖[x1, x; g]− [x0, x1; g]‖‖x− x1‖

≤ L

2
‖x− x∗‖2 +

L

2
‖x− x1‖2 + κ

(
‖x1 − x0‖2 + ‖x− x1‖2‖x− x1‖

≤ L

2
δ2 +

L

2
(2δ)

2
+ κ
(
(2δ)

2
+ (2δ)

2) · 2δ
=

L

2
δ2 + 2Lδ2 + 16κδ3 ≤ L

2
δ2 + 2Lδ2 + 16κδ2, since δ ≤ 1

= (
5L

2
+ 16κ)δ2 < r0, by (3.18).

Hence we deduce that for all x ∈ Bδ(x∗), Z1(x) ∈ Br0(0). Let x′, x′′ ∈ Brx2
(x∗) . This together with (3.17)

(withy1 = Z1(x′), and y2 = Z1(x′′)) implies that

e
(

Φ1(x′) ∩ Brx2
(x∗), Φ1(x′′)

)
≤ e
(

Φ1(x′) ∩ Bδ(x∗), Φx(x′′
)

= e
(
Q−1x∗ [Z1(x′)] ∩ Bδ(x∗), Q−1x∗ [Z1(x′′)]

)
≤ M‖Z1(x′)− Z1(x′′)‖
≤ M‖

(
Df(x∗)−Df(x1)

)
(x′ − x′′)‖+M‖g(x′)− g(x′′)− [x0, x1; g](x′ − x′′)‖

≤ ML‖x∗ − x1‖‖x′ − x′′‖+M‖[x′′, x′; g](x′ − x′′)− [x0, x1; g](x′ − x′′)‖
≤ ML‖x∗ − x1‖‖x′ − x′′‖+M‖

(
[x′′, x′; g]− [x0, x1; g]

)
(x′ − x′′)‖

≤ ML‖x∗ − x1‖‖x′ − x′′‖+Mκ
(
‖x′′ − x0‖2 + ‖x′ − x1‖2

)
‖x′ − x′′‖

≤ MLδ‖x′ − x′′‖+Mκ
(
(2δ)

2
+ (2δ)

2)‖x′ − x′′‖
≤ MLδ‖x′ − x′′‖+Mκ8δ2‖x′ − x′′‖
≤ M(L+ 8κ)δ‖x′ − x′′‖ (3.21)

Now using the relation 3M(L+ 8κ)δ ≤ 2 from(3.18) in (3.21), we have

e
(

Φ1(x′) ∩ Brx2
(x∗), Φ1(x′′)

)
≤ 2

3
‖(x′ − x′′)‖ = λ‖(x′ − x′′)‖.

Thus assertion (b) of Lemma 1 is satisfied. This completes the proof of the Lemma.

Theorem 2. Let x∗ be a solution of (1.1). Suppose that assumptions (A0)-(A3),(A6) and (A7) are satisfied. Let
γ be defined in (3.14). Then for every γ, there exists δ > 0 such that for every starting point x0, x1, ∈ Bδ(x∗),
there exists a sequence {xk} generated by (1.4) with initial point x0, x1 which converges to x∗ and satisfies that

‖xk+1 − x∗‖ ≤ γ‖xk − x∗‖max{‖xk − x∗‖, ‖xk − xk−1‖} for each k = 1, 2, . . . . (3.22)

Proof. By Lemma 3, for every γ, there exists δ > 0 such that for each x0, x1 ∈ Bδ(x∗), there is x2 ∈ Bδ(x∗),
such that (3.15) and 3.16) hold. Let x0, x1 ∈ Bδ(x∗). It follows from Lemma 3 that there exists x2 ∈ Bδ(x∗)
such that

0 ∈ f(x1) + g(x1) + (Df(x1) + [x0, x1; g])(x2 − x1) + F (x2)

and
‖x2 − x∗‖ ≤ rx2 ≤ γ ‖x1 − x∗‖max{‖x1 − x∗‖, ‖x1 − x0‖}
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and so (3.22) holds for k = 1. We will proceed by induction. Now assume that x0, x1, . . . , xk are generated by
(1.4) satisfying (3.22). Then by Lemma 3, we can choose xk+1 ∈ Bδ(x∗) such that

0 ∈ f(xk) + g(xk) + (Df(xk) + [xk−1, xk; g])(xk+1 − xk) + F (xk+1)

and
‖xk+1 − x∗‖ ≤ rxk+1

≤ γ‖xk − x∗‖max{‖xk − x∗‖, ‖xk − xk−1‖}

and so (3.22) holds for all k ≥ 1. This completes the proof of the Theorem.

4 Concluding Remark

We have established local convergence results of the Newton-like method for approximating the solution
of the variational inclusion (1.1) under the assumptions that Q−1x∗ is pseudo-Lipschitz and Df is continuous,
Lipschitz continuous and g is admissible for first order divided difference. More clearly, we have shown that
the Newton-like method defined by (1.4) converges linearly and superlinearly to the solution of (1.1) if Df is
continuous and Lipschitz continuous, respectively, together with a divided difference admissible function g. This
study improves and extends the results corresponding to [11].
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[2] Cătinas, E., (1994). On some iterative methods for solving nonlinear equations, Rev. Anal. Numér. Theor.
Approx. 23, p. 17.

[3] Dontchev, A.L., (1996). Local convergence of the Newton method for Generalized Equations, C. R. Acad.
Sci. Paris, Ser. I. 322, p. 327.

[4] Dontchev, A. L., (1996). Local analysis of a Newton-type method based on partial linearization, Lectures
in Applied Mathematics 32, p. 295.

[5] Dontchev, A. L., (1996). Uniform convergence of the Newton method for Aubin continuous maps, Serdica
Math. J. 22, p. 385.

[6] Dontchev, A. L. and Hager, W. W., (1994). An inverse mapping theorem for set-valued maps, Proc. Amer.
Math. Soc. 121, p. 481.

[7] Dontchev, A.L. and Rockafellar R.T., (2004). Regularity and conditioning of solution mappings in varia-
tional analysis, Set-valued Anal. 12(1), p. 79.

[8] Ferris, M.C. and Pang, J.S., (1997). Engineering and economic applications of complementarily problems,
SIAM Rev. 39, p. 669.

[9] Geoffroy, M. H., Hilout, S. and Pietrus, A., (2003). Acceleration of convergence in Dontchev’s iterative
methods for solving generalized equations, Serdica Math. J. 29, p. 45.

[10] Geoffroy, M.H., and Pietrus, A., (2005). A general iterative procedure for solving nonsmooth generalized
equations, Comput. Optim. Appl. 31(1), p. 57.

[11] Geoffroy, M.H. and Pietrus, A., (2004). Local convergence of some iterative methods for generalized
equations, J. Math. Anal. Appl. 290, p. 497.



Zamilla Khaton et al. / GANIT J. Bangladesh Math. Soc. 40.1 (2020) 43–53 53

[12] He. J.S., Wang, J.H. and Li, C., (2007). Newton’s method for undetermined systems of equations under
the modified γ-condition, Numer. Funct. Anal. Optim. 28, p. 663.

[13] Jean-Alexis, C. and Pietrus, A., (2008). On the convergence of some methods for variational inclusions,
Rev. R. Acad. Cien. serie A. Mat. 102(2), p. 355.

[14] Lawrence, C. E.: Partial Differential Equation (second edition), American Mathematical Society, 1988.

[15] Marinov, R.T., (2009). Convergence of the method of chords for solving generalized Equations, Rendiconti
del Circolo Matematico di Palermo 58, p. 11.

[16] Pietrus, A., (2000). Does Newton’s method for set-valued maps converge uniformly in mild di?erentiability
context? Rev. Columbiana Mat. 34, p. 49.

[17] Pietrus, A., (2000). Generalized equations under mild differentiability conditions, Rev. S. A. Acad. Cienc.
Exact. Fis. Nat. 94(1), p. 15.

[18] Pietrus, A. and Hilout, S., (2006). A semi-local convergence of a secant-type method for solving generalized
equations, Positivity 10(4), p. 693.

[19] Rashid, M.H., (2014). On the convergence of extended Newton-type method for solving variational inclu-
sions, Cogent Mathematics 1(1), p. 1.

[20] Rashid, M.H., (2014). Convergence analysis of gauss-type proximal point method for variational inequal-
ities, Open Science Journal of Mathematics and Application 2(1), p. 5.

[21] Rashid, M. H., (2017). Extended Newton-type Method and its Convergence Analysis for Nonsmooth
Generalized Equations, Journal of Fixed Point Theory and Applications, 19, p. 1295.

[22] Rashid, M. H., (2018). Convergence Analysis of a Variant of Newton-type Method for Generalized Equa-
tions, International Journal of Computer Mathematics, 95(3), p. 584.

[23] Rashid, M. H., Yu, S. H., Li, C. and Wu, S. Y., (2013). Convergence Analysis of the Gauss-Newton-type
Method for Lipschitz-like Mappings, J. Optim. Theory Appl. 158(1), p. 216.

[24] Rashid, M.H., Wang, J.H. and Li, C., (2012). Convergence Analysis of a method for variational inclusions,
Applicable Analysis 91(10), p. 1943.

[25] Robinson, S.M., (1979). Generalized equations and their solutions, Part I, basic theory, Math. Program.
Stud. 10, p. 128.

[26] Robinson, S.M., (1982). Generalized equations and their solutions, part II: application to nonlinear pro-
gramming, Math. Program. Stud. 19, p. 200.


	1 Introduction
	2 Notations and Preliminary Results
	3 Convergence Analysis
	3.1 Linear Convergence
	3.2 Superlinear Convergence

	4 Concluding Remark

