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ABSTRACT 

In this paper, we study the orthogonality of two generalized derivations in semiprime -rings. 

Some results are obtained in connection with ideals of semiprime -rings and using left annihilator 

which is taken to be zero.  
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1. Introduction 

Many mathematicians worked on derivations and generalized derivations of -rings from several 

years. They obtained some remarkable results of prime and semiprime -rings by using 

derivations. Their results enrich the field of algebra and modern analysis. 

Ashraf and Jamal [3] studied on orthogonal derivations in -rings. They obtained some necessary 

and sufficient conditions for the orthogonality of two derivations. 

Suliman and Majeed [15] extended the results of [3] and studied the orthogonal derivations for a 

nonzero ideal of a semiprime gamma ring. Their results are related to some results concerning the 

product derivations on gamma rings. 

Bresar and Vukman [6] initiated the study of orthogonal derivations in rings. Some results on 

orthogonal derivations in semiprime rings have been obtained by them related to product derivations. 

The study of generalized derivations in rings was initiated by Hvala [13]. He obtained some 

fruitful results in rings with generalized derivations. 

In this paper, we obtain some results of generalized derivations concerning the orthogonality in -

rings. The results which are obtained by us are the generalization of the results of Albas [1]. 
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2. Preliminaries 

Let M and  be additive abelian groups. M is called a -ring if for all a,b,cM, ,   the 

following conditions are satisfied :  

(i) ab M,  

(ii) (a+b)c = ac+bc,  a(+)b = ab + ab,  a(b+c) = ab +ac,  

(iii) (ab)c = a(bc). 

A subset I of a -ring M is a right (left) -ideal of M if I is an additive subgroup of M and IM = 

{ac, aI, , cM } (MI) is contained in I. If I is both a left and a right -ideal, then we say 

that I is an -ideal or two sided -ideal or simply ideal of M. Let M be a -ring and let I be a 

subset of M. Define l(I) = {aM : aI = 0} and r(I)  = {aM:  Ia = 0}. l(I)  is called a left 

annihilator and r(I) is called a right annihilator. The set {aM: aI = Ia = 0} is called the 

annihilator of I and is denoted by Ann(I). If I is an ideal of M, then l(I), r(I) and Ann(I) are left 

ideal, right and two sided ideal or simply ideal respectively. 

An additive mapping d : M → M is called a derivation on M if d(xy) = d(x)y + xd(y) for all x, 

yM, . An additive mapping D of M into itself is called a generalized derivation of M, with 

associated derivation d, if there is a derivation d of M such that D(xy) = D(x)y + xd(y) for all x, 

yM, . Obviously this notion covers the notion of a derivation (in case D = d) and a left 

centralizer (in case d = 0). An additive mapping D: M → M is called a left centralizer if D(xy) = 

D(x)y for all x, yM,.  

Definition 2.1. Let M be a -ring. Derivations d and g on M are said to be orthogonal if 

d(x)Mg(y) = 0 = g(y)Md(x) for all x, yM. 

Let M be a -ring. An additive mapping D : M  M is said to be a generalized derivation if there 

exists a derivation d : M  M such that D(xy) = D(x)y + xd(y) for all x, y M, . 

Two additive maps d, g : M  M are called orthogonal if d(x)Mg(y) = 0 =  g(y)Md(x) for all 

x, yM, , . 

Definition 2.2. Two generalized derivations (D, d) and (G, g) of M are called orthogonal if 

D(x)MG(y) = 0 = G(y)MD(x) for all x, yM, , . 

The following two lemmas are due to [15] which are need to prove our main results. 

Lemma 2.3. ([3], Lemma 2.1). Let M be a 2-torsion free semiprime -ring, I be a nonzero ideal of 

M and a, b be the elements of M. Then the following conditions are equivalent. 

(i) axb = 0 for all xI, , . 

(ii) bxa = 0 for all xI, , . 

(iii) axb + bxa = 0 for all xI, , . 

Moreover, if one of the three conditions is fulfilled and l(I) = 0, then ab = ba = 0. 
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Lemma 2.4. ([3], Lemma 2.2). Let M be a semiprime -ring and I be a nonzero ideal of M. 

Suppose that additive mappings D and G of M into itself satisfy D(x)IG(x) = 0 for all xI. Then 

D(x)IG(y) = 0 for all x, yI. 

 

3. Orthogonality with Generalized Derivations on Semiprime Г-rings 

We prove first some lemmas which will be frequently used to prove our results. 

Lemma 3.1. Let (D, d) and (G, g) be two generalized derivations of M and l(I) = 0. If D(I)IG(I) 

= 0, then D(M)MG(M) = 0. 

Proof. Let x, y, zM, r, s, tM and α, β. Then 0 = D(x)zG(y) = G(y)zD(x) for all x, y, zI 

, ,  and Lemma 2.3, we have 0 = D(x)g(r) = g(r)D(x) and by g(r)D(x) = 0, we get  

0 = g(r)d(s) = d(s)g(r). Using these relations, we have D(s)xg(r) = 0 and so 0 = 

D(xz)G(y), we obtain d(z)G(y) = 0. Therefore 0 = D(rx)G(sy) = D(r)xG(s)y, which 

shows D(r)xG(s) = 0. Replace x by r0G(s)xD(r)βr0 for some r0M, we have D(r)r0G(s) = 

0, as desired. 

Moreover, we have the following: 

Lemma 3.2. Let (D, d) and (G, g) be two generalized derivations of M and I be an ideal of M such 

that l(I) = 0. Then the following conditions are equivalent. 

(i) For any x, yI, α, the following relations hold: 

(a)  D(x)G(y) + G(x)D(y) = 0.  

(b)  d(x)G(y) + g(x)D(y) = 0. 

(ii)  D(x)G(y) = d(x)G(y) = 0 for all x, yI, . 

(iii)  D(x)G(y) = 0 for all x, yI,  and dG = dg = 0 for all x, yI, . 

(iv)  (DG, dg) is a generalized derivation from I to M and D(x)G(y) = 0 for all x, yI, . 

Proof. (i)   (ii): By (a), (b) Lemmas 2.3 and 2.4, we have 0 = D(x)zG(y) = D(x)G(y) and 

using this d(z)G(y) = 0, x, yI, . This shows (ii). And the converse is easily obtained by the 

relations D(x)G(y) = G(y)D(x) = 0, x, yI,  and Lemma 2.3.  

(ii)   (iii) Let x, y, zM, α, β, then, by assumption, D(x)zG(y) = d(x)zg(y) = 0. Then by 

Lemma 3.1, d and g are orthogonal, which shows dg = 0. Moreover, by 0 = d(x)G(y) and Lemma 

2.3, we have, 0 = d(d(r)sG(y)) = d(r)sdG(y) for r, sM, , . Taking r = G(y), we have 

d(G(y)) = 0. Since D(x)G(y) = G(y)d(x) = d(x)g(y) = 0, using Lemma 3.1, we obtain d(G(r)) = 

0, this gives (iii). 

(iii)  (iv) Let x, y, zM, α, then by dG = dg = 0, we have G(x)d(y) + d(x)g(y) = 0 = 

g(x)d(y) + d(x)g(y). Then by the proof of (i)   (ii), we see that d(x)g(y) = 0 and so 
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G(x)d(y) = 0. Moreover, by 0 = D(x)G(y), we have D(x)g(z) = 0. Therefore DG(xy) = 

DG(x)y and thus (DG, dg) = 0 is a generalized derivation from I to M. 

(iv)   (ii) Let x, y, zM, α, (DG, dg) is a generalized derivation if and only if 

G(x)d(y) + D(x)g(y) = 0 = d(x)g(y) + g(x)d(y), 

So, we obtain dg = 0. Furthermore by 0 = D(x)G(y), we get D(x)g(y) = 0 and by the above 

relation, we see G(x)d(y) = 0. Therefore G(x)zd(y) = 0 and by Lemma 2.3, we arrive at 

d(y)G(x) = 0. This shows (ii). 

Lemma 3.3 If (D, d) and (G, g) are two orthogonal generalized derivations of M, then the 

following relations hold. 

(i) D(x)αG(y) = G(x)αD(y) = 0, hence D(x)αG(y) + G(x)αD(y) = 0 for all x, yM, α. 

(ii) d and G are orthogonal, and d(x)αG(y) = G(y)αd(x) = 0 for all x, yM, α. 

(iii) g and D are orthogonal, and g(x)αD(y) = D(y)αg(x) = 0 for all x, yM, α. 

(iv) d and g are orthogonal derivations. 

(v) dG = Gd = 0 and gD = Dg = 0. 

(vi) DG = GD = 0. 

Proof. (i) By the hypothesis we have D(x)αzβG(y) = 0 for all x, yM, α. Hence we get 

D(x)αG(y) = G(x)αD(y) = 0 for all x, yM, α, by Lemma 2.3. 

(ii), (iii) By D(x)αG(y) = 0 and D(x)αzβG(y) = 0 for all x, y, zM, α, β, we get 

0 = D(rx)αG(y) = (D(r)x + rd(x))αG(y) = rd(x)αG(y) for all r, x, yM, α, . Since M is 

semiprime, d(x)αG(y) = 0 for all x, yM, α. Then we have 

d(xr)αG(y) = (d(x)r + xd(r))αG(y) = d(x)rαG(y) = 0 for all r, x, yM, α, . 

Therefore by Lemma 2.3, we obtain G(y)αd(x) = 0 for all x, yM, α, which shows (ii). 

The proof of (iii) is similar. 

(iv) We have 

0 = D(xz)αG(yβw) = (D(x)z + xd(z))α(G(y)βw + yβg(w)) for all x, y, z, wM, α, β, . 

by (i). Thus we get, xd(z)αyβg(w) = 0 for all x, y, z, wM, α, β, , by (ii) and (iii). Since M is 

semiprime, we see that d(z)αyβg(w) = 0 for all  y, z, wM, α, β, which shows that d and g are 

orthogonal. 

(v), (vi) Using (ii) and (iv), we have 

0 = G(d(x)αzβG(y)) = Gd(x)αzβG(y) + d(x)αg(zβG(y)) = Gd(x)αzβG(y) for all x, y, zM, α, β. 

Replacing y by d(x) in the above relation, we get Gd = 0 by the semiprimeness of M. Similarly, 

since each of d(G(x)αzβd(y)) = 0, D(g(x)αzβD(y)) = 0,  g(D(x)αzβg(y)) = 0 and G(D(x)αzβG(y)) = 
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0 holds for all x, y, zM, α, β, we have dG = Dg = gD = DG = GD = 0, respectively. 

By Lemma 2.4, we get the following corollary: 

Corollary 3.4 If (D, d) and (G, g) are two orthogonal generalized derivations of M, then dg is a 

derivation and (DG, dg) = (0, 0) is a generalized derivation. 

Lemma 3.5. Let M be a semiprime -ring. Let I be an ideal of M and V = Ann(I). If (D, d) is a 

generalized derivation of M such that D(M), d(M)  I, then D(V ) = d(V ) = 0. 

Proof. If xV, then xI = 0. By the hypothesis we have d(I)  I. Hence, 0 = D(x)αy + xαd(y) = 

D(x)αy for all yI, α. Since D(x)I  V and M is semiprime, we get D(x) = 0 for all xV . 

Similarly, we obtain d(V) = 0. 

Theorem 3.6 Let (D, d) and (G, g) be generalized derivations of M. Then the following 

conditions are equivalent. 

(i) (D, d) and (G, g) are orthogonal. 

(ii) For all x, yM, α, the following relations hold. 

(a) D(x)αG(y) + G(x)αD(y) = 0. 

(b) d(x)αG(y) + g(x)αD(y) = 0. 

(iii)  D(x)αG(y) = d(x)αG(y) = 0 for all x, yM, α. 

(iv) D(x)αG(y) = 0 for all x, yM, α and dG = dg = 0. 

(v) (DG, dg) is a generalized derivation and D(x)αG(y) = 0 for all x, yM, α. 

(vi) There exist ideals I and V of M such that: 

(a) I  V = 0 and I  V is an essential ideal of M. 

(b) D(M), d(M)  I and G(M), g(M)  V. 

(c) D(V) = d(V) = 0 and G(I) = g(I) = 0. 

Proof.  (i)   (ii), (iii), (iv) and (v) are proved by Lemma 2.4 and Corollary 3.4. 

(ii)  (i) If we take xβz instead of x in (a), then by (b) we have 

0 = D(x)βzαG(y) + G(x)βzαD(y) for all x, y, zM, α, β. 

Thus by Lemma 2.3 we arrive at D(x)MG(y) = G(y)MD(x) = 0 for all x, yM. 

(iii)  (i) Since 0 = (D(x)βz + xβd(z))αG(y) = D(x)βzαG(y) for all x, y, zM, α, β, we get the 

result by Lemma 2.3. 

(iv)   (i) Since dg = 0, we have  

0 = dG(xαy) = dG(x)αy + G(x)αd(y) + d(x)αg(y) + xαdg(y) = G(x)αd(y) for all x, yM, α. Thus 

0 = G(x)αzβd(y) + xαg(z)βd(y) = G(x)αzβd(y) for all x, yM, α. Hence we get d(y)αG(x) = 0 for 

all x, yM, α, by Lemma 2.3. Then (i) follows from (iii). 

(v)   (i) Since (DG, dg) is a generalized derivation, dg is a derivation. Then we obtain 
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DG(xαy) = DG(x)αy + xαdg(y) for all x, yM, α, and we have 

DG(xαy) = D(G(x)αy + xαg(y)) = DG(x)αy + G(x)αd(y) + D(x)αg(y) + xαdg(y) for all x, yM, α. 

Comparing the last two relations, we get G(x)αd(y) + D(x)αg(y) = 0 for all x, yM, α. Since 

D(x)αG(y) = 0 for all x, yM, α, we get 

0 = D(x)αG(yβz) = D(x)αG(y)βz + D(x)αyβg(z) = D(x)αyβg(z) for all x, y, zM, α, β. 

Using (v), we have 

0 = D(x)αG(yβz) = D(x)αG(y)βz + D(x)αyβg(z) = D(x)αyβg(z) for all x, y, zM, α, β. Hence we 

obtain g(z)αD(x) = 0 for all x, zM, α. Replacing z by yβz in the last relation we get 

g(y)βzαD(x) = 0 for all x, y, zM, α, β. Thus we have D(x)αg(y) = 0 for all x, yM, α. This 

implies that G(x)αd(y) = 0 for all x, yM, α, which shows that d(y)αG(x) = 0 for all x, yM, 

α. Therefore by (iii), we get the result. 

 (i)   (vi) Let I0 be the ideal of M generated by d(M)  D(M), let Ann(I0) = V and Ann(V) = I. By 

Lemma 2.4, we see that D(x)αG(y) = G(x)αD(y) = 0,  d(x)αG(y) = g(x)αD(y) = 0 and d(x)αg(y) = 

g(y)αd(x) = 0 for all x, yM, α. Since D(M), d(M)  I0 we obtain G(M), g(M)  V . Moreover 

by Lemma 3.5 and I0  I we have D(V ) = d(V) = 0 and G(I) = g(I) = 0. Since M is semiprime, I  

V is an essential ideal of M, which shows (vi). 

Theorem 3.7. Let (D, d) and (G, g) be generalized derivations of M and I be a nonzero ideal of M 

such that l(I) = 0. Then the following conditions are equivalent. 

(i) (D, d) and (G, g) are orthogonal. 

(ii) For all x, yI, the following relations hold. 

(a) D(x)G(y) + G(x)D(y) = 0. (b) d(x)G(y) + g(x)D(y) = 0. 

(iii) D(x)G(y) = d(x)G(y) = 0 for all x, yI, . 

(iv) D(x)G(y) = 0 for all x, yI,  and d(G(x)) = d(g(x)) = 0 for all x, yI. 

(v) (DG, dg) is a generalized derivation on I and D(x)G(y) = 0 for all x, yI, . 

Proof.  (i)  (ii), (iii), (iv) and (v) are clear. Since (ii), (iii), (iv) and (v) are equivalent by Lemma 

3.2, we assume (iii). This implies that 0 = (D(x)z + xd(z))G(y) = D(x)zG(y). Then we have 

D(I)IG(I) = 0. Thus by Lemma 2.5, we have by Theorem 3.6, (iii)  (i). 

Theorem 3.8. If (DG, dg) is a generalized derivations on I and l(I) = 0 then (DG, dg) is a 

generalized derivations on M. 

Proof. It is easily seen that (DG, dg) is a generalized derivations on I if and only if G(x)d(y) + 

D(x)g(y) = 0,  d(x)g(y) + g(x)d(y) = 0 for all x, yI, . Then by the second relation, we 

have d and g are orthogonal. By the first relation 0 = G(x)d(y) + D(x)g(y), we get 0 = 

G(x)zd(y) + D(x)zg(y), for all x, yI, , β. Hence replacing z by g(y)z in this relation and 
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using the orthogonality of the derivations d and g, we obtain 0 = D(x)g(y)zg(y) which implies 

that D(x)g(y) = G(x)d(y) = 0. Moreover by 0 = D(x)g(yr), we get 0 = D(x)g(r) for all rM, 

. Using this relation we have D(s)xg(r) = 0 and similarly we can see that D(s)g(r) = 

G(s)d(r) = 0. Thus we obtain (DG)(rs) = (DG)(r)s for all r, sM, , which completes the 

proof. 

Theorem 3.9 Let (D, d) and (G, g) be generalized derivations of M. Then the following conditions 

are equivalent. 

(i) (DG, dg) is a generalized derivation. 

(ii) (GD, gd) is a generalized derivation. 

(iii) D and g are orthogonal, and G and d are orthogonal. 

Proof. (i)   (iii) Assume that (DG, dg) is a generalized derivation. Thus, as in the proof of the 

Theorem 3.6, (v)   (i) we obtain G(x)d(y) + D(x)g(y) = 0 for all x, yM, . Replacing y 

by yβz in the above relation, where zM, β, we get G(x)αyβd(z) + D(x)αyβg(z) = 0 for all x, 

yM, , β. Since (DG, dg) is a generalized derivation, dg is a derivation. Therefore d and g are 

orthogonal. Thus we have 0 = G(x)αg(z)βyd(z) + D(x)αg(z)βyg(z) = D(x)αg(z)βyg(z) for all x, 

y, zM, , β, . Hence we get D(x)g(z)MD(x)g(z) = 0 for all x, zM. By the 

semiprimeness of M, we obtain D(x)αg(z) = 0 for all x, zM, α. Thus D(x)αyβg(z) = 0 for all x, 

y, zM, α, β, and we have G(x)αyβd(z) = 0 for all x, y, zM, α, β. 

(iii)   (i) Since D and g are orthogonal, we get D(x)αyβg(z) = 0 for all x, y, zM, α, β. 

Substituting rx for x in the last relation, we arrive at 0 = D(rx)αyβg(z) = D(r)xαyβg(z) + 

rd(x)αyβg(z) = rd(x)αyβg(z) for all r, x, y, zM, α, β, . Hence d(x)αyβg(z) = 0 for all x, y, 

zM, α, β,  by the semiprimeness of M. Thus, we conclude that dg is a derivation. Moreover 

since D(x)αyβg(z) = 0 for all x, y, zM, α, β, we also get D(x)(g(z)MD(x))g(z) = 0 and so 

D(x)g(z) = 0 for all x, zM, by the semiprimeness of M. Similarly, since G and d are orthogonal, 

we have G(x)αd(y) = 0 for all x, yM, α. Thus we obtain DG(xαy) = DG(x)αy + xαdg(y) for all 

x, yM, α, which means that (DG, dg) is a generalized derivation.  

(ii)   (iii) is proved in a similar way. 

Theorem 3.10. Let (D, d) and (G, g) be generalized derivations of M and l(I) = 0. Then the 

following conditions are equivalent. 

(i) (DG, dg) is a generalized derivation on I.  

(ii) (GD, gd) is a generalized derivation on I. 

(iii) D and g are orthogonal, and G and d are orthogonal. 

Proof. The proof is clear by Theorem 3.8 and 3.9. 

Corollary 3.11. Let (D, d) be a generalized derivations of M and l(I) = 0. If (D
2
, d

2
) is a 
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generalized derivation on I, then d = 0. 

Proof. The fact that (D
2
, d

2
) is a generalized derivation on I is implies that d and d are orthogonal. 

Therefore we get d = 0 by the semiprimeness of M. 

Corollary 3.12. Let (D, d) be a generalized derivations of M and l(I) = 0. If D(x)D(y) = 0 for all 

x, yI, , then D = d = 0. 

Proof. By the hypothesis we have 0 = D(x)D(yz) = D(x)D(y)z + D(x)yd(z) = D(x)yd(z) 

for all x, y, zI, , . In particular, we see that d(z)D(x) = 0 for all x, zI, ,  by Lemma 

2.3. Replacing x by xy in the last relation we get 0 = d(z)D(x)y + d(z)xd(y) = d(z)xd(y) for 

all x, y, zI, , . Hence we obtain d(s)Md(r) = 0 for all s, rM. In particular d(s)Md(s) = 

0 for all sM. Thus d = 0 by the semiprimeness of M. Then we have 0 = D(xαz)βD(y) = 

D(x)αzβD(y) for all x, y, zI, , β. By Lemma 3.1, we arrive at D(r)MD(s) = 0 for all r, 

sM. In particular, D(r)MD(r) = 0 for all rM, which implies D = 0, as desired. 
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