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ABSTRACT 

The incidence and prevalence of diabetes are increasing all over the world and complication of diabetes 

constitutes a burden for the individuals and whole society. In this paper, we propose a mathematical model for 

monitoring glucose-insulin regulatory system in the human body. The non-linear cases are considered, and the 

model is analysed by using Lyapunov’s method. The mathematical model, discussed the critical situation of the 

diabetes patients as well as for normal person are analysed for stability. The numerical approximation is used 

to verify the analytical results and the obtained solutions represent the complex situation of diabetes patients.  
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1. Introduction 

Diabetes mellitus, commonly known as diabetes, is a syndrome of disordered metabolism, usually due to a 

combination of hereditary and environmental causes, resulting in abnormally high blood sugar levels known as 

hyperglycaemia [1]. Glucose concentration in the blood of a normal person lies in the range of 80-110 mg/dl 
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under fasting condition. Blood glucose levels are controlled by a complex interaction of multiple chemicals and 

under fasting condition. Blood glucose levels are controlled by a complex interaction of multiple chemicals and 

hormones in the body, including the hormones glucagon and insulin produced in the alpha and beta cells of the 

pancreas respectively. Diabetes has become an epidemic with considerable complications such as retinopathy, 

nephropathy, peripheral neuropathy and blindness. The number of diabetics in the world is increasing every 

year. More than 400 million people live with. Diabetes caused 5 million deaths in 2015; every six seconds a 

person dies from diabetes. More than 542,000 children have diabetes in 2015 and more than 20.9 million life 

births were affected by diabetes during pregnancy in 2015 [4]. In general, three forms of diabetes are considered: 

Type 1 diabetes, also known as Insulin Dependent Diabetes Mellitus (IDDM), affecting people under the age 

of 40 and representing 10-15% of the diabetic population [3], Type 2 diabetes formerly known as Non-Insulin 

Dependent Diabetes Mellitus (NIDDM), representing the major part (85–90%) [1] and Gestational diabetes 

(GDM) is a temporary condition that occurs in pregnancy and carries long-term risk of type 2 diabetes [1]. A 

detailed background and survey on diabetes mellitus is described in [1]. 

In recent times, mathematical modelling has become the most powerful tool to incorporate the dynamic 

behaviours of non-infectious diseases. Mathematical modelling is basically referred to as a method of simulating 

real-life situations with mathematical equations to forecast their future behaviour. Numerous mathematical 

models have been developed to identify the characteristics of glucose-insulin regulation inside the human body 

[2] [11] [12]. Many researchers have used mathematical models to understand and predict the behaviour of 

biological systems. The study of glucose-insulin interaction dates back as early as the six-ties and since then 

has been studied extensively by many researchers. The most widely used model in the study of diabetes is the 

minimal model which is used in the interpretation of the intravenous glucose tolerance test (IVGTT) [3]. 

Glucose-insulin regulation dynamic model, a set of ordinary differential equations (ODE) glucose-insulin 

interaction inside the human body, has been proven useful for understanding the pathogenesis of diabetes 

mellitus and developing treatment strategies. In this paper, we have shown the present scenario of diabetes 

mellitus in Bangladesh. Also we have studied a three-compartmental glucose-insulin regulation model and 

investigated their stability at disease free and endemic equilibrium points. 

2. Current Status of Diabetes Mellitus in Bangladesh 

Diabetes is a worldwide curse. There is no such country where this endemic disease does not exist. Although 

Bangladesh is still considered to be a high responded diabetes affected country in world, the present situation 

indicates that the influence of this endemic disease is gradually increasing.  

Bangladesh has a disproportionately high diabetes population with more than 7.1 million, 8.4% or 10 million 

in 2015 [13], of the adult population affected by the diseases. The number will be 13.6 million in 2040. Nearly 

half of the population with diabetes, 51.2%, don’t know they have diabetes and don’t receive any treatment. 

Bangladesh is home to a 161 million populations, according to the latest census report. During 90s, the country 

has a relatively low diabetes affected population. In 1995 is was only 4% which is grew to 5% in 2000 and 9% 

in 2006 to 2010. Here we show a graphical representation of diabetes mellitus surveillance of Bangladesh (see 

Figure 2.1) from 1980 to 2014 [13]. 
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Figure 2.1: Trends in age-standardized (30-69 years) prevalence of diabetes in Bangladesh. 

3. Three Compartmental Glucose-Insulin Regulation Model 

Mathematical models have provided one mean of understanding diabetes dynamics. In this paper, we present a 

three compartmental model of glucose-insulin regulation inside the human body. In this model, we use three 

differential equations the first equation describing the glucose clearance, second equation describing the glucose 

uptake activity and third equation describing the insulin kinetics inside the human body, In this three 

compartmental model, let )(tG  is the plasma glucose concentration at time t , )(tX  is the generalized insulin 

variable for the remote compartment, )(tI  is the plasma insulin concentration at time t . The total population 

at t  time  is represented by ( ) ( ) ( ) ( )tItXtGtN ++= .To describe the disease transmission in a certain 

population, bG  is the basal blood glucose concentration, bI  is the basal blood insulin concentration, 1a  is the 

glucose clearance rate independent of insulin, 2a  is the rate of clearance of active insulin, 3a  is the insulin 

independent increase in glucose uptake ability in tissue per unit of insulin concentration bI ,  4a  is the rate of 

the pancreatic β-cells’ release of insulin after the glucose injection and with glucose concentration bG , 5a  is 

the first order decay rate for insulin in plasma pancreatic β-cells release insulin. The schematic diagram of the 

model is shown in Figure 3.1. 
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Figure 3.1: Schematic diagram of the glucose-insulin regulation model. 

Taking the diagram in Figure 3.1 into account, our improved model [14] is governed by the following ordinary 

differential equations: 

;121 bGaGIaGa
dt

dG
+−−=                     ( ) 00 IG =  

;332 bIaIaXa
dt

dX
−+−=                       ( ) 00 XX =                                                           (3.1) 

;554 bIaIaGa
dt

dI
+−=                           ( ) 00 II =  

4. Mathematical Analysis of Model 

Here we investigate the positivity of the model, find out different equilibrium points and check the stability 

using Lyapunov’s method. 

4.1 Positivity of the Solution 

Here we check the positivity of each compartments such as glucose clearance G , glucose uptake activity X  

and insulin kinetics I . We must have the positive values of these biological compartments. To test the positivity 

of these biological compartments, we need the following Lemma 4.1. 

Lemma 4.1: Let 0)0(,0)0(  XG and  0)0(,0)0(,0)0( IXG , then the solutions )(),(),( tItXtG  of 

the model system of equations (3.1) is positive. 
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Proof: 

To prove the Lemma 4.1, we have used the system of equations of the model (3.1), 

bGaGIaGa
dt

dG
121 +−−=  

in order to find the positivity, we have, 

bGaGa
dt

dG
11 +−  

b11 Gp  G(t)a
)(

+
dt

tdG
                                                                                                                                   (4.1) 

  IF
ta

e
dta

e 11 =  

Multiplying on both sides of (4.1) by 
ta

e 1 , we have, 

ta
e

ta
e

dt

tdGta
e 1

b1
1

1
1 Ga  G(t)a

)(
+  

ta
eGa

ta
Ge

dt

d
b

1
1

1 )(   

)()( 11 ta
Aedt

ta
Ged                                                                                                                                     (4.2)                       

where, bGaA 1= .  

Now integrating (4.2), we have, 

1
1

11 C
a

Ata
e

ta
Ge +                                                                                                                                      (4.3) 

where 1C  is constant. Applying the initial condition at )0()(,0 GtGt = . Hence from (4.3), we have, 

1
1

C
a

A
G +  

)(
1

1 G
a

A
C −  

Putting the value of 1C  into (4.3), we have, 

)(
11

11 G
a

A

a

Ata
e

ta
Ge −+  

ta
e

a

A
G

a

A
tG 1

11

)()(
−

−+  

Hence 0)( tG  at 0=t  and →t . Similarly we can find the positivity of )(tX and )(tI under the initial 

conditions. 

Therefore, it is true that, )0,0)0(,0)0(,0)0((  tIXG . 

Lemma 4.2: The set ( ) ( )},,min{,0:),,{( 35241 aaaaaMceIXGIXG t −−=+++= −   c, 𝑖𝑠 𝑎 

constant} is a region of attraction for all solutions initiating in the positive quadrant. 
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Proof:  

From model (3.1) we have,  

;121 bGaGIaGa
dt

dG
+−−=                     ( ) 00 IG =  

;332 bIaIaXa
dt

dX
−+−=                       ( ) 00 XX =                                                               

;554 bIaIaGa
dt

dI
+−=                           ( ) 00 II =  

 

Therefore, ;
)(

554332121 bbb IaIaGaIaIaXaGaGIaGa
dt

IXGd
+−+−+−+−−=

++
 

                                         

( ) ( )
( ) ( )

( ) ( ) ( ) MIXGaaaaa

MIaaXaGaa

IaIaGaIaaXaGaa bbb

+++−−−

+−−−−−

+−+−−−−−

},,min{ 35241

35241

53135241

 

where, bbb IaIaGaM 531 +−=  

Let ( ) ( )},,min{ 35241 aaaaa −−=  

Thus


 M
ceIXG t +++ − . 

4.2. Disease Free Equilibrium Points 

The disease free equilibrium of the above model (3.1) can be obtained by setting 

0===
dt

dI

dt

dX

dt

dG
 

Thus we have, 

0121 =+−− bGaGIaGa                      

0332 =−+− bIaIaXa                                                                                    

  0554 =+− bIaIaGa                                                                                                           

Since we have considered the disease free equilibrium 0,0 == IX . Thus the above system (3.1) reduces to, 

b

b

b

GG

a

Ga
G

GaGa

=

=

=+−

0

1

1
0

101 0

 

Thus, the disease free equilibrium point is )0,0,(0 bGE = . 

Again for the endemic equilibrium point endE , we find ( )*** ,, IXGEend =  

where,  
( ) ( )

42

5421
2

52515251*

2

4

aa

Gaaaaaaaaaaaa
G

b−++−
= , ( )bII

a

a
X −= *

2

3*
, bIG

a

a
I += *

5

1*
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4.3 Linearization of the Model  

Consider the Jacobian matrix of (3.1) given by  

















−

−

−−−

=

54

32

221

0

0

0

aa

aa

GaIaa

J  

 

At ( )*** ,, IXG  



















−

−

−−−

=

54

32

*
2

*
21

*

0

0

0

aa

aa

GaIaa

J  

 

We now use the transformation 
** ,, IiIXxXGgG +=+=+=  and then linearize the system  



































−

−

−−−

=
















=





















i

x

g

aa

aa

GaIaa

i

x

g

J

i

x

g

54

32

*
2

*
21

*

.

.

.

0

0

0

 

We get the linearized system as 

iagai

iaxax

iGagIagag

54

.

32

.

*

2

*

51

−=

+−=

−−−=





 

4.4 Stability Analysis  

Theorem 4.1: The interior-equilibrium point ( )*** ,, IXG is locally asymptotically stable if  

( ) 2

2*
24 8aGaa − )( *

21 Iaa + . 

Proof:  

Consider the Lyapunov function  

)(
2

1 222 ixgL ++=  

Hence 
....

2
2

1
2

2

1
2

2

1
iixxggL ++=  



8                                                                                              Akter et al. /  GANIT J. Bangladesh Math. Soc. 40.1 (2020) 1–12 

( ) ( )iiagaigGaxiaxagIaaL 54
*

232
2*

21

.

)( −+−+−+−−=  

( ) ( ) 2
53

2
2

*
21

2*
21

.

iaixaxaigGaagIaaL −+−−++−=  

tixsxriqigpgL +−−+−= 222
.

2

1

2

1

2

1
 

where ( ) ( ) 325
*

21
*

21 ,2,2,,2 atasarGaaqIaap ===−=+=  

The sufficient condition for 
.

L  to be negative definite is that  

prsq 2
 

i.e., ( ) )(8 *
2152

2*
24 IaaaaGaa +−  

which is the condition that the parameters must satisfy so that the critical point ( )*** ,, IXG  is locally 

asymptotically stable.  

5. Numerical Simulations 

We have discussed the locally asymptotically stability inside the body of normal person as well as different 

types of diabetic patient at the endemic equilibrium point endE  who are suffering from diabetes mellitus but 

the results from each patient is different and it is explained with the help of graphical illustrations (see in Figures 

5.1-5.4) and different types of parameters values. In this simulation we take one normal person and three 

diabetes patients. 
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Figure 5.1: Glucose-insulin regulatory system for normal person, with different parameters 00123.,2.0 21 == aa ,

6
3 1092.6 −=a ,0249.0, 4 =a ,2659.5 −=a 7,80 == bb IG . 

 

 

Figure 5.2: Glucose-insulin regulatory system for diabetes patient 1, with different parameters 

,0027.0,0 21 == aa
6

3 103.5 −=a ,0042.0, 4 =a ,264.5 =a 7,80 == bb IG . 
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Figure 5.3: Glucose-insulin regulatory system for diabetes patient 2, with different parameters 

,00142.0,0 21 == aa 6
3 1094.115 −=a ,0046.0, 4 =a 7,80,2814.05 === bb IGa . 
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Figure 5.4: Glucose-insulin regulatory system diabetes patient 3, with different parameters 
,001072.0,0 21 == aa

6
3 10216 −=a ,0038.0, 4 =a 7,80,2465.05 === bb IGa . 

From Figure 5.1, we observe that the endE  is stable in the presence of different parameters. In this Figure we 

have shown that when glucose and insulin is given to the normal persons the glucose concentration level and 

insulin concentration level become very high and as time passes the level become stable. The same can be seen 

in case of generalized insulin variable there is no change even after some time it will remain same and this 

represent the glucose insulin regulation in the normal human body. In Figure 5.2, it is observed that endE  is 

unstable because in that case the glucose level is very high from the basal level also the insulin level is decreased 

from the basal level of insulin in presence of different parameter values and the similar finding is shown in 

Figure 5.4. Also, in Figure 5.3, we have shown that in presence of different parameter values the glucose and 

insulin level become very high and this is the complex situation of diabetes patients.  

6. Conclusions 

Now a days, diabetes is the top at the list of non-infectious diseases in Bangladesh. The prevalence of diabetes 

rate is increasing day by day and becoming a great threat to us. In this paper, we have shown a brief report of 

diabetes mellitus of Bangladesh from 1980 to 2014. Again, we have discussed the mathematical presentation 

of glucose-insulin regulation inside the human body in a three-compartmental model. In this model, we take  

plasma glucose concentration )(tG , generalized insulin variable )(tX for the remote compartment and plasma 

insulin concentration )(tI . In this study, we use a nonlinear system whose validity is proved by positivity test 

supported by simulations results. At disease free equilibrium point, the model is assumed to be stable and later 

we conclude the stable condition for the endemic equilibrium points. The numerical solutions have been carried 

out to show the variability of Glucose, insulin and plasma glucose concentration for different kind of diabetic 

patients as well as normal a patient at different equilibrium points and according to the Figures 5.1-5.4, we 

observe that how a diabetic patient controls his glucose and insulin level using different parameter values 

because control of glucose insulin level is so much important for the diabetes patients.  
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