
 Available online at https://www.banglajol.info/index.php/GANIT/index 
 

GANIT: Journal of Bangladesh Mathematical Society 
 

GANIT  J.  Bangladesh Math. Soc.  40.1 (2020) 13–27 

DOI: https://doi.org/10.3329/ganit.v40i1.48192  
 
 

  
 

 

GANIT 

A Comparative Study between Implicit and Crank-Nicolson Finite 

Difference Method for Option Pricing   

Tanmoy Kumar Debnath1,*, A B M Shahadat Hossain2 

       1Department of Business Administration, Shanto-Mariam University of Creative Technology, Dhaka-1230,                    

                                                                                  Bangladesh     
                     2Department of Applied Mathematics, University of Dhaka, Dhaka-1000, Bangladesh  

 

 

ABSTRACT 

In this paper, we have applied the finite difference methods (FDMs) for the valuation of European put option 

(EPO). We have mainly focused the application of Implicit finite difference method (IFDM) and Crank-

Nicolson finite difference method (CNFDM) for option pricing. Both these techniques are used to discretized 

Black-Scholes (BS) partial differential equation (PDE). We have also compared the convergence of the IFDM 

and CNFDM to the analytic BS price of the option. This turns out a conclusion that both these techniques are 

fairly fruitful and excellent for option pricing.           
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1. Introduction 

Option pricing plays a very significant role in a stock market. By the help of option contract the seller and buyer 

can hedge their losses in stock market. So it enticed the attention of innumerable empiricists. In short, Option 
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is a contract which gives the buyer (the owner or holder of the option) the right, but not an obligation, to buy or 

sell an underlying asset at a specified strike price on or before a specified date, depending on the form of the 

option. There are two types of option namely, call option and put option. Every option has two types of 

positions, namely, a long position and a short position. Options can be either American or European. FDMs are 

effectively applicable to all kinds of call and put option. Here we focused only EPO. Put option gives the holder 

the right to sell the underlying asset by a certain date for a certain price [1]. Based on their exercised conditions 

European options can be exercised only on the expiration date itself, while American options can be exercised 

at any time up to the expiration date [1]. 

BS model is a well-known tool for pricing different kinds of options which is developed by Fischer Black, 

Myron Scholes and Robert Merton in the early 1970s. This model also known as Black-Scholes-Merton model 

[1]. However, BS model always leads to a direct numerical calculation of the price of option. The BS equation 

is a PDE which relies on two independent variables. These two variables are the time and the stock price which 

follows a random path. FDM is computationally efficient and useful to solve PDEs and provide a general 

numerical solution to the valuation problems, as well as an optimal early exercise strategy. FDMs calculate the 

value of a derivative by solving the differential equation that the derivative satisfies. The differential equation 

is converted into a set of difference equations and that difference equations are solved iteratively. 

In this paper, we will try to show the comparative robustness between the IFDM and CNFDM for pricing 

European options.   

2. Literature Review 

 

Numerical methods have been applied to the different field of mathematics and it allure the attention of many 

researchers of several kinds of field. Numerical solutions play a very important role in the field of computational 

finance. It has been applied for the pricing of various types of options such as European, American, Asian and 

many other types of options. Schwartz [2] first used FDMs to option pricing. A closed form solution first 

proposed by Merton [3]. Fadugba and Nwozo [4] presented the application of CNFDM for the valuation of 

options. They intended to show in their paper the accuracy, convergence and stability of CNFDM for the 

valuation of European options. Kumar et al. [5] presented the comparison between analytic and numerical 

solutions of linear BS equation governing option pricing using BANKNIFTY. Courtadon [6] introduced a 

model based on a finite difference approximation of the equation of option valuation and standard numerical 

methods. Recently Nwobi et al. [10] presented the impact of CNFDM in valuations of options. In their paper 

they tried to identify the sources of mispricing in order to reduce pricing bias. Anwar and Andallah [11] 

presented the comparison between explicit FDM and semi-IFDM for option pricing and discussed the stability 

of the explicit FDM.  

 

The outline of this paper is organized as follows. At first we represent the methodology of option pricing, 

discretization of the BS PDE, boundary conditions, FDMs such as Implicit and Crank-Nicolson scheme for 

numerically solving the price of the option. Then we provide the example of numerical solutions obtained by 

the implementing the algorithms with MATLAB which are converges to the BS analytic solutions and show 

the comparison between IFDM and CNFDM. Finally, we will conclude that which method is more efficient 

and which method takes more time for evaluating option price. 
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3. Methodology 

 

Many option contract values can be obtained by solving PDEs with certain initial and boundary conditions. The 

FDM is one of the premier mathematical tool employed to solve PDEs. The Black, Scholes and Merton showed 

that a riskless portfolio made up of an asset with value S  and an option value ),( Stf  satisfy the following the 

partial differential equation. 
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where f  is the price of option as a well-defined function of time t  and stock price S [12], r  is the risk-free 

interest rate and   is the volatility of the stock. This equation is known as BS PDE. 

 

Equation (3.1) has many solutions, corresponding to all the different derivatives that can be defined with S  as 

the underlying variable. The particular derivatives can be obtained by solving BS PDE which depends on 

boundary conditions [1]. The boundary conditions specify the values of the derivative at the boundaries of 

possible values of S and t . In the case of European put option, the key boundary condition is  

 

                                                     )0,max( SKf −=      when  Tt = . 

 

3.1 BS option pricing formulas 

 

The most famous solutions to the BS PDE (3.1) are the Black-Scholes-Merton formulas for the price of 

European call and put options. These formulas are: 
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where c  is Call premium, p is Put premium, S is Current stock price or Asset or Spot price, t  is Option 

expiration, K is Strike price, r is Risk-free interest rate, N is Cumulative standard normal distribution. 
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3.2 Discretization of the BS PDE 

 
We discretize the equation (3.1) with respect to time, t  and to the underlying asset price, S . Divide the ),( St  

plane into a sufficiently thick grid or mesh, and approximate in tiny steps S  and t  by some small fixed 

finite steps. We define an array of 1+N  equally spaced grid points 
Nttt ...,,1,0

 to discretize the time 

derivative with titit =−+1
 and NTt /= .    

                                                                                     

                                             
                                                                                 

                                      Fig.3.1. The mesh points for the finite difference approximation 

                                                                          

We know that the stock price cannot go below 0  and maximum stock price can be signified by 𝑆𝑚𝑎𝑥. We have 

1+M  equally spaced grid points MSSS ...,,1,0
 to discretize the stock price derivative with SjSjS =−+1  

and ∆𝑆 = 𝑆𝑚𝑎𝑥/𝑀. 

 

We denote the value of the derivative at time step it  when the underlying asset has value jS  as    

 

                                                 
),,(),(),(, StfjSitfSjtifjif ===  

 

where i  and j  are the number of discrete increments in the time to maturity and stock price respectively, t  

and S  are the discrete increments in the time to maturity and the stock prices. The quantities jNf ,  for 

Mj ,...,2,1,0= , 0,if  and Mif ,  for Ni ...,,1,0=  are referred to as the boundary values which may or may 

not be known ahead of time but in our PDE they are known. The quantities jif ,  for 1...,,1,0 −= Ni  and 
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1...,,2,1 −= Mj  are referred to as interior points or values [7]. 

 

 

 

 

 

3.3 Boundary Conditions 

 
In order to solve Equation (3.1) at time instant ti  we need to obtain the option values at: 

 

• The upper asset boundary 

• The lower asset boundary 

• The initial values that are specified at option maturity.  

 

The European put involve the PDE on the domain ],0[ S . This presents a difficulty. We must represent this 

range by a finite set of points. A reasonable fix is to truncate the domain to ],0[ MS  , where M  is some 

suitably large value [9]. 

 

We will first reiterate our grid and boundary conditions: 

Discretized time:   tNtt  ...,,2,,0 ;                     where TtN =  

Discretized price: SMSS  ...,,2,,0 ;                 where maxSSM =  

In Fig.3.1, at the upper asset boundary, we consider Mj = . So maxSSM = . 

For the value of the European put option is: 

 

                                          NiMif ...,,1,0,0, ==                                                         (3.6) 

 

At the lower asset boundary, 0=j , so the value of the Sj  is zero. So the payoff at expiration  

will be K  and discounting back to time t , we have the value of the European put options is: 

 

                                     Ni
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)(
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=                                             (3.7) 

 

Now for the boundary values at option maturity, Ni = , the initial option (boundary) values of the European 

put option is: 

                                MjSjKjNf ...,,1,0),0,max(, =−=                                          (3.8) 

Equations (3.6), (3.7) and (3.8) define the values of the European put option along the three edges of the grid 

in the Fig. 3.1, where maxSS = , 0=S  and Tt = .     
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Table 3.1: Boundary conditions for EPO 
 

 

 

 
                                         
 

                                                         
 

 

3.4 Finite Difference Approximation 

 
We approximate the derivative with respect to time, t  by a backward difference and approximate the derivative 

with respect to, S  by a central difference. This is not the only possibility, but any choice must be somehow 

compatible with the boundary conditions [8].  

 

Consider that the option price denoted by ),( Stf  for an interior point ),( ji  on the grid. The expansion of 

),( SStf +  in Taylor's series can be approximated as 
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This equation is known as first forward difference approximation of 
S
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The expansion of ),( SStf −  in Taylor's series can be approximated as       
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This equation is known as first backward difference approximation of 
S
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The first order partial derivative results in the central difference given by    
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The second order partial derivatives can be estimated by the symmetric central difference approximation. which 

can be approximated as   

 

   Boundary                Put Option 

        Tt =      )0,max(, SjKjNf −=  

  maxSS =                  0, =Mif  

      0=S  
         

tiNr
Keif

−−
=

)(
0,  



Debnath and Hossain / GANIT J.  Bangladesh Math. Soc. 40.1 (2020) 13–27                   19 

 

 

 

                                                       .
2

1,,21,

2

2

S

jifjifjif

S

f



−+−+
=




                                          (3.12) 

 

 

Expand ),( Sttf +  in Taylor's series we get 
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which is known as first forward difference approximation of 
t

f




 with first order accuracy. The BS PDE 

converts into a difference equation and will be solved iteratively for using to approximate the solution ).,( Stf  

 

3.5 Discretized by Implicit Scheme 

 
Substituting Equations (3.11), (3.12) and (3.13) into the BS PDE (3.1) and noting that SjS =  and rearranging 

terms we obtain, 
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                                                                    for 1...,,2,1 −= Mj and  1,...,1,0 −= Ni , 
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Here we express jif ,1+  implicitly in-terms of the unknowns 1, −jif , jif ,  and 1, +jif . Implicit method has 

accuracy up to )
2

,( StO  . 

 

3.6 Discretized by Crank-Nicolson Scheme 

Now the goal is to discretize the BS PDE (3.1). So we use a central approximation for 
t

f




 at the point 
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,2/1 ji

f
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Substituting these approximations into the BS PDE (3.1) we get, 
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CNFDM has accuracy up to )
2

,
2

( StO  . 
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4. Numerical Examples and Results 

 
We will calculate the price of a EPO on a non-dividend paying stock when the stock price is $69, the strike 

price is $70, the risk-free interest rate is 5% per annum, the volatility is 35% per annum, and the time to maturity 

is 6 months. 

 

By the IFDM MATLAB implementation, the numerical approximate result of EPO price is $6.3997. By the BS 

put option pricing formula (3.3) the analytic solution (theoretical result) is $6.4014. By the CNFDM MATLAB 

implementation, the numerical approximate result of EPO price is $6.4014. We can see that in the case of 

CNFDM the numerical result coincides with the BS analytic result corrected to four decimal places. 

                                                                                     

                      
(a)                                                                             (b) 

                                                         

Fig.4.1. (a) 3-D plot of European put option price by IFDM; (b) 3-D plot of European put option price by   

                                                                              CNFDM. 

 

From Fig.4.1 we can see that both the numerical method gives fairly accurate results. In MATLAB code we set 

asset grid points, 600=M  and time grid points, 500=N . We might try to improve them by using finer grid. 

Now we will see that what will be happened when the time grid N  and the stock price grid M  increases in the 

case of when M  equal to N  and M not equal to N . 

 

Table 4.1: The results of IFDM when .NM =  Here K = $70, S = $69, r = 0.05,  𝜎 = 0.35, T = 0.5, 𝑆𝑚𝑎𝑥=  

250. 

    M=N   European put            BS result   Absolute Error 

      5        12.7776       6.4014         6.3762 

      10         7.3281       6.4014         0.9267 

      15         6.3219       6.4014         0.0795 

      20         6.8261       6.4014         0.4247 

      25         6.1772       6.4014         0.2242 

      30         6.5214       6.4014         0.1200 

      35         6.4633       6.4014         0.0619 
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Table 4.2: The results of CNFDM when NM = . Here K  = $70, S =$69, r  =0.05, 

 𝜎= 0.35, T=0.5, 𝑆𝑚𝑎𝑥= 250. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

Table 4.1 shows that when stock price grid M  and time grid N  are same, the IFDM scheme in Equation (3.14) 

performs well and is consistence when the stock price grid M  and time grid N  increases as →N , 0→t  

and as →M , 0→S . From Table 4.2 shows that the CNFDM scheme in equation (3.15) is also performs 

well and is more consistence than IFDM.    

 

We can illustrate Table 4.1 and Table 4.2 by the Fig.4.2 (a) and Fig.4.2 (b) respectively. From Fig.4.2 (a) and 

      40         6.3533       6.4014         0.0481 

      45         6.4662       6.4014         0.0648 

      50         6.3605       6.4014         0.0409 

      55         6.4174       6.4014         0.0160 

      60         6.4196       6.4014         0.0182 

      65         6.3824       6.4014         0.0190 

      70         6.4196       6.4014         0.0182 

      75         6.3858       6.4014         0.0156 

      80         6.3975       6.4014         0.0039 

      85         6.4074       6.4014         0.0060 

      90         6.3960       6.4014         0.0054 

      95         6.4051       6.4014         0.0037 

     100         6.3926       6.4014         0.0088 

  M=N European Put    BS result  Absolute Error 

     5     12.7882      6.4014       6.3868 

    10     7.3746      6.4014       0.9732 

    15     6.3703      6.4014       0.0311 

    20     6.8580      6.4014       0.4566 

    25     6.2168      6.4014       0.1846 

    30     6.5483      6.4014       0.1469 

    35     6.4870      6.4014       0.0856 

    40     6.3753      6.4014       0.0261 

    45     6.4847      6.4014       0.0833 

    50     6.3780      6.4014       0.0234 

    55     6.4329      6.4014       0.0315 

    60     6.4338      6.4014       0.0324 

    65     6.3957      6.4014       0.0057 

    70     6.4317      6.4014       0.0303 

    75     6.3974      6.4014       0.0040 

    80     6.4082      6.4014       0.0068 

    85     6.4175      6.4014       0.0161 

    90     6.4055      6.4014       0.0041 

    95     6.4142      6.4014       0.0128 

    100     6.4012      6.4014       0.0020 
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Fig.4.2 (b) we can see that, at the start in both cases the option value shows some inconsistency. In the both 

case, as the number of time steps increases, the amplitude of oscillations reduces and the option value converges 

to analytic BS solution as iterations go to infinity. 

 

             

 
                                       (a) 

 
                                             (b) 

Fig.4.2. Comparison between convergence of (a) IFDM and (b) CNFDM for European put option when  
MN =  (where S  = $69; K  = $70; r  = 0.05;   = 0.35; T  = 0.5). 

Similarly, in the case of N  not equal to M , the IFDM and CNFDM both are perform well and converges faster 

than when the number of steps N  and M  are the same.  

 

i.e., From Fig.4.3 (a) and Fig.4.3 (b) we can see that, in both cases at the start the option value shows less 

fluctuations than when the number of steps N  and M  are the same. As the number of time steps increases, in 

the both case the option value gradually converges to analytic BS solution. 

          

 
                                      (a) 

 
                                         (b) 
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  Fig.4.3. Comparison between convergence of (a) IFDM and (b) CNFDM for European put option when N  

and M  are different (where S  = $69; K  = $70; r  = 0.05;   = 0.35; T  = 0.5) 

 

Therefore, we conclude that when time grid, N  and stock price grid, M  are different to each other both 

schemes gives us good result than when time grid, N equal to stock price grid, M . 

 

 
                                         (a) 

 
                                          (b) 

Fig.4.4. The comparison of absolute error between IFDM and CNFDM when N and M are different. Here (a) 
Normal view and (b) Zooming view 

Fig.4.4 (a) shows both methods have quite similar pricing results with the BS analytic solution, which means 

that both methods have quite small absolute errors. More careful analysis, from Fig.4.4 (b) shows that when N

and M  increases CNFDM pricing had generate a smaller absolute error than IFDM pricing. i.e., in the both 

cases the CNFDM converges to BS analytic solution faster than IFDM. Thus CNFDM is more bit accurate than 

the IFDM. 

Now we compare calculated option prices for different stock prices by different methods with the BS analytical 

option prices. 

 

Table 4.3: The comparison of the absolute error IFDM vs. CNFDM for N  = M .  

Here K  = $70, S  = $ 69, r  = 0.05,  = 0.35, T  = 0.5, N  = 100, M  = 100. 

                                
    S     BS result    IFDM Result 

   (N=M= 100) 
 Absolute error       CNFDM Result 

        (N=M= 100) 
  Absolut error 

5 63.2717 63.2719 0.0002 63.2717 0.0000 

10 58.2717 58.2719 0.0002 58.2717 0.0000 

15 53.2717 53.2719 0.0002 53.2717 0.0000 

20 48.2717 48.2719 0.0002 48.2717 0.0000 

25 43.2717 43.2720 0.0003 43.2718 0.0001 

30 38.2730 38.2738 0.0008 38.2733 0.0003 

35 33.2844 33.2869 0.0025 33.2856 0.0012 

40 28.3420 28.3467 0.0047 28.3438 0.0018 
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45 23.5309 23.5358 0.0049 23.5316 0.0007 

50 18.9865 18.9871 0.0006 18.9834 0.0031 

55 14.8630 14.8551 0.0079 14.8543 0.0087 

60 11.2874 11.2700 0.0174 11.2735 0.0139 

65 8.3263 8.3031 0.0242 8.3093 0.0170 

70 5.9790 5.9526 0.0264 5.9615 0.0175 

75 4.1904 4.1663 0.0241 4.1747 0.0157 

80 2.8744 2.8554 0.0190 2.8618 0.0126 

85 1.9351 1.9222 0.0129 1.9259 0.0092 

90 1.2819 1.2746 0.0073 1.2757 0.0062 

95 0.8376 0.8348 0.0028 0.8338 0.0038 

100 0.5409       0.5412 0.0003 0.5389 0.0020 

                        

Table 4.4: The comparison of the absolute error IFDM vs. CNFDM when N and M are different.  

Here K  = $70, S  = $69, r  = 0.05,   = 0.35, T  = 0.5, N  = 100, M  = 100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 4.3 in the case of ' N  equal to M ', and from Table 4.4 in the case of ' N  not equal to M ', we can 

see that both methods have quite similar option pricing results with the BS analytic solution, which means that 

both methods have approximately small absolute errors. 

 

    S      BS result   IFDM Result 

(N=100M=200) 

  Absolute error CNFDM Result 

(N=100M= 200) 

  Absolute error 

5 63.2717 63.2719 0.0002 63.2717 0.0000 

10 58.2717 58.2719 0.0002 58.2717 0.0000 

15 53.2717 53.2719 0.0002 53.2717 0.0000 

20 48.2717 48.2719 0.0002 48.2717 0.0000 

25 43.2717 43.2720 0.0003 43.2718 0.0001 

30 38.2730 38.2736 0.0006 38.2731 0.0001 

35 33.2844 33.2861 0.0017 33.2847 0.0003 

40 28.3420 28.3454 0.0034 28.3425 0.0005 

45 23.5309 23.5353 0.0044 23.5310 0.0001 

50 18.9865 18.9893 0.0028 18.9857 0.0008 

55 14.8630 14.8615 0.0015 14.8608 0.0022 

60 11.2874 11.2804 0.0070 11.2839 0.0035 

65 8.3263 8.3150 0.0113 8.3221 0.0042 

70 5.9790 5.9658 0.0132 5.9747 0.0043 

75 4.1904 4.1781 0.0123 4.1865 0.0039 

80 2.8744 2.8649 0.0095 2.8713 0.0031 

85 1.9351 1.9291 0.0060 1.9328 0.0023 

90 1.2819 1.2793 0.0026 1.2804 0.0015 

95 0.8376 0.8376 0.0000 0.8366 0.0010 

100 0.5409 0.5427 0.0018 0.5404 0.0005 



26                                                                                    Debnath and Hossain / GANIT J. Bangladesh Math. Soc. 40.1 (2020) 13–27 

 

 

 

 
                                               (a) 

 
                                              (b) 

 

Fig.4.5. (a) Comparison of absolute error IFDM vs. CNFDM )( MN = ; (b) Comparison of absolute error 

IFDM vs. CNFDM ( MN  ). 

 

From Fig.4.5 (a) and Fig.4.5 (b) we can see that, in the both cases the absolute error of CNFDM is less than the 

absolute error of IFDM and CNFDM is more accurate when N  and M  are different to each other.  

 

After figure out which method is more accurate, it will be also interested and necessary to know which method 

is more efficient. That is to find out which method need less CPU time when pricing an option. 

 

In graphical representation, from Fig.4.6 for ' N  = 600; M  = 1200' obviously, CNFDM takes more time to 

solve option price than IFDM. That means IFDM saves a lot more CPU-time than the CNFDM. 

 

                                          
  

Fig.4.6. Comparison of CPU time IFDM vs. CNFDM. (where S  = $69; K  = $70;  

r  = 0.05;  = 0.35; T = 0.5; N  = 600; M  = 1200 

[SAMSUNG RC418, Processor - Intel(R)Core(TM)i3 - 2310M, RAM - 2.00 GB, Hard Disk - 500 GB]   
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5. Conclusions 

 

Crank-Nicolson method is unconditionally stable FDM because it calculates small change in the option value 

for the small change of the initial conditions, converge to the solution of the PDE and calculation error decreases 

when the number of time and price partitions increase. The CNFDM has a higher accuracy than the IFDM so it 

converges faster, that means it close to the BS analytic solutions after a few iterations than IFDM. Furthermore, 

since CNFDM is the average of explicit and implicit FDM and it needs to solve a system of equations at each 

time step, so it takes more time to run. From our result we see that in the case of N  (time grid) not equal to M  

(stock price grid), both methods IFDM and CNFDM converge more quickly to BS analytic solutions than when 

N equal to M . CNFDM converges more quickly to the BS analytic solution than the IFDM due to its higher 

accuracy. That means, CNFDM is more accurate than the IFDM. Total elapsed time to run CNFDM is some 

more than that of IFDM. So we conclude that between IFDM and CNFDM, CNFDM is the best method and 

gives us more accurate result than IFDM albeit it takes more time to execute results. We use the MATLAB to 

get all numerical and graphical results. 

REFERENCES 

[1] John C. Hull, (2015-2016). Option, Futures and Other Derivatives, Global edition, Eighth edition, Pearson 

Education Limited. 

[2] E. Schwartz, (1977). The Valuation of Warrants: Implementing a New Approach, Journal of Financial        

       Economics, 4, 79-94.  

[3] R.C. Merton, (1973). Theory of Rational Option Pricing, Bell Journal of Economics and Management   

       Science, 4, 141-183. 

[4] SE Fadugba, CR Nwozo, (2013). Crank Nicolson Finite Difference Method for the Valuation of Options,  

       Pacific Journal of Science and Technology, 14, 136-146. 

[5]   M.S. Kumar, S.P. Das, M. Reza, (2012). A Comparison between Analytic and Numerical Solution of  

       Linear Black-Scholes Equation Governing Option Pricing: Using BANKNIFTY, World Congress on       

       Information and Communication Technologies, Trivandrum, pp.437-441. 

[6]   G. Courtadon, (1982). A more Accurate Finite Difference Approximation for the Valuation of Options,     

        Journal of Financial and Quantitative Analysis, 17, 697-703. 

[7]   Davis Bundi Ntwiga, (2005). Numerical Methods for the Valuation of Financial Derivatives, Department   

        of Mathematics and Applied Mathematics, University of the Western Cape, Master's thesis. 

[8]   Paolo Brandimarte, (2006). Numerical Methods in Finance and Economics, Second Edition, John Wiley   

        and Sons, Inc. 

[9]  Desmond J. Higham, (2004). An Introduction to Financial Option Valuation, Cambridge University Press. 

[10] Nwobi, Annorzie, Amadi, (2019). The Impact on Crank-Nicolson Finite Difference method in Valuation  

        of Options, Communications in Mathematical Finance, 8(1), 93-122. 

[11] Md. Nurul Anwar, Laek Sazzad Andallah, (2018). A Study on Numerical Solution of Black-Scholes  

        Model, Journal of Mathematical Finance, 8, 372-381. 

[12] M.S. Joshi, (2008). The Concepts and Practice of Mathematical Finance, Second Edition, Cambridge   

        University Press, p. 116. 


