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ABSTRACT 

In the star puzzle, there are four pegs, the usual three pegs, S, P and D, and a fourth one at 0. 

Starting with a tower of n discs on the peg P, the objective is to transfer it to the peg D, in minimum 

number of moves, under the conditions of the classical Tower of Hanoi problem and the additional 

condition that all disc movements are either to or from the fourth peg. Denoting by MS(n) the 

minimum number of moves required to solve this variant, MS(n) satisfies the recurrence relation  

0)0(;2,}13)(2{11)(
min

 MSnknMSnknMS k
. This paper studies rigorously 

and extensively the above recurrence relation, and gives a solution of it. 
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1. Introduction 

The star puzzle, due to Stockmeyer [6], is as follows : There are four pegs, the usual three pegs S, 

P and D, and a fourth one at 0. Initially, the n discs, d1, d2, …, dn, rest on the source peg, S, in a 

tower (with the smallest disc at the top, the second smallest above it, and so on, with largest disc at 

the bottom), as shown in the figure below. The objective is to transfer the tower from S to the 

destination peg, D, in minimum number of moves, (using the auxiliary peg P), under the 

conditions that (1) each move can shift only the topmost disc from one peg to another, (2) no disc 

can be placed on top of a smaller one, and (3) each disc movement is either to or from 0. 

 

 

 

 

 

 
 

Fig. 1.1 : The Star Puzzle 
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Let MS(n) be the minimum number of moves required to solve the star puzzle with n (
  

1) discs. 

To find the recurrence relation satisfied by MS(n), we consider the following scheme to transfer 

the tower of n discs from the source peg, S, to the destination peg, D. 

Step 1 : move the topmost tower of n
 
–

 
k discs from the peg S to the peg P, using the available four 

pegs, in (minimum) MS(n – k) moves. 

Step 2 : shift the k discs (resting on the peg S) to the peg D. Clearly, only three pegs are available. 

In this step, the three pegs S, 0 and D (in this order) may be treated as being arranged in a row, 

forming the three-in-a-row puzzle with k discs. The minimum number of moves involved is 3
k 
–

 
1. 

Step 3 : transfer the tower of n
 
–

 
k discs from the peg P to the peg D, completing the tower on the 

peg D, in (minimum) MS(n
 
–

 
k) moves. 

Thus, the total number of moves required is FS(n,
 
k)

 


 
2

 
MS(n

 
–

 
k)

 
+

 
3

k
 – 1, where k (1

 
≤

 
k

 
≤

 
n

 
–

 
1) is 

such that FS(n,
 
k) is minimized. Therefore, MS(n) satisfies the following dynamic programming 

equation 

0)0(;2,}13)(2{11)(
min

 MSnknMSnknMS k                                     (1.1) 

with 

MS(0)
 
=

 
0, MS(1)

 
=

 
2,                                                                               (1.2) 

with the convention that MS(1) is attained at the point k = 1. 

Step 2 of the scheme involves a three-in-a-row puzzle, and we refer to Scorer, Grundy and Smith 

[5] and Majumdar [1] for details on the three-in-a-row puzzle. 

Since 3
k 
–

 
1 is even for all k

  
1, we see that the term inside the curly brackets on the right-hand 

side of (1.1) is even. Thus, MS(n) is even for all n
  

1. Let 

MSM(n) = 
MS(n)

2
                                                                                     (1.3) 

Then, we have the following result. 

Lemma 1.1 : MS(n) is attained at k
 
=

 
K if and only if MSM(n) is attained at k

 
=

 
K. 

Proof : is evident from the defining equation (1.3). 

It may be noted here that, the recurrence relation satisfied by MSM(n) is 

2,)13(
2

1
)(2min)(

11













nknMSMnMSM k

nk
  (1.4) 

with 

MSM(0)
 
=

 
0, MSM(1)

 
=

 
1.                                                                        (1.5) 
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Let 

an =
 
MSM(n) – MSM(n –1) for all n

  
1.                                                  (1.6) 

Let the sequence  
1nnb  be defined as follows : 

bn =
 
2

i 
3

m
, i

 
≥

 
0, m

 
≥

 
0,                                                                               (1.7) 

arranged in increasing order. In this paper, we give a rigorous proof of the result that 

an = bn for all n  1, 

by showing that an and bn satisfy the same recurrence relation. This is done in Section 3. In Section 

2, we give some preliminary results related to MSM(n). 

 

2. Some Preliminary Results 

Some local-value relationships satisfied by MS(n) have been derived in Majumdar [3]. By Lemma 

1.1, they may be adapted to MSM(n), and are given below. 

Lemma 2.1 : For any integer n
 
≥

 
1, 

(a) 0
 
<

 
MSM(n

 
+

 
1) – MSM(n)

 
<

 
MSM(n

 
+

 
2) – MSM(n

 
+

 
1) 

 ≤
 
2{MSM(n

 
+

 
1) – MSM(n)}, 

(b) MSM(n) is attained at a unique value of k. 

Corollary 2.1 : For any integers m
 


 
1, n

 


 
1, 

MSM(n
 
+

 
1) – MSM(n)

 
=

 
MSM(m

 
+

 
1) – MSM(m)                                      (1) 

if and only if m
 
=

 
n. 

Proof : The proof of the “if” part is trivial. To prove the “only if” part, let the equality (1) hold true 

for some integers m and n. Now, if m
 


 
n, then either m

 
>

 
n or n

 
>

 
m. In either case, part (a) of 

Lemma 2.1 is violated. 

Lemma 2.2 : Let MSM(n) be attained at the point k = k1 and MSM(n + 1) be attained at    the point k
 

=
 
k2. Then, k1 ≤ k2 ≤

 
k1 +

 
1. 

Lemma 2.2 above states that, if MSM(n) is attained at the point k
 
=

 
K, then  MSM(n

 
+

 
1) is attained 

either at  

k
 
=

 
K or at k

 
=

 
K

 
+

 
1. 

Corollary 2.2 : Let MSM(n) be attained at k = K and MSM(n + 1) be attained at k
 
=

 
K

 
+

 
1. Then, 

MSM(n + 2) is attained at k = K + 1. 

Lemma 2.3 : Let MSM(n) – MSM(n – 1) be of the form 3
m
 for some integers n

 


 
1, m ≥ 0. Let MS(n) 

be attained at k = K. Then, MS(n – 1) is attained at k = K – 1, and MSM(n
 
+

 
1) is attained at k

 
=

 
K. 
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Lemma 2.4 : Let, for some N ≥ 1, MSM(N – 1) be attained at k
 
=

 
K and MSM(N) be attained at k = K

 

+
 
1, so that 

MSM(N) – MSM(N
 
–

 
1)

 
=

 
3

K
.                                                                    (2.1) 

Then, there is an integer M
 
≥

 
1 such that 

MSM(N
 
+

 
M

 
+

 
1) – MSM(N + M) = 3

K  + 1
,                                                (2.2) 

with M
 
=

 
1 if and only if N

 
=

 
1 (so that K

 
=

 
0). 

Moreover, M
 
>

 
K. 

Proof : The first part of the lemma has been established in Majumdar [3]. It then remains to show 

that M
 
>

 
K. 

Now, for any integer L with N
 
<

 
L

 
<

 
M, MSM(N

 
+

 
L

 
+

 
1) and MSM(N

 
+

 
L) both are attained at the 

point k
 
=

 
K

 
+

 
1, so that 

MSM(N
 
+

 
L

 
+

 
1) – MSM(N

 
+

 
L) 

=2[MSM(N
 
+

 
L

 
–

 
K) – MSM(N

 
+

 
L

 
–

 
K

 
–

 
1)]. 

Choosing L
 
=

 
K, we get 

MSM(N
 
+

 
K

 
+

 
1) – MSM(N

 
+

 
K)

  

=
 
2[MSM(N) – MSM(N

 
–

 
1)]

 
=

 
2.3

K
,                                                        (2.3) 

where, in the last equality, we have made use of (2.1). The above equality, in view of (2.2), shows 

that M
 
>

 
K. 

To complete the proof of the lemma, we have to show that, M
 
=

 
1 in (2.2) if and only if   N

 
=

 
1 

(and K
 
=

 
0). Now, (2.2) with N

 
=

 
1 (and K

 
=

 
0) reads as 

MSM(M
 
+

 
2) – MSM(M

 
+

 
1)

 
=

 
3. 

Since MSM(3) – MSM(2)
 
=

 
3, it follows, by virtue of Corollary 2.1, that M

 
=

 
1. 

Again, if M
 
=

 
1 in (2.2), we get 

MSM(N
 
+

 
2) – MSM(N

 
+

 
1)

 
=

 
3

K + 1
.                                                            (2) 

From (2.1), (2.3) and (2), we must have K
 
=

 
0. 

An implication of Lemma 2.4 is that, there are infinitely many integers N such that MSM(N) – 

MSM(N
 
–

 
1) is of the form 3

K
 for some integer K

  
0. 

Given any integer N (
  

1), by part (b) of Lemma 2.1, there is a unique integer K (
  

1) such that 

MSM(N) is attained at k
 
=

 
K. Now, given any integer K (

  
1), is there an integer N (

  
1) such that 

MSM(N) is attained at k
 
=

 
K? The following proposition answers the question in the affirmative. 
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Proposition 2.1 : Given any integer K
  

1, there is an integer N
  

1 such that MSM(N) is attained at 

the point k
 
=

 
K

  
1. 

Proof : The proof is by induction on K. The result is true for K
 
=

 
1 with N

 
=

 
1. So, we assume that 

the result is true for some integer K
  

1, that is, we assume that, for K (
  

1), there is an integer N 

such that MSM(N) is attained at k
 
=

 
K, so that 

MSM(N) = 2MSM(N – K)
 
+ 1

2
(3

K
 – 1). 

Now, by Lemma 2.2, MSM(N
 
+

 
1) is attained either at k

 
=

 
K, or else, at k

 
=

 
K

 
+

 
1. If MSM(N

 
+

 
1) is 

attained at k
 
=

 
K

 
+

 
1, the proof by induction is complete. Otherwise,   MS(N

 
+

 
1) is attained at k

 
=

 

K, so that 

MSM(N + 1) = 2MSM(N – K + 1) +
1

2
 (3

K
 – 1) 

                       < 2MSM(N – K)
 
+

1

2
 (3

K+1
 – 1), 

and hence 

MSM(N
 
+

 
1) – MSM(N)

 
<

 
3

K
. 

Now, if MS(N
 
+

 
2) is attained at k

 
=

 
K

 
+

 
1, the proof is complete; otherwise 

MSM(N + 2) = 2MSM(N – K + 2)
 
+

1

2
 (3

K
 – 1) 

< 2MSM(N – K + 1)
 
+

1

2
 (3

K+1
 – 1), 

giving 

MSM(N
 
+

 
2) – MSM(N

 
+

 
1)

 
<

 
3

K
. 

Thus, MSM(N
 
+

 
1), MSM(N

 
+

 
2), …, MSM(N

 
+

 
m), … are all attained at k

 
=

 
K, with 

MSM(N + i) – MSM(N + i – 1) < 3
k
, i = 1, 2, … . 

But since the sequence   11()( niNMSMiNMSM  is strictly increasing in i (
 


 
1) (by part 

(a) of Lemma 2.1), there is an integer m (
  

1) such that 

MSM(N
 
+

 
m) – MSM(N

 
+

 
m

 
–

 
1)

  
3

K
. 

For the minimum such m, say, m
 
=

 
M, MSM(N

 
+

 
M

 
–

 
1) is attained at the point k

 
=

 
K but     MSM(N

 

+
 
M) is attained at k

 
=

 
K

 
+

 
1, with 

MSM(N
 
+

 
M) – MSM(N

 
+

 
M

 
–

 
1)

 
=

 
3

K
. 

Thus, corresponding to K
 
+

 
1, there is an integer N

 
+

 
M such that MSM(N

 
+

 
M) is attained at k

 
=

 
K

 

+
 
1, which we intended to prove. 
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Proposition 2.1 shows that, given any integer K
  

1, there is an integer N (
  

1) such that MSM(N) 

is attained at k
 
=

 
K. However, note that, such N is not unique. For example, both MSM(3) and 

MSM(4) are attained at k
 
=

 
2. 

Let the sequence   
1nnb  be defined by 

an =
 
MSM(n)

  
MSM(n

  
1), n

 
≥

 
1.                                                            (2.4) 

Let kj ≥ 1 be defined by 

0;3)1()(  jjkMSMkMSMa jjk j
                                                  (2.5)

 

with 

k0 =
 
1.                                                                                                        (2.6) 

The Corollary below follows from Lemma 2.4, a proof of which is given in Majumdar [3]. 

Corollary 2.2 : For all j
  

0, MSM(kj – 1) is attained at k = j; moreover, for all n satisfying the 

inequality kj ≤ n ≤ kj+1 – 1, MSM(n) is attained at k
 
=

 
j + 1. 

Theorem 2.1 : For all j ≥ 0 and 1
  

s
  

kj+1 – kj – 1, 

MSM(kj + s) – MSM(kj + s – 1)= 2[MSM(kj + s – j – 1) – MSM(kj + s – j – 2)]. 

Proof : By Corollary 2.2, MS(kj +
 
s

 
– 1) and MS(kj + s) both are attained at the point  k = j + 1, so 

that by (1.5), 

MSM(kj + s – 1) = 2MSM(kj + s – j – 2)
 
+ 1

2
(3

j+1
 – 1), 

MSM(kj + s) = 2MSM(kj + s – j – 1)
 
+ 1

2
(3

j+1
 – 1). 

We have the following result. 

Lemma 2.5 : For all n ≥ 1, an is of the form 2
i 
3

m
 for some integers i ≥ 0, m ≥ 0. 

Proof : Cleary, the result is true when n = 1 (with i = 0, m = 0). To proceed by induction, we 

assume that the result is true for all t
 
≤

 
n. 

To prove the result for n
 
+

 
1, we have to consider, by Lemma 2.2, the following two possibilities : 

Case 1 : MSM(n) and MSM(n + 1) both are attained at k
 
=

 
K. In this case, 

an+1 =
 
2

N –  K
; 

Case 2 : MSM(n) is attained at k = K and MSM(n + 1) is attained at k = K + 1. Here, 

an+1 =
 
2[MSM(K + 1) –

 
MSM(K)] =

 
2

 
aK+1. 

Now, by the induction hypothesis, aK+1 is of the form 2
i 
3

m
, and hence, so is an+1. 

Lemma 2.5 shows that, for any n ≥ 1, an (defined through the equation (2.4)) is of the form 2
i 
3

m
 for 
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some integers i ≥ 0 and m ≥ 0. In the next section, we prove the converse, namely that, given any 

integer of the form 2
i 
3

m
, there is an integer n such that an =

 
2

i 
3

m
. 

 

3. Main Results 

Let  
1nnb  be the sequence of integers, arranged in (strictly) increasing order : 

bn =
 
2

i   
3

m
, i

 
≥

 
0, m

 
≥

 
0.                                                                              (3.1) 

The first few terms of   
n 1n b



 are 

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, …, 

and are known as 3-smooth numbers. 

Given any integer j ≥ 0, we first derive the number of elements of the sequence  
1nnb  such that 3

j 

<
 
bn <

 
3

j + 1
, that is 

3
j 
<

 
2

i 
3

m 
< 3

j+1
.                                                                                            (3) 

Clearly, i must satisfy the inequality : 

 (j  m ) 
ln3

ln2
 <

 
i
 
< (j

  
m

 
+

 
1) 

ln3

ln2
.                                                                 (4) 

From (3), we observe that, when j
 
=

 
0, m

 
=

 
0. 

Let N(n, j) be the number of elements of the sequence  
1nnb  satisfying the inequality (3), that is, 

    . 3323:   33:  ) ,( 11   jmij
n

j
n

j
n bbbjnN                         (5) 

Then, we have the following lemma, due to Majumdar [3], which gives the recurrence relation 

satisfied by N(n, j). 

Lemma 3.1 : For any integer j ≥ 1, 

  . 323   ) ,()1 ,( 21   jij i  :jnNjnN  

Corollary 3.1 : For any integer j
 
≥

 
0, 

N(n, j)
 
=    

2ln

3ln
)1(32:max33: 11   jibb jij

n
j

n  

where x    is the floor of the real number x > 0. 

Proof : The left-side part of the above chain of equalities has been proved in Majumdar [3]. Now, 

since 

2
i 
<

 
3

j+1
 if and only if i

 
ln2

 
<

 
(j

 
+

 
1)

 
ln

 
3, 
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the remaining part follows. 

Next, we find the number of elements of the sequence  
1nnb  such that 3

j 
< bn < 2.3

j
 for any 

integer j
 
≥

 
0, that is, 

3
j 
< 2

i 
3

m 
< 2.3

j
.                                                                                            (6) 

Lemma 3.2 : For any integer j
 
≥

 
0, 

    .  3.2323  :   3.23  :   jbbb jj
n

j
n

j
n

mi   

Proof : First note that the inequality (6) is satisfied if and only if 

 (j  m) 
ln3

ln2
<

 
i
 
< (j

  
m) 

ln3

ln2
 +1.                                                                  (7) 

When j
 
=

 
0, m

 
=

 
0, and the result is true. So, let j

 
≥

 
1. In this case, the inequality (7) admits j 

number of solutions, corresponding to m = 0, 1, …, j
 
– 1. 

Since 

|(j + 1) 
ln3

ln2
 | > j

 
for all j ≥ 1, 

from Corollary 3.1 and Lemma 3.2, we see that 

   : :j j j j+1
n n n n  b   3 b 2.3    b   3 b 3   ,      if j ≥ 1. 

Lemma 3.3 : For any integer j ≥ 0, 

    .j  3.2b3  :b   3.2a3  :a  jjjj
nnnn   

Proof : In Lemma 2.4, let 

N = kj, K = j. 

Then, (2.3) reads as 

j

k +j+1
j

a 2.3 .  

Now, the number of elements of the sequence  
1nnb  between k

j
a  and k +j+1

j
a  is j. This, 

coupled with Lemma 3.2, gives the result desired. 

Let the sequence of numbers {pj}j0 be defined as follows : 

p
j

b  3
j
, j  0.                                                                                            (3.2) 

Clearly, 

p0 = 1.                                                                                                        (3.3) 

The following lemma gives a recurrence relation satisfied by  
1nnb  
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Lemma 3.4 : For any n such that 3
j 
<

 
bn <

 
3

j+1
 for some integer j ≥ 0, bn =

 
2bnj1. 

Proof : When j = 0, 1 < b1 < 3, and 

b2 = 2b1 = 2
 
b2– o–1, 

and the result is true. So, we assume that the result is true for (and up to) some j, that is, we 

assume that, for all n such that 3
s–1 

<
 
bn <

 
3

s
, 1 ≤ s ≤ j, 

bn = 2 bn–s. 

To prove the result for j + 1, we assume that 

bp  3
j 
<

 
bn <

 
3

j + 1
 bp 

Clearly, any such bn is even. Also, since 3
j 
<

 
2.3

j
 <

 
3

j + 1
, it follows that, for any N with  3

j 
<

 
bN <

 

2.3
j
, bN = 2 bM, for some integer M with 3

j –  1 
<

 
bM <

 
3

j
. Then, by the induction hypothesis,  

bM = 2 bM–j. 

Now, 

     :     :    .NM
n n M Nn n

bb
2 2

b b b b b b N M 1         

Therefore, 

 ,N
M-j+(N-M-1) N-j-1

b

2
b b   

so that 

bN = 2 bN–j–1;  3
j 
<

 
bN <

 
2.3

j
. 

Let L be the maximum such N so that 

bL = 2 bL–j–1, bL+1 = 2.3
j
. 

Now, since (by Lemma 3.2), there are j elements of the sequence  
1nnb  such that 

p
j

b < bn < ,p
j

2b  

it follows that 

L – pj = j, 

so that 

bL+1 = 2 bL–j. 

Thus, the result is true for all n with 3
j 
<

 
bn ≤

 
2.3

j
. 

If j  1, there is at least one bn such that p
j

2b < bn < p
j + 1

b , the minimum of which is bL+ 2.  



10 Majumdar 

Clearly, 

.pL+2 L-j + 1
j + 1

b 2b 2b   

In general, if bL+ s < ,p
j + 1

b  2  s  ,ln3
ln2

(j 1) j 1    
 

 then bL+ s = 2 bL+s–j–1. 

We now prove the main result of the paper, given in the theorem below. 

Theorem 3.1 : For all n  1, an = bn. 

Proof : Let kj  n < kj+1 for some integer j  0 (so that 3
j  an < 3

j + 1
, 3

j  bn< 3
j + 1

).  

Then, by Theorem 2.1, 

k s k s j 1
j j

a 2a     for all 1  s  kj+1 – kj – 1. 

Thus, by virtue of Lemma 3.3, an and bn satisfy the same recurrence relation, and hence, we get the 

desired result. 

The following theorem gives the solution of the recurrence relation (1.2). 

Theorem 3.2 : For n ≥ 1, 

.baMSM(n)
n

m
m

n

m
m 

 11

 

Moreover, if 3
j  an < 3

j+1
 for some integer j ≥ 0 (so that kj  n < kj+1), MSM(n) is attained at the 

unique point .n 1
ln(b )

ln3
k j 1  


  

    

Proof : Since MSM(n) can be written as 

 
n

m 1

,MSM(n) MSM(m)-MSM(m-1)


  

we get the desired expression of MSM(n) by Theorem 3.1. Also, by Corollary 2.2, MSM(n) is 

attained at the unique point k = j
 
+ 1. Now, since 3

j  bn < 3
j+1

, we see that j must satisfy the 

inequality j ln3
 
≤

 
ln(bn) <

 
(j

 
+

 
1) ln3. 

We then get the desired expression of k, given in the lemma. 

A consequence of Theorem 3.2 is the following 

Corollary 3.2 : For all j
  

0, 

kj+1 =
 
kj +

 ln3
ln2

(j 1) 
 

 
+

 
1, k0 = 1. 

Proof : follows immediately, since (by Corollary 3.1), the number of elements of the sequence 

 
n 1n b



on (kj, kj+1) is ln3(j+1)

ln2
 
 

. 
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Since k0 = 1, Corollary 3.2 allows us to find kj recursively in j. Table 3.1 below gives the values of 

kj for some small values of k, calculated on a computer, using the recurrence relation in Corollary 

3.2. 
 

Table 1 : Values of kj for 0 ≤  j ≤ 8 
 

j 0 1 2 3 4 5 6 7 8 

kj 1 3 7 12 19 27 37 49 62 

From Table 3.1, we see that b3 = k1 = 3
1 

= 3, b7 = k2 = 3
2 

= 9. Moreover, there is only one element 

of the sequence  
n 1n b



 between k1 and k0. 

Corollary 3.2 is a new result which, together with Lemma 3.4, enables us to find bn recursively for 

any fixed n. For example, to find b17, we proceed as follows : Looking at Table 3.1, since 12
 
<

 
17

 

<
 
19, it follows that j

 
=

 
3 in Corollary 3.2, and so, by Lemma 3.4, b17 =

 
2 b13. 

Thus, we need to find b13. From Table 3.1, we see that j
 
=

 
3 in Corollary 3.2, and so by Lemma 

3.4, b13 =
 
2 b9. 

To find b9, from Table 3.1, we see that j
 
=

 
2 in Corollary 3.2, so that b9 = 2 b6. 

Similarly,  b6 = 2 b4 = 8. 

Plugging in the values of b7 and b10, we finally get, b17 = 64. 

Corollary 3.3 : For all n
  

1, .2)(
n

1m

n

1m



mm banMS  

Moreover, letting  cn =
 
MS(n) – MS(n

 
–

 
1), n

  
1, 

if 2.3
j  cn < 2.3

j+1
 for some integer j ≥ 0, MS(n) is attained at the unique point 

.nln(b )
ln3

k j 1 1    
  

 

Proof : follows by virtue of Theorem 3.2, together with (1.3) and Lemma 1.1. 

The expression of MS(n) is given in Corollary 3.3 above. As has been pointed out by Stockmeyer 

[6] (without proof), an interpretation of the expression of MS(n) is as follows : In the star puzzle 

with n discs d1, d2, …, dn in increasing order (so that d1 is the smallest disc and dn is the largest 

one), the disc dn –  m  +  1 needs exactly 2
 
bm number of moves (1

  
m

  
 n) under the optimal strategy.  

 

4. Concluding Remarks 

Stockmeyer [6] gives an outline of a proof of the results in Corollary 3.3, but his argument is 

heuristic, is not supported by any theoretical development, and is incomplete in the sense that it 

lacks the proof that 

MS(n) – MS(n
 
–

 
1)

 
=

 
2bn. 
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This paper gives a rigorous treatment of the problem, which unveils many interesting properties. 

Lemma 3.4 gives a new recurrence relation satisfied by the sequence  
1nnb  and Corollary 3.2 

gives a recurrence relation satisfied by kj. It is interesting that MSM(n) satisfies the same 

recurrence relation as that of bn. 

From Corollary 3.3, we observe that, it in fact offers two methods of finding MS(n) (for any n
  

1). 

The first method is in terms of the sequence  
1nnb . When n is small, we can readily find MS(n) 

by this method. For example, adding the first 6 terms of the sequence   
1nnb , we see that MS(6)

 

=
 
48. For large n, we may use Lemma 3.4 to find bn. Thus, for example, to find MS(17), by 

Corollary 3.3, we have 

MS(17)
 
=

 
2[b1

 
+

 
b2 +

 
b3 +

 
(b4 +

 
b5

 
+

 
b6)

 
+

 
b7 +

 
(b8 +

 
b9 +

 
b10 +

 
b11) 

+
 
b12 +

 
(b13 +

 
b14 +

 
b15 +

 
b16 +

 
b17)] 

Now, 

b8 = 2b5, b9 = 2b6, b10 = 2b7, b11 = 2b8, 

b13 = 2b9, b14 = 2b10, b15 = 2b11, b16 = 2b12, b17 = 2b13, 

b7 = 3
2 
= 9, b12 = 3

3 
= 27. 

Thus,  

MS(17)
 
=

 
2[1

 
+

 
2 +

 
3 +

 
(4 +

 
6

 
+

 
8)

 
+

 
9 +

 
(12 +

 
16 +

 
18 +

 
24) 

+
 
27 +

 
(32 +

 
36 +

 
48 +

 
54 +

 
64)]

 
=

 
728. 

Alternatively, from Corollary 3.3, since MS(17) is attained at k
 
=

 
3

 
+

 
1

 
=

 
4, we get 

MS(17)
 
=

 
2MS(13)

 
+

 
3

4 
–

 
1

 
=

 
2MS(13)

 
+

 
80. 

Now, by Corollary 3.3 again, MS(13) is attained at k
 
=

 
3

 
+

 
1

 
=

 
4, so that 

MS(13)
 
=

 
2MS(9)

 
+

 
3

4 
–

 
1

 
=

 
2MS(9)

 
+

 
80. 

Since MS(9) is attained at k
 
=

 
3, we get 

MS(9)
 
=

 
2MS(6)

 
+

 
3

3 
–

 
1

 
=

 
2MS(6)

 
+

 
26. 

Now, MS(6) is attained at k
 
=

 
2, and so 

MS(6)
 
=

 
2MS(4)

 
+

 
3

2 
–

 
1

 
=

 
40

 
+

 
8

 
=

 
48. 

Finally, we get MS(17) = 728. 

The following recurrence relation has been considered by Matsuura [4] : 

         min      , ,
             

n kT(n, )    T(k, ) 2 1  n 1
0 k n 1

     
  

 

T(0,
 
α)

 
=

 
0 for all   

3, 
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where   
3 is an integer. The problem was taken up by Majumdar [2], who studied some of the 

properties of T(n,
 ). Of particular interest is T(n, 3). It has been shown by Matsuura [4], by 

induction on n, that  

T(n,
 
3) – T(n – 1,

 
3) = bn for all n  1,  

so that MSM(n)
 
=

 
T(n,

 
3) for all n

 
≥

 
1. 

In passing, it may be mentioned here that, a second recurrence relation satisfied by the sequence  

 
1nnb has been derived by Matsuura [4], and is given below. 

Lemma 4.1 : For any n such that 2
i 
<

 
bn <

 
2

i  +1
 for some integer 

i
  

0. bn =
 
3bn –  i – 1. 

To make the above result applicable, it is to be supplemented by Lemma 4.3. To prove Lemma 

4.3, we need the result below. 

Lemma 4.2 : For any integer i
  

0, 

 : i i+1
n n

ln2
ln3

  b   2 b 2  (i 1)  .    
 

 

Proof : is similar to that of Corollary 3.1, and is left as an exercise. 

Lemma 4.3 : Let the sequence of integers {qi}i0 be defined as follows : 

qib =
 
2

i
, i

  
0; q0 = 1. 

Then, 

qi+1 =
 
qi +

 ( ) ln2
ln3

i + 1 
 

 
+

 
1. 

Proof : is similar to Corollary 3.2, and is omitted here. 

Using Lemma 4.3, we can form the table below, which would help us in finding bn for any n
  

1 

fixed. 

 
Table 4.1 : Values of qi for 0 ≤ i ≤ 8 
 

i 0 1 2 3 4 5 6 7 8 

qi 1 2 4 6 9 13 17 22 28 

Thus, for example, q1 = 2, so that b2 = 2; similarly, since q2 = 4
 
=

 
2

2
, it follows that b4 = 4. 

Using Lemma 3.4, we found that b17 = 72. If we apply Lemma 4.3, we see from the above Table 

4.1 that, b17 =
 
2

6 
=

 
64. 

From the computational point of view, to find bn for n
  

1 fixed, the recurrence relation in Lemma 

4.3 is more efficient than that in Lemma 3.4. 
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