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ABSTRACT 

In this paper, we compute the Christoffel Symbols of the first kind, Christoffel Symbols of the 

second kind, Geodesics, Riemann Christoffel tensor, Ricci tensor and Scalar curvature from a 

metric which plays a fundamental role in the Riemannian geometry and modern differential 

geometry, where we consider MATLAB as a software tool for this implementation method. Also 

we have shown that, locally, any Riemannian 3-dimensional metric can be deformed along a 

directioninto another metricthat is conformal to a metric of constant curvature.   

 
Keywords: Riemannian Geometry, Computational Method, Flat Deformation. 

 
1. Introduction  

The purpose of this section is to discuss an implementation method on n-dimensional Riemannian 

manifolds using a computer technique. A Riemannian manifold is a differentiable manifold in 

which each tangent space is equipped with an inner product       in a manner which varies 

smoothly from point to point. All differentiable manifolds (of constant dimension) can be given 

the structure of a Riemannian manifold. Geodesics plays an important role in many applications, 

especially in nuclear physics, image processing. OvidiuCalin and Vittorio Mangione [1] 

considered the Heisenberg manifold structure to provide a qualitative characterization for 

geodesics under nonholonomic constraints. Our implementation approach can successfully well 

illustrate the important parameters such as Christoffel coefficients that are required in the 

determination of tensors. This symbol appears in many calculations in Geometry where we use 

non-Cartesian coordinates. In  -dimensions it has a total of    components. Thus, whereas it is 

easy to compute this symbol in 2 or 3 dimensions, it becomes highly tedious to evaluate 

components of the Christoffel symbols in higher dimensions but it is quite an easy task to deal 

with such situations if one can use algebraic computations for this purpose. However, it is not 

always possible to have the readymade routines available that can be used in situations like this. 

Thus, it is of great use if one can write small routines to algebraically compute such expressions.  

                                                 
 GANIT:  Journal of Bangladesh Mathematical Society, 2019 
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2. Riemannian Metrics and Levi-Civita Connection 

Let   be a smooth manifold. A bilinear symmetric positive-definite form 

                   

defined for every     and smoothly  depending  on   is called a Riemannian metric on  . 

Positive-definite means that              for every              . Smoothly depending on   

means  that  for every pair         of    smooth vector  fields on    the  expression             

defines a   -smooth  function of      . 

Alternatively, consider a  coordinateneighbourhood on    containing    and  let         

           be the  local coordinates.   Then any two tangent vectors            may be written 

as         ⁄      ,        ⁄      and                  
    where the functions        

     ⁄         ⁄       express the coefficients of the metric   in local co-ordinates. One often uses 

the following notation for a metric in local coordinates        
    . The bilinear form 

(metric)   will be smooth if and only if the local coefficients            are smooth functions of 

local coordinates    on each coordinate neighbourhood.    

Theorem 2.1. Any smooth manifold   can be given a Riemannian metric. [5] 

Definition 2.1. A connection on a manifold   is a connection on its tangent bundle   . A

choice of local coordinates   on   determines a choice of local trivialization of    (using the 

basis vector fields 
 

    on coordinate patches). The transition function   for two trivializations of 

   is given by the Jacobi matrices of the corresponding change of coordinates (  
 )  (

   

   ). 

Let    
  be the coefficients (Christoffel symbols) of a connection on   in local coordinates   . For 

any other choice    of local coordinates the transition law on the overlap becomes 

   
     

    

   

   

   

   

   
 

   

   

    

      
 

One can see from the above formula that if    
  are the coefficients of a connection on   then    

  

also are the coefficients of some well-defined connection on   (in general, this would be a 

different connection). The difference    
     

     
  is called the torsion of a connection (   

 ). The 

transformation law for    
  is  

   
     

    

   

   

   

   

   , 

thus the torsion of a connection is a well-defined anti-symmetric bilinear map sending a pair of 

vector fields     to a vector field           
     on  . 

Theorem 2.2. On any Riemannian manifold       there exists a unique connection   such that 

(1)                                      for any vector fields       on  ; and 

(2) the connection   is symmetric, where   is called the Levi–Civita connection of the metric  . 
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The condition (1) in the above theorem is sometimes written more neatly as 

                                

 

3. Geodesics on a Riemannian Manifold 

Let       be a vector bundle endowed with a connection     
  . A parameterized smooth curve 

on the base   may be written in local coordinates by      . A lift of this curve to E is locally 

expressed as               using local trivialization of the bundle   to define coordinates    along 

the fibres. A tangent vector   ̇     ̇                      to a lifted curve will be horizontal at 

every   precisely when      satisfies a linear ODE 

 ̇     
        ̇    

where     1, . . . , rank       1, . . . , dim    Now if        then there is also a canonical lift 

of any smooth curve      on the base, as ̇            

Definition 3.1. A curve      on a Riemannian manifold   is called a geodesic if  ̇    at every   is 

horizontal with respect to the Levi–Civita connection. The condition for a path in   to be a 

geodesic may be written explicitly in local coordinates as 

 ̈     
      ̇  ̇    

a non-linear second-order ordinary differential equation for a path              (here        

            ). By the basic existence and uniqueness theorem from the theory of ordinary 

differential equations, it follows that for any choice of the initial conditions         ̇        

there is a unique solution path      defined for       for some positive  . Thus for any     

and       there is a uniquely determined (at least for any small    ) geodesic with this initial 

data (i.e. „coming out of   in the direction  ‟). 

Proposition 3.1. If      is a geodesic on       then   ̇        constant. 

 

4. Curvature of a Riemannian Manifold 

Let   be a metric on a manifold  . The (full) Riemann curvature          of   is, by definition, 

the curvature of the Levi–Civita connection of  . Thus      
             locally a matrix of 

differential  -forms    
 

 
      

            ,                         . The coefficients 

      
   form the Riemann curvature tensor of      . Given two vector fields    , one can form an 

endomorphism field                    ; its matrix in local coordinates is         
   

     
      (as usual               . Denote                          (here   is any 

point in the coordinate neighbourhood). In local coordinates a connection (covariant derivative) 

may be written as      , with      
         

 . We write 

       

   

 
 

   
   . 
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The definition of the curvature form of a connection yields an expression in local coordinates 

     
  (    

 

        
 

   )
 

  or     [     ] 

considering the coefficient at          . Now          So we have 

 [     ]   [      
   ]         

                    
                                

                           [   ]    

We have thus proved. 

Proposition 4.1. 

(i)                       (ii)      
       

       
    (iii)               

Proof. (i) The first equality is clear. For the second equality, one has, from the definition of the 

Levi–Civita connection, 
    

     (  
 

    
 

   )   (
 

      
 

   ) and further 

     

        (    
 

    
 

   )   (  
 

      
 

   )   (  
 

      
 

   )    (
 

        
 

   ) 

The right-hand side of the above expression is symmetric in     as
     

       
     

      . The anti-

symmetric part of the right-hand side (which has to be zero) equals              . 

(ii) Firstly,(  
 

   )
 

    
  (  

 

   )
 

 , by the symmetric property of the Levi–Civita. The claim 

now follows by straightforward computation.  

(iii) Multiplying (ii) by     gives                        similarly                      

                         and                        

Adding up the four identities and making cancellations using (i) (the „octahedron trick‟) gives the 

required result. 

There are natural ways to extract “simpler” quantities (i.e. with less components) from the 

Riemann curvature tensor. 

Definition 4.1. The Ricci curvature of a metric   at a point                     , is the trace 

of the endomorphism              of     depending on a pair of tangent vectors          

Thus in local coordinates        is expressed as a matrix              ,        ∑      
 

 . That 

is, the Ricci curvature at   is a bilinear form on    . A consequence of Proposition4.2 (iii) is that 

this bilinear form is symmetric,              . 

Definition 4.2. The scalar curvature of a metric   at a point                    is a smooth 

function on   obtained by taking the trace of the bilinear form       with respect to the metric  . 

If local coordinates are chosen so that             , then the latter definition means that       

 ∑         ∑              . For a general    , the formula may be written as    ∑          , 

where     is the induced inner product on the cotangent space with respect to the dual basis, 

algebraically (   ) is the inverse matrix of (   ). 
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5. Computer Code 

In the current section, we have presented our developed computer code with an example. We have 

developed this code by using a mathematical programming language MATLAB [8]. 

Example 5.1. Consider the metric for the three-sphere in coordinates             is given by 

[2]  

                            

MATLAB Code 1: (Calculating the Christoffel symbols of  the first kind) 

function [p]=christoffels1(i,j,k,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 (sin(shi)*sin(theta))^2]; 

result=diff(metric(j,k),coord(i))+diff(metric(i,k),coord(j))-

diff(metric(i,j),coord(k)); 

p=(1/2)*result; 

end 

If we run the above code for a particular input, then we will get a corresponding output. The 

followings are nonvanishing components and all other components are zero. 

Input: christoffels1(1,2,2) 

Output:  cos(shi)*sin(shi) 

Input: christoffels1(1,3,3) 

Output: cos(shi)*sin(shi)*sin(theta)^2 

Input: christoffels1(2,1,2) 

Output: cos(shi)*sin(shi) 

Input: christoffels1(2,2,1) 

Output: -cos(shi)*sin(shi) 

Input: christoffels1(2,3,3) 

Output: cos(theta)*sin(shi)^2*sin(theta) 

Input: christoffels1(3,1,3) 

Output: cos(shi)*sin(shi)*sin(theta)^2 

Input: christoffels1(3,2,3) 

Output: cos(theta)*sin(shi)^2*sin(theta) 

Input: christoffels1(3,3,1) 
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Output:-cos(shi)*sin(shi)*sin(theta)^2 

Input: christoffels1(3,3,2) 

Output:-cos(theta)*sin(shi)^2*sin(theta) 

MATLAB Code 2:  (Calculating the Christoffel symbols of  the second kind) 

function [e]=christoffels2(l,i,j,shi,theta,phi) 

symsshithetaphi; 

coord =[shi theta phi]; 

metric = [1 0 0;0 (sin(shi))^2 0;0 0 (sin(shi)*sin(theta))^2]; 

inversemetric = inv(metric); 

e=0; 

for k=1:3 

e=e+((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(i))+diff

(metric(i,k),coord(j))-diff(metric(i,j),coord(k))))); 

end 

end 

If we run the above code for a particular input, then we will get a corresponding output. The 

followings are nonvanishing components and all other components are zero. 

Input: christoffels2(1,2,2) 

Output: -sin(shi)*cos(shi) 

Input: christoffels2(1,3,3) 

Output: -sin(shi)*cos(shi)*sin(theta)^2 

Input: christoffels2(2,1,2) 

Output: cos(shi)/sin(shi) 

Input: christoffels2(2,2,1) 

Output: cos(shi)/sin(shi) 

Input: christoffels2(2,3,3) 

Output: -cos(theta)*sin(theta) 

Input: christoffels2(3,1,3) 

Output: cos(shi)/sin(shi) 

Input: christoffels2(3,2,3) 

Output: cos(theta)/sin(theta) 

Input: christoffels2(3,3,1) 
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Output: cos(shi)/sin(shi) 

Input: christoffels2(3,3,2) 

Output: cos(theta)/sin(theta) 

MATLAB Code 3: (Calculating the geodesic) 

function [final]=geodesic(l) 

symsshithetaphiderivative(shi)derivative(theta)derivative(phi); 

d =[derivative(shi) derivative(theta) derivative(phi)]; 

coord =[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 (sin(shi)*sin(theta))^2]; 

inversemetric = inv(metric); 

s = 0; 

for i = 1:3 

for j = 1:3 

q = 0; 

p = 1; 

for k = 1:3 

q = q +((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(i))+ 

diff(metric (i,k),coord(j))-diff(metric(i,j),coord(k))))); 

end 

p = p*q*d(i)*d(j); 

s = s + p; 

end 

end 

final= s*(-1); 

disp('derivative of'); 

disp(d(l)); 

end 

If we run the above code for a particular input, then we will get a corresponding output.  

Input: geodesic(l) 

Output:  derivative of 

derivative(shi) = cos(shi)*sin(shi)*derivative(phi)^2*sin(theta)^2 

+ cos(shi)*sin(shi)*derivative(theta)^2 
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Input:  geodesic(2) 

Output: derivative of 

derivative(theta)= 

derivative(phi)^2*cos(theta)*sin(theta)-(2*cos(shi)*derivative 

(shi) * derivative(theta))/sin(shi) 

Input: geodesic(3) 

Output: derivative of 

derivative(phi)= 

- (2*derivative(phi)*cos(shi)*derivative(shi))/sin(shi)-(2* 

derivative(phi)*cos(theta)*derivative(theta))/sin(theta) 

MATLAB Code 4: (Calculating the Riemann Christoffel tensor) 

function [a]= reichris(l,i,j,r1,shi,theta,phi) 

symsshithetaphi; 

coord =[shi theta phi]; 

q = 0; 

for s = 1:3 

p=diff(christoffels2(l,i,r1,shi,theta,phi),coord(j))-diff 

(christoffels2(l,i,j,shi,theta,phi),coord(r1)); 

q = q + christoffels2(l,s,j,shi,theta,phi)*christoffels2(s,i,r1, 

shi, theta,phi)-christoffels2(l,s,r1,shi,theta,phi)* christoffels2 

(s,i,j, shi, theta,phi); 

a = p + q; 

end 

function [e]=christoffels2(l,i,j,shi,theta,phi) 

symsshithetaphi; 

coord =[shi theta phi]; 

metric =[1 0 0;0 (sin(shi))^2 0;0 0 (sin(shi)*sin(theta))^2]; 

inversemetric = inv(metric); 

e = 0; 

for k = 1:3 

e = e+((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(i))+ 

diff(metric(i,k),coord(j))-diff(metric(i,j),coord(k))))); 

end 
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end 

end 

If we run the above code for a particular input, then we will get a corresponding output. The 

followings are nonvanishing components and all other components are zero or are related via 

symmetries. 

Input: reichris(1,2,1,2) 

Output:  sin(shi)^2 

Input: reichris(1,3,1,3) 

Output:  sin(shi)^2*sin(theta)^2 

Input: reichris(2,3,2,3) 

Output:  sin(shi)^2*sin(theta)^2 

MATLAB Code 5: (Calculating the Ricci tensor) 

function [f]=ricci(i,r1,shi,theta,phi) 

symsshithetaphi ; 

f = 0; 

for j = 1:3 

f = f+reichris(j,i,j,r1,shi,theta,phi); 

end 

function [a]= reichris(l,i,j,r1,shi,theta,phi) 

symsshithetaphi; 

coord =[shi theta phi]; 

q = 0; 

for s = 1:3 

p=diff(christoffels2(l,i,r1,shi,theta,phi),coord(j))-

diff(christoffels2(l,i,j,shi,theta,phi),coord(r1)); 

q=q+christoffels2(l,s,j,shi,theta,phi)*christoffels2(s,i,r1,shi,th

eta,phi)-christoffels2(l,s,r1,shi,theta,phi)*christoffels2(s,i,j, 

shi,theta,phi); 

a = p + q; 

end 

 

function [e]=christoffels2(l,i,j,shi,theta,phi) 

symsshithetaphi; 
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coord=[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 (sin(shi)*sin(theta))^2]; 

inversemetric=inv(metric); 

e=0; 

for k=1:3 

e=e+((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(i))+diff

(metric(i,k),coord(j))-diff(metric(i,j),coord(k))))); 

end 

end 

end 

end 

If we run the above code for a particular input, then we will get a corresponding output. The 

followings are nonvanishing components and all other components are zero.  

Input: ricci(1,1) 

Output:  2 

Input: ricci(2,2) 

Output:  2sin(shi)^2  

Input: ricci(3,3) 

Output:  2sin(shi)^2*sin(theta)^2 

MATLAB Code 6: (Calculating the scalar curvature tensor) 

function [c]=scalar(shi,theta,phi) 

symsshithetaphi; 

metric =[1 0 0;0 (sin(shi))^2 0;0 0 (sin(shi)*sin(theta))^2]; 

inversemetric = inv(metric); 

c = 0; 

for i = 1:3 

for r1 = 1:3 

c = c +(inversemetric(i,r1)*ricci(i,r1,shi,theta,phi)); 

end 

end 

function [f] = ricci(i,r1,shi,theta,phi) 

symsshithetaphi; 
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f=0; 

for j=1:3 

f=f+reichris(j,i,j,r1,shi,theta,phi); 

end 

function [a]=reichris(l,i,j,r1,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

q=0; 

for s=1:3 

p=diff(christoffels2(l,i,r1,shi,theta,phi),coord(j))-

diff(christoffels2(l,i,j,shi,theta,phi),coord(r1)); 

q=q+christoffels2(l,s,j,shi,theta,phi)*christoffels2(s,i,r1,shi,th

eta,phi)-

christoffels2(l,s,r1,shi,theta,phi)*christoffels2(s,i,j,shi,theta,

phi); 

a=p+q; 

end 

 

function [e]=christoffels2(l,i,j,shi,theta,phi) 

symsshithetaphi; 

coord=[shi theta phi]; 

metric=[1 0 0;0 (sin(shi))^2 0;0 0 (sin(shi)*sin(theta))^2]; 

inversemetric=inv(metric); 

e=0; 

for k=1:3 

e=e+((1/2)*sum(inversemetric(l,k)*(diff(metric(j,k),coord(i))+diff

(metric(i,k),coord(j))-diff(metric(i,j),coord(k))))); 

end 

end 

end 

end 

end 

If we run the above code, then we will get the following output. 
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Input: scalar 

Output:  6 

 

6. Three-Dimensional Metrics as Deformations of a Constant Curvature Metric 

It is known, since an old result by Riemann, that a  -dimensional metric has           

  degrees of freedom, that is, it is locally equivalent to the giving of  functions. As this feature is 

related to some particular choices of local charts, which are obviously non-geometric objects, it 

seems to be generically a not covariant property. 

According to it, a two-dimensional metric has     degrees of freedom. In this case, however, a 

stronger result holds, as it is well known [4], namely: any two-dimensional metric g is locally 

conformally flat,     ,   being the conformal deformation factor and   the flat metric. 

Contrarily to what the above Riemann‟s general result suggests, the two dimensional case is 

intrinsic and covariant, i.e. it only needs the knowledge of the metric  and only involves tensor 

quantities, specifically, the sole degree of freedom is represented by a scalar, the conformal 

deformation factor  . The question thus arises of, whether or not, for     there exist similar 

intrinsic and covariant local relations between an arbitrary metric , on the one hand, and the 

corresponding flat one  together with a set of   covariant quantities on the other. To our 

knowledge, no result of this type has been published. Indeed, the known results concerning the 

diagonalization of any three-dimensional metric do not belong to this type. As a matter of fact, 

besides the     scalars and the (more or less implicit) flat metric, these results also involve a 

particular orthogonal triad of vector fields. Also, in the context of the General Theory of 

Relativity, such a  -dimensional relation has been proposed by one of us, but unfortunately it 

remains for the moment only a mere conjecture [3]. 

In this section we shall answer affirmatively the three-dimensional case. This 

dimension is the solution to the equation    , so that one is tempted to take (the components of) 

a vector field as the covariant set (of     quantities). On the other hand, the result being 

deliberately local, it would seem that the essentials of the flat metric in this matter is its minimal 

freedom, i.e. the maximal dimension of its isometry group, so that it should be possible to 

substitute it by a prescribed constant curvature metric. We shall see that both assumptions work. In 

fact, this section is devoted to prove the following main result: 

Theorem 6.1.Any three-dimensional metric  may be locally obtained from a constant curvature 

metric,  , by a deformation like 

                                                             (6.1) 

where   and  are respectively a scalar and a one-form, the sign      and a functional relation 

between   and the Riemannian norm of  can be arbitrarily prescribed.  
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This result should be interesting in geometrical as well as in physical situations. 

In geometry, perhaps one of the first questions to be answered is the following: In two dimensions 

it is known that the gauge of the conformal factor  or, equivalently, the set of flat metric tensors 

conformal to a given metric is given by the solutions of the Laplacian,      [7]. 

In classical physics, the above theorem should be useful in (finite) deformation theory of 

materials; equation (6.1) may be considered as an ideal universal deformation law, allowing, from 

an unconstrained or not initial state (described in material coordinates by the tensor  ), to reach 

any other deformation state (described in the same coordinates by the tensor  ). This ideal 

universal law allows to associate, to every deformation state of a material, a vector field   among 

those of the gauge class of the flat metric.  

In general relativity, any vacuum space-time is locally equivalent to its Cauchy data, 

{   }  being the spatial metric and  the extrinsic curvature of the initial instant. These data have 

to verify the constraint equations, a set of four equations for which many years ago Lichnerowicz 

showed [6] that to every arbitrarily given metric    it corresponds a unique solution {   } such 

that       .This beautiful result is however useless for precise physical situations because, 

 being initially unknown, one does not see how to choose the good starting metric   , which has 

to give  by conformity. Such an objection may be eliminated using (6.1) in the constraint 

equations. Our theorem also allows to translate notions such as asymptotic flatness or spatial 

singularity in terms of the differential 1-form  over a flat metric  .  

6.1.  Flat Deformation of a Given Metric 

Instead of proving theorem 6.1 as stated in the introduction, we shall prove the 

following equivalent result: 

Theorem 6.2. Let       be a Riemannian 3-manifold. There locally exist a function   and a 

differential 1-form   such that the tensor 

                                                          (6.2) 

(with     ) is also a Riemannian metric with constant curvature. Besides, an 

arbitrary relation between   and              can be imposed in advance.The equivalence 

between both theorems follows immediately on substituting 

    ,       ,     
 

   into equation (6.1). The present formulation (6.2) stresses that we 

seek to derive   from a given  .  

The proof is based on the comparison of the Riemannian geometries respectively defined by   and 

  .  

We start by considering the Riemannian connections   and   . In an arbitrary frame {  }        the 

expression (6.2) reads:  

  
  

         with                                     (6.3) 



84 Nazimuddin and Ali 

We shall consider the difference tensor: 

   
 

   
  
 

    
 

(6.4) 

which is symmetric: 

   
 

    
 

 (6.5) 

because both connections are torsion free.  

Now, since          
   

 
  

  and taking (6.5) into account, we easily obtain that: 

   
 

 
 

 
[                                         ] 

        (6.6) 

where 

        (    
 

    
   ), with                           (6.7) 

is the inverse metric for   
  

. 

For the sake of illustration we shall consider an example of 3-dimensional Riemannian manifolds 

and locally deform them into flat metrics, in the sense stated in theorem 6.2.  

Example 6.1. (Schwarzschild Space) 

The title is a shortening for the space 3-manifold for Schwarzschild coordinates in Schwarzschild 

spacetime. The metric is: 

 ̃                                                    (6.8) 

with    
  

 
, in the region      (otherwise the metric is not Riemannian). 

This metric can be deformed into a flat metric in several ways. Among others: 

(A)  Choosing   √        , we readily obtain: 

 ̃         

where                                 is flat. 

(B) It is well known that changing r into the coordinate 

                                        
 

 
( √     ),              (  

 

  
)
 

 

the metric becomes:  ̃     , where 

                (  
 

  
)
 

,                                       

is a flat metric.We have shown that, locally, any Riemannian 3-dimensional metric  can be 

deformed along a direction  into a metric   that is conformal to a metric of constant curvature, as 

stated in theorem 6.1.  

6. Conclusion 
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Whereas algebraic softwares have made many lengthy and tedious calculations possible through 

various packages, it is quite difficult to write one's own codes without having much of a 

programming skill. It is interesting to note that despite being extremely simple, the described 

routine is quite powerful in its own right as it can evaluate Christoffel symbols, geodesics, Ricci 

tensor, Riemannian Christoffel tensor, Scalar curvature in any coordinated system in any arbitrary 

dimension. Also deformations of a metric of constant curvature is very important in Riemannian 

geometry where the direction  is not uniquely determined by the metric  , and the decomposition 

(6.1) can be achieved in an infinite number of ways. Determining more precisely the class of  and 

 which deform a given  into a constant curvature metric  will be the object of future work. 

Specially the case where both,  and   are flat. 
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