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ABSTRACT 

In this paper, we study the structure of linear and self dual codes of an arbitrary length n 
overhearing Fq + uFq + vFq + uvFq, where q is a power of the prime p and u2 = v2 = 0, uv = vu, Also 
we obtain the structure of consta-cyclic codes of length n = q − 1 over the ring Fq + uFq + vFq + 

uvFq in the light of studying cyclic codes over Fq + uFq + vFq + uvFq in [6]. This study is a 
generalization and extension of the works in [7], [8], and [10]. 
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1. Introduction 

Codes over finite rings have been studied in the early 1970’s [1]. A great deal of attention has been 
given to codes over finite rings from1991 [5], because of their new role in algebraic coding theory 
and their successful applications. 

Bahattin Yildiz and Suat Karadeniz studied the structure of the ring  F2 + uF2 + vF2 + uvF2, where 
u2 = v2 = 0 and uv = vu, and they obtained the structure of linear codes over this ring of any length 
n as in [7]. In [8] they proved the existence of self dual codes over the ring F2 + uF2 + vF2 + uvF2 of 
all lengths and obtained some results about their gray images,  also they obtained the structure of 
cyclic codes over  the ring  F2 + uF2 + vF2 + uvF2 of any length n in [9], and in the light of the study 
in [9] they obtained the structure of (1 + v)-constacycliccodesovertheringF2 + uF2 + vF2 + uvF2of 
odd lengths n as in[10]. 

In [6], Xu Xiaofang and Liu Xiusheng they obtained the structure of the ring Fq + uFq + vFq + 

uvFq, where q is a power of the prime p and u2 = v2 = 0, uv = vu. Also they obtained the structure of 
cyclic codes over the ring Fq + uFq + vFq + uvFq of all lengths n as a generalization of the work 
done in [9] on the ring F2 + uF2 + vF2 + uvF2. 

In this paper we aim to generalize all the previous studies from the ring F2 + uF2 + vF2 + uvF2to the 
ring Fq + uFq + vFq + uvFq, where q is a power of the prime p and u2 = v2 = 0, uv = vu. This paper is 
organized as follows: 

In section 3, we study linear codes over the ring Fq + uFq + vFq + uvFq, first we mention the main 
properties of the ring from [6] which is important to obtain the structure of linear codes and the 
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uniqueness of it’s type, also we define a gray map on the ring (Fq + uFq + vFq + uvFq)n and through 
this map we define the lee weight of any codeword. 

In section 4, we study self dual codes over the ring Fq + uFq + vFq + uvFq, first we study the duality 
of the gray image of self dual codes then we obtain the existence of self dual codes over the ring Fq 

+ uFq + vFq + uvFq of all lengths using an old result from[2]. In section 5, we study consta-cyclic 
codes over the ring Fq + uFq + vFq + uvFq, which are isomorphic to the ideals of the ring (Fq + uFq + 

vFq + uvFq) [x]/(xn−(1 + v)), using an isomorphism from the ring (Fq + uFq + vFq + uvFq)[x]/(xn− (1 
+ v)) to the ring (Fq + uFq + vFq + uvFq)[x]/(xn−1) we obtain the structure of(1 + v)-consta cyclic 
codes over the ring Fq + uFq + vFq + uvFq of length n = q – 1, and another case when n is an odd 
integer and q is a power of the prime 2, in the light of the study of cyclic codes over the ring Fq + 
uFq + vFq + uvFq[6], also in this section we obtain another gray map from the ring (Fq + uFq + vFq 
+ uvFq)n to the ring (Fq + uFq)2n. 
 
2. Preliminaries 

Definition 2.1.  [3] Let n
qF  denote the vector space of all n−tuples over finite field Fq,n is the 

length of the vectors in n
qF . An (n,M) code C over Fq is a subset of n

qF  of size M, that is |C| = M = 
the number of all code words of C. 

We usually write the vectors (c1, c2, . . . , cn) in Fn in the form c1c2. . . cn and call the vectors in C 
code words. 

Definition 2.2. [3] If C is a k−dimensional subspace of n
qF , then C will be called an [n, k] linear 

code over Fq. 

Definition 2.3. [3] Let C be a linear [n, k]-code. The set C = {x  n
qF | x.c = 0, c  C}. 

is called the dual code for C, where x.c is the usual scalar product x1c1 + x2c2  + ... + xncn  of the 
vectors x and c. Note that C is an [n, n − k]code. 

Remark: If C is a linear code of length n then dim(C) + dim(C) = n. 

Definition 2.4. [3] 

The (Hamming distance) dH(x, y) between two vectors x, y  n
qF is defined to be the number of 

coordinates in which x and y differ. 

The (Hamming weight) wH(x) of a vector x  n
qF  is the number of nonzero coordinates in x. 

Definition 2.5. [3] For a code C containing at least two words, the minimum distance of a code C, 
denoted by d(C), is d(C) = min{d(x, y) : x, y ∈ C, x ƒ= y}. 

Definition 2.6. [3] A code C is called self-orthogonal provided C  C. 

Definition 2.7. [3] A code C is called self-dual if C = C. 
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Remark: [3] The length n of a self-dual code C is even and the dimension of C is n/2. 

Definition 2.8. [3] Let c = (c0,c1,...,cn−1) be a word of length n, the cyclic shift T(c)is the word of 
length n 

T (c0, c1, ..., cn−1) = (cn−1, c0, ..., cn−2). 

Definition 2.9. [3] A code C is said to be cyclic if T (c)  C, whenever c  C. 

Definition2.10.[4] Let c = (c0,c1,...,cn−1) be a word of length n, then a (1 + v)-consta cyclic shift 
γ(c) is a word of length n 

γ(c0, c1, ..., cn−1) = ((1 + v)cn−1, c0, ..., cn−2) 

Definition 2.11. [4] A code C is said to be (1 + v)-consta cyclic if γ(c)  C, whenever c  C. 
 
3. Linear Codes over the Ring Fq + uFq + vFq + uvFq 

In this section we will make a generalization for the work in[7]. From the ring F2 + uF2 + vF2  + 
uvF2 tothering Fq + uFq + vFq + uvFq, where q is a power of the prime p, and u2 = v2 = 0, uv = vu. 

First lets talk about some properties of the ring R = Fq + uFq + vFq + uvFq which were established 
in [6]: 

Risa Frobenius, localring with characteristic p which is not principal ideal nor chain ring. The 
ideals can be listed as: 

I0 ={0} Iuv = uv(Fq + uFq + vFq + uvFq) = uvFq  Iu, Iv, Iu + v  Iu,v  I1 = R, where 

Iu = u(Fq + uFq + vFq + uvFq) = uFq + u2Fq + uvFq + u2vFq = uFq + uvFq, 

Iv = v(Fq + uFq + vFq + uvFq) = vFq + uvFq + v2Fq + uv2Fq = vFq + uvFq, Iu,v = uFq  +  vFq  + uvFq, 

Iu+v =(u + v)(Fq + uFq + vFq + uvFq) = (u + v)Fq + u(u + v)Fq + v(u + v)Fq + uv(u + v)Fq = (u + v)Fq 
+ (u2 + uv)Fq + (uv + v2)Fq + (u2v + uv2)Fq = (u + v)Fq + uvFq + uvFq = (u + v)Fq + 2uvFq=(u + v)Fq 
+ uvFq, since 2 is a unit in R. 

Let R* = R − Iu,v, we can see that R* consists of all units in R. The unique maximal 

ideal Iu,v is not a principal ideal. Iu,v contains all the zero divisors in R. 

Remark: [6] Another nice conclusion about the ring R is that if x = a + bu + cv + duv is any 
element in R, then xq = a, where a, b, c, d  Fq. 

Proof. Let x = a + bu + cv + duv  R, where a, b, c, d  Fq. Then 

If x is a nonunit then x  Iu,v= uFq + vFq + uvFq, so a = 0 and xq = 0 = a since 

u2 = v2 = 0 and uv = vu. 

If x is a unit then x  R − Iu,v, so a 
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0 and xq = aq since u2 = v2 = 0 and uv = vu, but a  Fq  and Fq− {0} is a cyclic group under 
multiplication of order q − 1 so aq−1 = 1 then aq = a so xq = a. 

Remark: Fq + uFq + vFq + uvFq is isomorphic to Fq[X, Y]/ < X2, Y 2, XY − Y X >. 

Proof. we define a map 

f : Fq + uFq + vFq + uvFq → Fq[X, Y ]/ <X2, Y 2, XY − Y X > 

s.t. f(a + bu + cv + duv) = a + bx + cy + dxy + <X2, Y2, XY−YX>, a + bu + cv + duv  Fq + uFq 

+ vFq + uvFq, now we show that f is an isomorphism as follows : 

Let h1, h2  Fq + uFq + vFq + uvFq  s.t. h1 = a1 + b1u + c1v + d1uv, h2 = a2 + b2u + c2v + d2uv then: 

(1)  f(h1  + h2) = f(a1 + b1u + c1v + d1uv + a2 + b2u + c2v + d2uv) = f((a1 + a2) + u(b1 + b2) + v(c1 + c2) 
+ uv(d1 + d2)) = (a1 + a2) + (b1 + b2)x + (c1 + c2)y + (d1 + d2)xy + <X2, Y2, XY−YX> = a1 + b1x + c1y + 
d1xy + <X2, Y2, XY−YX> + a2 + b2x + c2y + d2xy + <X2, Y 2, XY − Y X > = f(h1) + f(h2). 

(2) f(h1h2) = f((a1 + b1u + c1v + d1uv) (a2 + b2u + c2v + d2uv)), and after some cancelation because u2 

= v2 = 0 we have 

= f(a1a2 + u(a1b2 + b1a2) + v(a1c2 + c1a2) + uv(a1d2 + b1c2 + c1b2 + d1a2)) 

= a1a2 + (a1b2 + b1a2)x + (a1c2 + c1a2)y + (a1d2 + b1c2 + c1b2 + d1a2)xy + <X2, Y2, XY−YX> f(h1) f(h2) = 
(a1 + b1x + c1y + d1xy + <X2, Y2, XY−YX>) (a2 + b2x + c2y + d2xy + <X2,Y2, XY−YX>) = a1a2 + a1b2x 
+ a1c2y + a1d2xy + b1a2x + b1b2x2 + b1c2xy + b1d2x2y + c1a2y + c1b2xy + c1c2y2 + c1d2xy2 + d1a2xy + 
d1b2x2y + c2d1xy2 + d1d2x2y2 + <X2, Y2, XY−YX> 

= a1a2 + (a1b2 + b1a2)x + (a1c2 + c1a2)y + (a1d2 + b1c2 + c1b2 + d1a2)xy + <X2, Y2, XY−YX> 

= f(h1h2). 

(3) Let f(h1) = f(h2) that is a1 + b1x + c1y + d1xy + <X2, Y2, XY−YX> = a2 + b2x + c2y + d2xy + < X2, 
Y 2, XY − Y X > 

then (a1 − a2) + (b1 − b2)x + (c1 − c2)y + (d1 − d2)xy + <X2, Y2, XY−YX> = 0 + <X2, Y2, XY−YX> 

so (a1− a2) + (b1− b2)x + (c1− c2)y + (d1− d2)xy < X2, Y 2, XY − Y X > 

and this happens if and only if a1− a2= b1− b2= c1− c2= d1− d2= 0 

which implies a1= a2, b1= b2, c1= c2, d1= d2, then h1= h2, so f is one to one function. 

(4) Since f is one to one function and | Fq + uFq + vFq + uvFq| = | Fq[X, Y ]/ <X2, Y 2, XY−Y X > | = q4, 
then f is onto. 

From 1, 2, 3 and 4, we have proved that f is an isomorphism. 

Definition 3.1. A linear code C of length n  N over the ring Fq + uFq + vFq + uvFqis an Fq + uFq 
+ vFq + uvFq- submodule of (Fq + uFq + vFq + uvFq)n. 
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Now we classify the generators of the linear codes over R and we define R-linear independence of 
them to introduce a possible type for linear codes over R. 

There are six types of generators for linear codes over R, and we can classify them as 

fedcba ,,,,, , where 

a  (Fq + uFq + vFq + uvFq)n\(Iu,v)n, 

b  (Iu,v)n,¯b/(Iu)n,(Iv)n,(Iu + v)n, 

c  (Iu)n\(Iuv)n, 

d  (Iv)n\(Iuv)n, 

e  (Iu + v)n\(Iuv)n, 

f  (Iuv)n. 

Remark: [6] The generators of the form a contain some units. 

Proof. Let (x1,x2,...,xn)  a s.t. xi  /Iu,v i then xi is a unit in Fq + uFq + vFq + uvFq, so  a unit 
x−1/Iu,v i, so  (x−11,x

–21,...,x−n
1)  a s.t. (x1,x2,...,xn). (x−11,x−21,...,x−n

1) = (x1.x−1
1, x2.x−21,..., xn 

.x−n
1)=(1,1,...,1) which is the unity of (Fq + uFq + vFq + uvFq)n, so(x1,x2,...,xn) is a unit in (Fq + uFq + 

vFq + uvFq)n. 

The generators of the form a that contain some units are called free generators. 

We next define independence over R for these generators. 

Definition 3.2. A subset 
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of Rn is said to be R-linearly independent if the only solution to the equation 
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where 

αi Fq + uFq + vFq + uvFq, βj  Fq + uFq + vFq, γm  Fq + vFq, µt  Fq + uFq, ηr  

Fq + uFq, ζs  Fq 

is 

αi, βj, γm, µt, ηr, ζs = 0 for all indices i, j, m, t, r, s. 

NowwecantakeindependentvectorsasourgeneratorstogeneratealinearcodeoverR: 

Definition 3.3. Suppose 
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is a set of linearly independent generators as was defined above. The linear code C of length n 
generated by S is the submodule 

{  
654321
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k
i ii fedcba  : αi ∈ Fq + uFq + vFq + uvFq, 

βj ∈ Fq + uFq + vFq, γm ∈ Fq + vFq, µt ∈ Fq + uFq, ηr ∈ Fq + uFq, ζs ∈ Fq} 

In this case we say C is of type (q4)k1 (q3)k2 (u)k3 (v)k4 (u + v)k5 (q)k6 . 

The following theorem will be quite useful in establishing the uniqueness of the type for codes 
over R. 

Lemma 3.4. If }}{,}{,}{,}{,}{,}{{ 654321
111111
k
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i fedcbaS  is a set of linearly independent 
generators which generate the linear code C, then the number of code words in C that belong to 

n
nvI is exactly ak1 + 2k2 + k3 + k4 + k5 + k6. 

Proof. Because of the linear independence the only code words in C that belong to n
nvI can arise 

from the binary linear combinations of 
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Again, because of linear independence, these generators will all be linearly independent over Fq. 
That is why we will have exactly qk1 + 2k2 + k3 + k4 + k5 + k6.such codewords. 

After this auxiliary result, we are now ready to settle the main question about the uniqueness of the 
type, given the existence of independent generators. 

Theorem 3.5. If }}{,}{,}{,}{,}{,}{{ 654321
111111
k

s
k
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i fedcbaS  is a set of linearly 

independent generators which generate the linear code C, then C cannot be generated by another 
type, i.e. k1, k2, ...., k6 are uniquely determined by the code. 

Proof. Suppose S generates a linear code C. Then the first equation we get is about the size of the 
code.  

ak1 + 3k2 + 2k3 + 2k4 + 2k5 + k6 = | C|  

If we multiply every element of the code by u, the n this will nullify some of the generators, 
because uIu = 0, uIuv =0. Since uIu,v = uIv = uIu+v = Iuv and u(F2 + uF2 + vF2 + uvF2) = Iu, the linear 
independence of the generators tells us that 

a2k1 + k2 + k4 + k5 = | uC | 

Similarly we obtain 

a2k1 + k2 + k3 + k5 = | vC | 

a2k1 + k2 + k3 + k4 = | (u + v)C |. 
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If Cuv denotes the set of all code words in C that belong to n
nvI , then by the last Lemma 

we see that 

ak1 + 2k2 + k3 + k4 + k5 + k6  = | Cuv |.. 

FinallymultiplyingtheelementsofRbyuvnullifieseveryelementexcepttheunits, hence we get 

qk1 =| uvC | 

Since all the sizes on the right hand side of the equations are powers of q, we will take logarithms 
base q from the first to the last equation, and calling logq | C | = A1, logq | uC | = A2 and so on. We 
obtain the following system of linear equations for j

iK s: 

4k1 + 3k2 + 2k3 + 2k4 + 2k5 + k6 = A1 

2k1 + k2 + k4 + k5 =A2 

2k1 + k2 + k3 + k5 =A3 

2k1 + k2 + k3 + k4 =A4 

k1 + 2k2 + k3 + k4 + k5 + k6 = A5k1 = A6 

The coefficient matrix for the system of equations is 



























000001
111121
001112
010112
011012
122234

 

which has determinant 1. This proves the uniqueness of k1, k2, ..., k6which means we can talk about 
a unique type for the code C, provided that independent generators are given for C. 

Now that we have established the uniqueness of the type for linear codes over R, we can extract 
some further information about these codes given the type. This will help us 

characterize the codes that have independent generators. To this extent, we will take a code C of 
type (q4)k1 (q3)k2 (u)k3 (v)k4 (u + v)k5 (q)k6 which has generators of the form 
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that are linearly independent. The independence tells us that to obtain codewords that fall in the 
ideal Iuv, we need to take the binary combinations of 
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Asimilarargumentcaneasilybeemployedtoseethatthecodewordsthatfallentirelyin 
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the ideal Iu will arise from the combinations of the form 
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where αi  uFq + uvFq, βj  uFq + vFq, γm  Fq + vFq, µt  uFq, ηr  uFq, ζs  Fq. This tells us that 
the total number of codewords in C that fall entirely in the ideal Iu is  

a2k1 + 2k2 + k3 + k4 + k5 + k6  .........................(1) 
For the ideal Iv, the code words that fall entirely in the ideal Iv will arise from the combinations of 
the form 
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where αi  vFq + uvFq, βj  uFq + vFq, γm  vFq, µt  Fq + uFq, ηr  uFq, ζs  Fq. This tells us that 
the total number of codewords in C that fall entirely in the ideal Iv is  

a2k1 + 2k2 + k3 + k4 + k5 + k6  .........................(2) 
For the ideal Iu+v, the code words that fall entirely in the ideal Iu+v will arise from the combinations 
of the form 
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where αi  uFq + vFq, βj  uFq + vFq, γm  vFq, µt  uFq, ηr  Fq + uFq, ζs  Fq. This tells us that 
the total number of codewords in C that fall entirely in the ideal Iu+v is 

a2k1 + 2k2 + k3 + k4 + k5 + k6  .........................(3) 
For the ideal Iu,v, for a codeword to be entirely in Iu,v it must be of the form 
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where αi  uFq + vFq + uvFq, βj  Fq + uFq + vFq, γm  Fq + vFq, µt  Fq + uFq, ηr   Fq + uFq, ζs   
Fq. which means the total number of codewords in C that fall entirely in the ideal Iu,v is 

a3k1 + 3k2 + 2k3 + 2k4 + 2k5 + k6  .........................(4) 
So, combining the last Lemma with the equations (1),(2),(3) and (4) we obtain the following result: 

Lemma 3.6. Let C be a linear code over the ring R of type (q4)k1(q3)k2(u)k3(v)k4(u + v)k5(q)k6. If Nuv, 
Nu, Nv, Nu+v, Nu,v denote the number of code words in C that fall entirely in the ideals Iuv, Iu, Iv, Iu+v, 
Iu,v, respectively, then 

{Nuv, Nu, Nv, Nu+v, Nu,v} = qk1+2k2+k3+k4+k5+k6{1, qk1+k3, qk1+k4, qk1+k5, q2k1+k2+k3+k4+k5}. 

Definition 3.7. Let  : (Fq + uFq + vFq + uvFq)n → n
qF 4 be the map given by 

),,,()( ddbdcdcbaduvcvbua  , where n
qFdcvbua 4,,,  . 

We note from  the  definition  that  φ  is  a  linear  map  that  takes  a  linear  code  over  Fq + uFq + 
vFq + uvFq of length n to a linear code of length 4n.  By using this map, we can define the Lee 
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weight wL as follows: 

Definition 3.8. For any element a + ub  + vc  + uvd  Fq + uFq + vFq + uvFq we define the lee 
weight of a + ub + vc + uvd as wL(a + ub + vc + uvd) = wH(a + b + c + d, c + d, b + d, d), where wH 

denotes the ordinary Hamming weight for  codes  over  Fq,  also  for  any  two  codewords c1,c2  
Fq + uFq + vFq + uvFq we define the lee distance dL(c1, c2) = wL(c1−c2). 

From the definition of φ we can see that φ is a distance preserving isometry from ((Fq + uFq + vFq 
+ uvFq)n, dL) to(F4n, dH),where dL denotes the lee distance in(Fq + uFq + vFq + uvFq)n and dH 

denotes the hamming distance in n
qF 4 . 

Let Fq + uFq + vFq + uvFq= {g1, g2, ..., gq4 } in some order. 

Definition 3.9. The complete weight enumerator of a linear code C over Fq + uFq + vFq + uvFq is 
defined as 

)(
4

)(
2

)(
1421

411 ...(),...,,( cn
q

cncn
CcqC

ggg XXXXXXcwe   

Remark: Note that cweC(X1, X2 ,..., Xq4) is a homogeneous polynomial in q4 variables with the total 
degree of each term being n, the length of the code. Since C0 , we see that the term nX1  always 
appears in cweC(X1, X2, ..., Xq4 ). We also observe that cweC(1, 1, ..., 1) = |C |. 

Recall that Nu(C) was the number of code words in C that lie entirely in the ideal Iu, we can see 
that 

Nu(C) = cweC(x1, x2, ..., xq4) 

with xi = 0 when gi  /Iuandxi  = 1 when gi  Iu Similar descriptions can be given for 

Nuv, Nv, and so on. 
 
4. Self Dual Codes Over the Ring Fq + uFq + vFq + uvFq 

In this section we  are trying to make an extension for the work in [8],  from the ring      F2 + uF2 + 
vF2 + uvF2 to the ringFq + uFq + vFq + uvFq, where q is a power of the prime p, and u2 = v2 = 0, uv 
= vu, The problem we face in this section is that some of the theorems in [8] holds only when the 
characteristic of the ring is 2 so it holds only for the ring Fq + uFq + vFq + uvFq, where q is a power 
of the prime 2, and other theorems in [8] hold for any commutative finite Frobenius ring so it holds 
for the ring Fq + uFq + vFq + uvFq, where q is a power of the prime p. 

Let R = Fq + uFq + vFq + uvFq, where q is a power of the prime p, and lets recall definition 3.7 and 
definition 3.8 of the gray map φ and the lee weight wL. Note that φ is linear and distance-
preserving map thus we obtain the following lemma, which will later be useful: 

Lemma 4.1.  If C is a linear code over  R of length n, size qk and minimum lee distance  d, then 
φ(C) is an [4n, k, d]-linear code over Fq. 

Note that if C is a linear code of length n, then C  is also a linear code over R of length n. 



66 Yaghi and Ashker 

Theorem 4.2. Let C be a linear code over R of length n, where q is a power of the prime 

2. Then φ(C)  (φ(C)) with (φ(C)) denoting the ordinary dual of (φ(C)) as a code over Fq. 

Proof. To prove the theorem, it is enough to show that, 

0)().(0, 2121  xxxx   for all 21, xx  (Fq + uFq + vFq + uvFq)n. 

To this extent, let’s assume that 11111 duvcvbuax   and that 22222 duvcvbuax  . Then 

0, 21 xx if and only if 0....,0..,0... 212121212121122121  adbccbdaaccababaaa  

Now, since ),,,()( 1111111111 ddbdcdcbax   and  

),,,()( 2222222222 ddbdcdcbax  , we get, after some cancelations because of the 
characteristic being 2,  

21221122112222111121 )(.)()).(()(),()().( dddbdbdcdcdcbadcbaxx   

= 0)....()..()..().( 212121212121122121  adbccbdaabbacacaaa  

We first start with the following lemma which is called the double-annihilator relation from [2], 
and holds for all Frobenius rings and in particular for our ring R, since R is a Frobenius ring 

Lemma 4.3. If C is a linear code over R of length n, then | C | . | C |=| R |n= (q4)n. 

Theorem4.4. Suppose C is a self-dual linear code over R of length n, where q is a power of the 
prime 2. Then φ(C) is a self-dual linear code of length4n. 

Proof. Since C is self dual then C = C and | C | = | C| but by the previous Lemma, 

| C |.| C| = (q4)n then | C  |=| C|= 2)(
n

q   = q2n, now  φ(C) = φ(C)  (φ(C)) by Theorem 4.2 that is 
φ(C) is self orthogonal code, also by the previous Lemma | C | = | φ(C) | = q2n, and since | φ(C) 
|.|(φ(C)) |= 2)(

n

q then |(φ(C)) | = q2n = |φ(C)|, combining this result with φ(C)  (φ(C)) we have 
φ(C) = (φ(C)), that is φ(C) is self dual code of length 4n by Lemma4.1. 

We first need an example of a self dual code over R of length n =1. 

Example  4.5.  Let R = Fq + uFq + vFq + uvFq where q is a power of the prime p and u2 = v2 = 0, 
uv = vu, and let C be the linear code of length n = 1over R generated by the element 
u  R which is not a unit since u  Iu,vi.e. C = <u>, any element in <u> has the form u(a + bu + cv 
+ duv) = au + bu2 + cuv + du2v = au + b.0 + cuv + d.0 = au + cuv, for some a, b, c, d  Fq, so <u> 
= {au + cuv : a, c  Fq} that is |<u>| = q2, moreover if au + buv, cu + duv  <u>then: 

1)  (au + buv)2 = a2u2 + 2abu2v + b2u2v2 = a2.0 + 2ab.0.v + b2.0.0 = 0 

2)  (au + buv) (cu + duv) = acu2 + adu2v + bcu2v + bdu2v2 = ac.0 + ad.0.v + bc.0.v + bd.0.0 = 0 
Hence every element of <u> is orthogonal to itself and orthogonal to any other element in 
<u> so C  C that is C is self orthogonal, but | C |.| C| = |R|n = |R|1 = q4, and since |C| = q2 

then |C| = q2 = |C|, combining this result with C  C we have C = C, i.e. C = <u> is a self 
dual linear code over R of length1. 
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Now we need to import a lemma from [2] which holds for the ring R = Fq + uFq + vFq + uvFq since 
R is a finite Frobenius ring. 

Lemma 4.6. [2] Let R be a finite Frobenius ring. Let C be a self-dual code of length n over R and 
D be a self-dual code of length m over R. Then the direct product C × D is a self-dual code of 
length n + m over R. 

The existence of a self-dual code over R of length n = 1 implies by the last lemma that: 

Theorem 4.7. Self-dual codes over R of all lengths n  N exist. 
 
5. (1 + v)-Consta Cyclic Codes Over the Ring Fq + uFq + vFq + uvFq 

In this section we are trying to make an extension for the work in [10] from the ring F2 + uF2 + vF2 
+ uvF2 to the ring Fq + uFq + vFq + uvFq where q is a power of a prime p, u2 = v2 = 0 and uv = vu. 

In this section we denote the ring Fq + uFq + vFq + uvFq as R. 

Note that the element 1 + v  R* = R − Iuv as in section 3 which means that 1 + v is a unit. 

The notions of cyclic and consta-cyclic shifts are standard for codes over all rings. 

Briefly, for any ring R, a cyclic shift on Rn is a permutation T such that 

T (c0, c1, ..., cn−1) = (cn−1, c0, ..., cn−2). 

A (1 + v)-consta cyclic shift γ acts on Rn as γ(c0, c1, ..., cn−1) = ((1 + v)cn−1, c0, c1, ..., cn−2). 

Using the polynomial representation of code words in Rn in R[x], we see that for a code word 
)cT(,R nc corresponds to xc(x) in R[x]/(xn−1), while γ(c¯) corresponds to xc(x) in R[x]/(xn − (1  

+ v)). 

Proposition 5.1. (1) A subset C of Rn is a linear cyclic code of length n over R if and only if its 
polynomial representation is an ideal of the ring Rn = R[x]/(xn−1). 

(2)A subset C of Rn is a linear (1 + v)-consta cyclic code of length n over R if and only if its 
polynomial representation is an ideal of the ring Sn=R[x]/(xn−(1 + v)). 

(1 + v)-consta cyclic codes over R where n = q − 1 

Proposition 5.2. Let µ : R[x]/(xn − 1) → R[x]/(xn− (1 + v)) be defined as µ(c(x)) = c((1 + v)x). 

If n = q − 1, then µ is a ring isomorphism from Rn to Sn. 

Proof. Note that since (1 + v)  R, then (1 + v)q = 1 by the first Remark in section 3. Now, suppose 
a(x) ≡ b(x) (mod(xn−1)), for some a(x),b(x)  Rn, i.e. a(x) − b(x) = (xn − 1)r(x) for some r(x)  
R[x]. Then  

a((1 + v)x) − b((1 + v)x) = ((1 + v)nxn − 1)r((1 + v)x) = ((1 + v)q−1xn − (1 + v)q) r ((1 + v)x) = (1 + 
v)q−1(xn− (1 + v))r ((1 + v)x), 
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which means if a(x) ≡ b(x) (mod(xn − 1)), then a((1 + v)x) ≡ b((1 + v)x) (mod(xn − (1 + v))), that is 
µ(a(x)) ≡ µ(b(x)) (mod(xn− (1 + v))), this proves that µ is well defined. 

to prove the converse let 

µ(a(x)) ≡ µ(b(x))mod(xn − (1 + v)), i.e. a((1 + v)x) ≡ b((1 + v)x) mod(xn − (1 + v)), that is a((1 + v)x) 
− b((1 + v)x) = (xn−(1 + v))h(x), fore some h(x)  R[x], now if were place x by (1 + v)q−1x we get: 

a((1 + v)(1 + v)q−1x) − b((1 + v) (1 + v)q−1x) = [xn(1 + v)n(q−1) − (1 + v)] h((1 + v)q−1x)  

a((1 + v)qx) − b((1 + v)qx) = [xn(1 + v)n(q−1)− (1 + v)]h((1 + v)q−1x)  

a(x)−b(x) = [xn(1 + v)(q−1)(q−1)−(1 + v)] h((1 + v)q−1x)  

= [xn(1 + v)(q−1)2−(1 + v)]h((1 + v)q−1x)  

=[xn(1 + v)q2−2q+1 − (1 + v)]h((1 + v)q−1x)  

= [xn(1 + v)q2 (1 + v)−2q(1 + v)1− (1 + v)]h((1 + v)q−1x)  

= [xn((1 + v)q)2((1 + v)q)−2(1 + v) − (1 + v)]h((1 + v)q−1x)  

= [xn(1)2(1)−2(1 + v) − (1 + v)]h((1 + v)q−1x)  

= [xn(1)(1)(1 + v) − (1 + v)]h((1 + v)q−1x)  

= [xn(1 + v) − (1 + v)]h((1 + v)q−1x)  

= (1 + v)[xn− 1]h((1 + v)q−1x), 

which means that a(x) ≡ b(x)(mod(xn− 1)), this proves that µ is injective (one to one), so 

a(x) ≡ b(x)(mod(xn−1))  a((1 + v)x) ≡ b((1 + v)x)(mod(xn−(1 + v))). 

But since the rings are finite | Rn|=| Sn| this proves that µ is an isomorphism. 

The following is a natural corollary of the proposition: 

Corollary 5.3. I is an ideal of Rn if and only if µ(I) is an ideal of Sn when n = q −1. 

Theorem 5.4. [6] Let C be a cyclic code over R of length n where q is the power of the prime p. 
Then C is an ideal of Rn that can be generated by C = <g2(x) + up2(x) + vg3(x) + uvp3(x), ua2(x) + 
vg4(x) + uvp4(x), vg1(x) + uvp1(x), uva1(x) > whereg i, pi, ai are polynomials in Fq[x]/(xn − 1)with 
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By using the last Theorem and the isomorphism µ defined above, we can classify the (1 + v)-
consta cyclic codes over R of length n = q −1: 

Corollary 5.5.  Let C be a (1 + v)-consta cyclic code over R of length n = q − 1 where q is a power 
of the prime p. then C is an ideal of Sn= R[x]/(xn− (1 + v)) that can be generated by C = <g2 )~(x + 
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up2 )~(x  + vg3 )~(x  + uvp3 )~(x ,ua2 )~(x  + vg4 )~(x  + uvp4 )~(x ,vg1 )~(x + uvp1 )~(x ,uva1 )~(x > where x~

with 

= (1 + v)x and gi, pi, ai are polynomials in Fq[x]/(xn− 1) 
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Note that if we define nn RR :   

 (c0, c1, ...,cn−1) = (c0,(1 + v)c1,(1 + v)2c2,...,(1 + v)n−1cn−1) 

we see that  acts as the vector equivalent of µ on Rn. So, we can restate Corollary 5.3 in terms of 
vectors as well. 

Corollary 5.6. CisalinearcycliccodeoverRof length n = q – 1 if and only if  (C) is a linear (1 + 
v)-consta cyclic code of length n over R. 

Now lets take another especial case: 

 (1 + v)-Consta cyclic codes over R When q is a power of 2 If p = 2 then the characteristic of R is 
2, and so 

(1 + v)2 = 12 + 2v + v2 = 1 + 0 + 0 = 1 and also if n is any odd number then (1 + v)n = (1 + v), note 
that n is odd which means that gcd(n, p) = 1 since p = 2, in this case we see that things going to 
work may be the same as in [10]. 

Proposition 5.7. Let µ : R[x]/(xn− 1) → R[x]/(xn− (1 + v)) be defined as µ(c(x)) = c((1 + v)x). 

If n is odd, then µ is a ring isomorphism from Rn to Sn. 

Proof. The same proof of Proposition 3.2 in [10]. 

Corollary 5.8. I is an ideal of Rn if and only if µ(I) is an ideal of Sn when n is odd. 

Theorem  5.9.  [6] Let C be a cyclic code over R of length n where q is the power of the prime p.  
When  gcd(n, p)  =  1,  then  C  is  an  ideal  of  Rn that  can  be  generated  by C = <g1(x) + up1(x) 
+ uvb2(x), vg2(x) + uvp2(x) > where gi, pi, b2 are polynomials in Fq[x]/(xn−1) with p1|g1|(xn−1), 
p2|g2|(xn−1),g2|g1|(xn−1). 

By using the last Theorem and the isomorphism µ defined above, we can classify the (1 + v)-
consta cyclic codes over R of odd length. 

Corollary  5.10.  Let C be a (1 + v)-consta cyclic code over  R of odd length n,  where  q is the 
power of the prime 2, then C is an ideal of Sn that can be generated by C = <g1 )~(x + up1 )~(x + uvb2

)~(x ,vg2 )~(x + uvp2 )~(x > where x~ = (1 + v) x and gi,pi,b2 are polynomials in Fq[x]/(xn−1) with 
p1|g1|(xn−1),p2|g2|(xn−1),g2|g1|(xn−1). 
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Corollary 5.11. C is a linear cyclic code over R of odd length n if and only if  (C)isa linear (1 + 
v)-consta cyclic code of length n over R. 

Note that if r = a + ub + vc + uvd  R, then (1 + v)r = a + ub + v(a + c) + uv(b + d) which means 
that 

wL(r) = wH((a + b + c + d, c + d, b + d, d)) = wH(c + d, a + b + c + d, d, b + d) = wL((1 + v)r) 

Going back to the last Corollary, we have the following result: 

Corollary 5.12. C is a cyclic code over R of parameters [n, k, d] if and only if  (C) is a (1 + v)-
consta cyclic code over R of parameters [n, k, d], where n is odd. 

Now let R = Fq + uFq + vFq + uvFq and R1= Fq + uFq where q is a power of the prime p. 

Expressing elements of R as a + bu + cv + duv = r + vq, where r = a + bu and q = c + du are both 
in R1, we see that 

wL(a + bu + cv + duv) = wL(r + vq) = wL1 (q, r + q), 

where wL and wL1 denotes the Lee weight defined in R and R1respectively. This leads to the 
following Gray map Φ : R →R2 

Φ(a + ub + vc + duv) = Φ(r + vq) = (q, q + r) = (c + du, a + c + (b + d)u). 

It is easy to verify Φ is a linear map and distance preserving. We will extend Φ to Rn naturally as 
follows: 

Φ(c1, c2, ..., cn) = (q1, q2, ..., qn, q1 + r1, q2 + r2, ..., qn + rn), 

where ci = ri + vqi. Now we can say that Φ is a linear isometry from (Rn, Leedistance) to (R2n, 
Leedistance). 

Proposition 5.13. Let γ be the (1 + v)-consta cyclic shift on Rn and let T be the cyclic 

shift on Rn, with Φ being the previous Gray map from Rn to R2n, then we have Φγ = T Φ. 

Proof. The same proof of Proposition 4.1 in [10]. 

Theorem 5.14.  The Gray image of a linear (1 + v)-consta cyclic code over R of length n is a linear 
cyclic cod cover R1 of length 2n. 

Proof. the same proof of Theorem 4.2 in[10]. 

We  finish this section with some examples 

Example 5.15. Let q = 22= 4, and let n = 1, then x1− 1 = (x − 1).1 in F4, let C be the ideal in S1=F4 
+ uF4 + vF4 + uvF4[x]/(x−(1 + v)) generated by C = <1 + u + uv,v + uv>of length n = 1,  Then by  
corollary  5.9 C is a (1 + v)-consta cyclic code  over  the ring      F4 + uF4 + vF4 + uvF4of length n 
= 1, also by Theorem 5.13 Φ(C) is a cyclic code over F4 + uF4of length 2. 
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Example 5.16. Let q = 3,  and let n = 2  = q − 1,  then x2− 1  = (x − 1)(x + 1) in  F3, let C be the 
ideal in S2= F3 + uF3 + vF3 + uvF3[x]/(x2− (1 + v)) generated by C = <( x~  + 1) + u( x~  + 1),u, v( x~

x~ −1) + uv( x~ −1), uv> of length n = 2 where x~ =(1 + v) x, Then by corollary 5.5 C is a (1 + v)-
consta cyclic code over the ring F3 + uF3 + vF3 + uvF3of length n =2, also by Theorem 5.13 Φ(C) 
is a cyclic code over F3 + uF3 of length 4. 
 
6. Conclusion 

In the last section, we have studied (1 + v)-consta-cyclic codes over the ring Fq + uFq + vFq + uvFq 

when n = q − 1. 

It would be interesting to investigate (1 + v)-consta-cyclic codes over the ring Fq + uFq + vFq + uvFq 

when n is odd, or when n is even. 
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