
GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694)  38 (2018) 11-25 
DOI: https://doi.org/10.3329/ganit.v38i0.39782  

NUMERICAL APPROXIMATION OF FREDHOLM 
INTEGRAL EQUATION (FIE) OF 2ND KIND USING 

GALERKIN AND COLLOCATION METHODS 
 

1Hasib Uddin Molla and 2Goutam Saha 
Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh 

Email: 1hasib.math@du.ac.bd, 2ranamath06@gmail.com 
 

Received: 04-11-2017             Accepted: 05-09-2018 
 
 

ABSTRACT 

In this research work, Galerkin and collocation methods have been introduced for approximating 
the solution of FIE of 2nd kind using LH (product of Laguerre and Hermite) polynomials which are 
considered as basis functions. Also, a comparison has been done between the solutions of Galerkin 
and collocation method with the exact solution. Both of these methods show the outcome in terms 
of the approximate polynomial which is a linear combination of basis functions. Results reveal that 
performance of collocation method is better than Galerkin method. Moreover, five different 
polynomials such as Legendre, Laguerre, Hermite, Chebyshev 1st kind and Bernstein are also 
considered as a basis functions. And it is found that all these approximate solutions converge to 
same polynomial solution and then a comparison has been made with the exact solution. In 
addition, five different set of collocation points are also being considered and then the approximate 
results are compared with the exact analytical solution. It is observed that collocation method 
performed well compared to Galerkin method.      
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1. Introduction 

There has been a wide variety of methods to solve different types of Fredholm integral equations. 
Different versions of Wavelet, Collocation, Galerkin, Decomposition, Quadrature, Determinant 
and Monte Carlo methods are developed and studied by large number of researchers. Some of 
these methods find the approximate solution of Fredholm integral equation in terms of 
polynomials. Different well known polynomials have been used for approximating the solution in 
those methods. Chakrabarti and Martha [1] were found the solution by means of a polynomial 
using Quadrature method. This method is also being used by both Panda and Martha et el. [2] and 
Bhattacharya and Mondal [3] and they approximated the solution in terms of linear combination of 
Lagrange’s and Bernstein polynomials respectively. All of them have found excellent agreement in 
approximate solution with exact solution. Also, Mohamed and Taher [4] compared approximated 
solution which is obtained from Collocation method with the exact solution. In this research, they 
have used Chebyshev and Legendre polynomials. They have reported that Chebyshev polynomial 
is better than Legendre polynomial. Moreover, Domingo [5] discussed several versions of 
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Collocation techniques for solving FIEs of 2nd kind and found that Chebyshev method gives best 
result than the other methods in terms of closeness to the exact solution. Again, Bellour et el. [6] 
introduced two collocation methods based on natural cubic spline interpolation and cubic spline 
quasi-interpolation. Ikebe [7] discussed Galerkin method to approximate the solution of Fredholm 
Integral Equations of 2nd kind. Discrete Galerkin and iterated discrete Galerkin method for FIE of 
2nd kind are presented by Joe [8] along with error analysis and claimed that both discrete Galerkin 
methods and their exact counterparts have same order of convergence under some given 
conditions. Hendi and Albugami [9] used both Galerkin and Collocation method for numerical 
solution of system of Fredholm-Volterra integral equations of 2nd kind where kernel is continuous 
with respect to position and time. They used monomials in both methods as the basis to 
approximate the solution. Shirin and Islam [10] presented Galerkin method with Bernstein 
polynomials as a basis functions in order to get the approximate solution of FIE of 2nd kind. They 
have found very good approximations even for less number of polynomials. Rabbani and 
Maleknejad [11] used Alpert multi-wavelet as the basis in Petrov-Galerkin method to approximate 
the solution of discrete FIE of 2nd kind. In this method FIE is first converted into a system of linear 
equations. Later, Akhavan and Maleknejad [12] improved the Petrov-Galerkin elements using 
Chebyshev polynomials which eliminates some restrictions and improves accuracy from the 
previous method. Recently, Rostami and Maleknejad [13] used Galerkin method with Franklin 
wavelet as the basis for numerical approximation of two-dimensional FIE. The main privilege of 
this method is simplicity and exponential decay which are inherited from the properties of Franklin 
wavelet. 

To the extent of our understanding, no researchers yet have considered product of different 
polynomials to predict the numerical approximation of FIE of 2nd kind. Therefore, in this research 
work, product of Hermite and Laguerre (LH) polynomials are considered as basis functions for 
Galerkin method. Then the outcomes are compared with the solutions obtained from the 
collocation method and exact solution. Moreover, the research is also carried out to see the effect 
of different polynomials for the solution of FIE of 2nd kind using Galerkin method. In this 
investigation, different polynomials such as Bernstein, Chebyshev first kind, Legendre, Hermite 
and Laguerre polynomials are used. In addition, five different set of collocation points are 
considered for above mentioned polynomials and then Collocation method is used in order to see 
the variation between the results. 
 
2. Introduction of Polynomials 

Among the classical orthogonal polynomials such as Hermite, Laguerre, Chebyshev and Legendre 
polynomials are most widely used in approximation theory and numerical analysis. These 
polynomials are used frequently to approximate solution of various kinds of differential and 
integral equations. In this section, a very short overview of Legendre, Chebyshev, Bernstein, 
Hermite and Laguerre polynomials is presented. After that, a new set of polynomials as a product 
of Laguerre and Hermite polynomials is introduced. 
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2.1 Legendre Polynomials 

The Legendre polynomials ௡ܲ(ݑ) are set of orthogonal polynomials over the domain [−1, 1] and 
are solutions of the Legendre differential equations. Explicit formula for ௡ܲ(ݑ)is 

௡ܲ(ݑ) = ෍ቀ݊ݎቁቀ
−݊ − 1

ݎ ቁ
௡

௥ୀ଴

൬
1− ݑ

2
൰
௥

,      ݊ = 0,1,2, …. (1) 

And, the recurrence relation for Legendre polynomials are follows: 

଴ܲ(ݑ) = 1, ଵܲ(ݑ) =  ݑ
(݊ + 1) ௡ܲାଵ(ݑ) = (2݊ + ݑ(1 ௡ܲ(ݑ) − ݊ ௡ܲିଵ(ݑ) , ݊ = 1,2,3, … 

2.2 Chebyshev Polynomials 

Chebyshev polynomials of first kind ௡ܶ(ݑ)are set of orthogonal polynomials over the domain 
[−1, 1] and are solutions of the Chebyshev differential equations. Explicit formula for ௡ܶ(ݑ) is 

௡ܶ(ݑ) = ቁݎ௡෍ቀ݊2ݑ

ቔ௡ଶቕ

௥ୀ଴

(1− ଶ)௥ିݑ ,     ݊ = 0,1,2, …. (2) 

And, the recurrence relation for Chebyshev polynomials of first kind are follows: 

଴ܶ(ݑ) = 1, ଵܶ(ݑ) =  ݑ

௡ܶାଵ(ݑ) = ݑ2 ௡ܶ(ݑ) − ௡ܶିଵ(ݑ), ݊ = 1,2,3, … 

2.3 Bernstein Polynomials 

The nth degree Bernstein polynomials defined on the interval [ܽ,ܾ] are 

(ݑ)௥,௡ܤ = ቀ
݊
ݎ
ቁ

ݑ) − ܽ)௥(ܾ − ௡ି௥(ݑ

(ܾ − ܽ)௡
 ;   ܽ ≤ ݑ ≤ ܾ; ݎ   = 0,1,2, … , ݊ (3) 

where 

ቀ
 ݊ 
ݎ
ቁ =

݊!
!ݎ (݊ −  !(ݎ

There are (݊ + 1) Bernstein polynomials of ith degree with following properties: 

i) ܤ௥,௡(ݑ) = 0, ݎ  ݂݅ < ݎ ݎ݋ 0 > ݊ 

ii) ܤ௥,௡(ܽ) = (ܾ)௥,௡ܤ = 0 , 1 ≤ ݎ ≤ ݊ − 1 

2.4 Hermite Polynomials 

The Hermite polynomials ܪ௡(ݑ) are set of orthogonal polynomials over the domain (−∞,∞) with 
weighting function ݁ି௨మ[14]. The explicit formula for Hermite polynomials are 

(ݑ)௡ܪ = ෍(−1)௥
݊!

!ݎ (݊ − !(ݎ2
௡ିଶ௥(ݑ2)

ቔ௡ଶቕ

௥ୀ଴

 

 

(4) 
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And, the recurrence relations for Hermite polynomials are as follows: 

(ݑ)଴ܪ = (ݑ)ଵܪ ,1 =  ݑ2

(ݑ)௡ାଵܪ = (ݑ)௡ܪݑ2 − ;(ݑ)௡ିଵܪ2݊     ݊ = 1,2,3, …. 

2.5 Laguerre Polynomials 

The Laguerre polynomials ܮ௡(ݑ) are set of orthogonal polynomials over the domain (0,∞) with 
weighting function ݁ି௨. The explicit formula for Laguerre polynomials are 

(ݑ)௡ܮ = ෍(−1)௥
݊!

ଶ!ݎ (݊ − ݑ!(ݎ
௥

௡

௥ୀ଴

 (5) 

and, the recurrence relations for Laguerre polynomials are as follows: 

(ݑ)଴ܮ = (ݑ)ଵܮ ,1 = 1−  ݑ

(݊ + (ݑ)௡ାଵܮ(1 = (2݊ + 1− (ݑ)௡ܮ(ݑ − ;(ݑ)௡ିଵܮ݊    ݊ = 1,2,3, …. 

2.6 Product of Laguerre and Hermite Polynomials 

Here we will consider the following product of Laguerre and Hermite polynomials: 

(ݑ)௡ܪܮ =  (ݑ)௡ܪ(ݑ)௡ܮ

And degree of the polynomial ܪܮ௡(ݑ)is 2݊. Also, first five LH polynomials are presented 
underneath: 

(ݑ)଴ܪܮ = 1 

(ݑ)ଵܪܮ = ݑ2 −  ଶݑ2

(ݑ)ଶܪܮ = −2 + ݑ4 + ଶݑ3 − ଷݑ8 +  ସݑ2

(ݑ)ଷܪܮ = ݑ12− + ଶݑ36 − ଷݑ10 − ସݑ22 + ହݑ12 −
଺ݑ4

3  

(ݑ)ସܪܮ = 12 − ݑ48 − ଶݑ12 + ଷݑ184 − ଶହହ௨ర

ଶ
− ହݑ32 + ଺ݑ46 − ଷଶ௨ళ

ଷ
+ ଶ௨ఴ

ଷ
. 

 
3. Matrix Formulation of FIE 

Integral equations have enormous applications in mathematical physics. Many IVP and BVP can 
be transformed into different integral equations. Fredholm integral equations arise in various 
physical problems [15] like elasticity, fluid mechanics, electromagnetic theory, signal processing 
and so on. 

Galerkin method is one of the popular method in approximation theory which is used to find the 
approximate solution of ODE, Integral equations, and so on. Details of the method are given in 
Lewis and Ward [16]. In both Galerkin and Collocation methods, solution is approximated by a 
finite sum of a set of known functions called as basis functions. To approximate solution, once 
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choice of a set of basis functions are made, next step is the determination of unknown parameters 
in trial solution also known as expansion coefficients. To determine expansion coefficients 
Galerkin and Collocation methods use two different approaches. Now details of matrix formulation 
from linear FIE to determine expansion coefficients by both Galerkin and Collocation method are 
presented in this section. 

General form of linear FIE of 2nd kind is presented below: 

(ݔ)߶(ݔ)ߙ + ݐ݀(ݐ)߶(ݔ,ݐ)න݇ߣ
௕

௔

= ܽ   , (ݔ)݂ ≤ ݔ ≤ ܾ (6) 

where (ݔ)ߙ, ,ݐ)݇ and(ݔ)݂  is the (ݔ)߶ is a known parameter, and ߣ ,are known functions (ݔ
unknown solution of Eq. (6), needed to be resolved. 

In order to approximate the solution of Eq. (6), let the trial solution be ߶෨(ݔ), where 

߶෨(ݔ) = ෍ܿ௜ ௜ܲ(ݔ)
௡

௜ୀ଴

 (7) 

Here ௜ܲ(ݔ) are some known polynomials called as basis functions and ܿ௜are the unknown 
parameters also known as expansion coefficients, to be determined. 

Substituting the trial solution into Eq. (6), we have 

෍ܿ௜(ݔ)ߙ ௜ܲ(ݔ)
௡

௜ୀ଴

+ නߣ ෍ܿ௜(ݔ,ݐ)݇ ௜ܲ(ݐ)
௡

௜ୀ଴

ݐ݀
௕

௔

=  (ݔ)݂

⇒  ෍ܿ௜ ቎(ݔ)ߙ ௜ܲ(ݔ) + නߣ (ݔ,ݐ)݇ ௜ܲ(ݐ)݀ݐ
௕

௔

቏
௡

௜ୀ଴

=  (8) (ݔ)݂

In order to obtain the Galerkin equation to determine expansion coefficients, we first multiply Eq. 
(8) by ௝ܲ(ݔ) and then integrate with respect to ݔ from a to b. Thus Eq. (8) reduces to 

෍ܿ௜ ቎න ቎(ݔ)ߙ ௜ܲ(ݔ) + ,ݐ)න݇ߣ (ݔ ௜ܲ(ݐ)݀ݐ
௕

௔

቏ ௝ܲ(ݔ)݀ݔ
௕

௔

቏
௡

௜ୀ଴

= න݂(ݔ) ௝ܲ(ݔ)dx
௕

௔

,     ݆ = 0,1, . . , ݊ 

This reduces to the following system of (݊ + 1) linear equations in (݊ + 1) unknowns ௜ܿ  

෍ܿ௜ܯ௜,௝ = ௝ܨ

௡

௜ୀ଴

 ,      ݆ = 0,1,2, … , ݊ (9) 

where 

௜,௝ܯ = න቎(ݔ)ߙ ௜ܲ(ݔ) + ,ݐ)න݇ߣ (ݔ ௜ܲ(ݐ)݀ݐ
௕

௔

቏ ௝ܲ(ݔ)݀ݔ
௕

௔

 ;         ݅, ݆ = 0,1,2, … ,݊ 
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௝ܨ = න݂(ݔ) ௝ܲ(ݔ)dx
௕

௔

 ,      ݆ = 0,1,2, … , ݊ 

The unknown parameters of trial solution in Eq. (7) can now be determined easily by solving the 
system of linear equations in Eq. (9). In order to determine the unknown parameters,ܿ௜ , let us 
considered the basis functions as the LH polynomials. Once we have the values of ܿ௜ , we will 
substitute these values in Eq. (7) and will get the approximate polynomial solution of FIE.  

In Collocation method, for each unknown parameter ௝ܿ  in the trial solution, we chose a point ݔ௝in 
the domain. These points ݔ௝ are called collocation points; they may be located anywhere in the 
domain and on the boundary, not necessarily in any particular pattern. Then Collocation method 
force the trial solution to be exact at each collocation points. Hence, at each ݔ௝ , we then force to 
satisfy Eq. (8), that is 

෍ܿ௜ ቎ߙ൫ݔ௝൯ ௜ܲ൫ݔ௝൯ + ,ݐන݇൫ߣ ௝൯ݔ ௜ܲ(ݐ)݀ݐ
௕

௔

቏
௡

௜ୀ଴

= ݂൫ݔ௝൯ ;         ݆ = 0,1,2, … , ݊ (10) 

A trial solution with (݊ + 1)unknown parameters will produce the following system of (݊ + 1) 
linear equations in (݊ + 1) unknowns ܿ௜ from Eq. (10). 

෍ܿ௜ܩ௜,௝ = ௝ܪ

௡

௜ୀ଴

 ;       ݆ = 0,1,2, … ,݊ (11) 

where, 

௜,௝ܩ = ௝൯ݔ൫ߙ ௜ܲ൫ݔ௝൯ + ݐ݀ (ݐ)௝൯ ௜ܲݔ,ݐන݇൫ߣ
௕

௔

 ;         ݅, ݆ = 0,1,2, … , ݊ 

௝ܪ = ݂൫ݔ௝൯ ,      ݆ = 0,1,2, … , ݊ 

The unknown parameters of trial solution in Eq. (7) can now be determined easily by solving the 
system of linear equations in Eq. (11). After that substitution of the parameters into trial solution 
will give us the approximate solution of Eq. (6). 
 
4. Results and Discussion 

In this research, Galerkin and Collocation methods have been applied in order to find the 
numerical solution of linear FIE of 2nd kind, and investigation is carried out to see the performance 
of Galerkin and Collocation methods using different types of polynomials and different sets of 
collocation points. None of these methods need exact solution to approximate the solution of FIE. 
Exact solution is used only to validate our code and to investigate the performance in terms of 
absolute errors. In order to generate numerical results and graphs we have used in-house code 
written in Wolfram Mathematica 9 using 64 bit Windows operating system. Moreover, 
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investigation of numerically approximate solution of linear FIE of 2nd kind is divided into 
following three sections: 

Firstly, we will investigate the errors in approximations using product of Hermite and Laguerre 
polynomials ܪܮ௡(ݔ)by both Galerkin and Collocation methods for different values of ݊ where ݊ is 
the degree of a polynomial. Secondly, we will compare approximate solutions obtained by 
Galerkin method using five different well known polynomials namely Bernstein, Legendre, 
Chebyshev first kind, Hermite and Laguerre with ݊ = 5. Finally, we will consider five different 
sets of collocation points each for one of the five polynomials such as Bernstein, Chebyshev first 
kind, Legendre, Laguerre and Hermite polynomials.  

4.1 Numerical Example 1: 

Consider the linear FIE of 2nd kind given by [17]  

(ݔ)߶ +
1
3
න݁ଶ௫ି

ହ
ଷ௧߶(ݐ)݀ݐ

ଵ

଴

= ݁ଶ௫ା
ଵ
ଷ ,   0 ≤ ݔ ≤ 1 

with exact solution ߶(ݔ) = ݁ଶ௫. 

Now, in first part of our numerical investigation, absolute errors in Galerkin and Collocation 
methods are presented in the Table 1 for LH polynomials, ܪܮ௡(ݔ )with ݊ = 1, 2, 3, 4, 5 
respectively.  
 
Table 1: Numerical Results for LH Polynomial 
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The absolute error graphs by both methods for ݊ = 1, 2, 3, 4, 5 are given in Fig. 1 arranged row 
wise. 
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Fig. 1: Absolute error graph for݊ = 1, 2, 3, 4, 5 

It is clear that as the value of ݊ increase, absolute error decrease for both the Galerkin and 
Collocation methods, as shown in Fig. 1. It is observed that error in Collocation method is higher 
compared to Galerkin method for smaller values of n. But as the value of ݊ increases, error in 
Collocation method tends to be lower than error in Galerkin method.Here in second part of 
numerical investigation, values of unknown parameters ܿ௜ determined by Galerkin method with 
five different polynomials and ݊ = 5  are given in Table 2. 
 
Table 2: Unknown parameters determined by Galerkin method 

 Bernstein Legendre Chebyshev Hermite Laguerre 

ܿ଴ 0.99975 1.63588 1.95493 1.95984 107.783 

ܿଵ 1.40181 3.36022 3.76496 3.70134 -493.616 

ܿଶ 1.99392 1.27451 0.95682 0.48496 940.365 

ܿଷ 2.94727 1.01952 0.66335 0.68475 -915.392 

ܿସ 4.43567 0.00299 0.00168 0.00082 452.246 

ܿହ 7.38876 0.09564 0.04708 0.02353 -90.3862 

Substituting the values of the parameters from Table 2 with corresponding polynomials into Eq. 
(7), we get same approximate polynomial for the trial solution ߶෨(ݔ) which is given below: 

߶෨(ݔ) = 0.999749 + ݔ2.01029 + ଶݔ1.90053 + ଷݔ1.71187 + ସݔ0.0131013 +  ହݔ0.753224

Now the values of ߶෨(ݔ௜)with exact solution are given in Table 3. 
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Table 3: Galerkin Solution 

xi ߶෨(ݔ௜) Exact 
0.0 0.999749 1.0000000 
0.1 1.2215037 1.2214028 
0.2 1.4917846 1.4918247 
0.3 1.8220397 1.8221188 
0.4 2.2255567 2.2255409 
0.5 2.7183659 2.7182818 
0.6 3.3201448 3.3201169 
0.7 4.0551215 4.0551999 
0.8 4.9529781 4.9530324 
0.9 6.0497584 6.0496475 
1.0 7.3887635 7.3890561 

It is observed that approximate solution remains same for different types of polynomials of same 
degree using Galerkin method. It suggests that variation of polynomials have no significant effect 
on the solution of Fredholm integral equation. Besides, we have tested other examples and noticed 
that the features we report here about two different methods and, although different polynomials 
are being consistent though for different examples, time required to get the convergent solution is 
different. 

.  
Fig. 2: Absolute error graph in Galerkin with ݊ = 5 

Fig. 2 shows the absolute error in the approximation in Galerkin method with ݊ = 5 for two cases: 
one for Bernstein, Legendre, Chebyshev first kind, Hermite, Laguerre and other for product 
polynomialsܪܮ௡(ݔ). We can see from the graph that error for polynomial ܪܮ௡(ݔ)is higher than 
other polynomials in most part of the domain though error is decreasing with the value of ݔ 
increasing. 
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Finally, five different sets of collocation points ܾݔ, ,ܿݔ  ℎ for five differentݔ and ݈݃ݔ,݈݁ݔ
polynomialssuch as Bernstein, Chebyshev 1st kind, Legendre, Laguerre and Hermite have used in 
Collocation method with ݊ = 5. And then resulting approximate solutions are given in Table 4 and 
the absolute error graphs are given in Fig. 3. 
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2
3 ,

5
6 , 1ൠ 
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1
5 ,

2
5 ,

3
5 ,

4
5 , 1} 

 
Table 4: Solutions using Collocation points 

x Exact Bernstein Chebyshev Legendre Laguerre Hermite 
0.0 1.0000000 0.999994739 0.999985218 0.999980844 0.999992879 0.999993504 
0.1 1.2214028 1.221471553 1.221920348 1.221792104 1.221523671 1.221604762 
0.2 1.4918247 1.491791947 1.491976456 1.491992503 1.491765998 1.491815006 
0.3 1.8221188 1.822090895 1.821988514 1.822105987 1.822062935 1.822033149 
0.4 2.2255409 2.225558520 2.225400441 2.225491226 2.225629282 2.225526471 
0.5 2.7182818 2.718267537 2.718241648 2.718235041 2.718454155 2.718319911 
0.6 3.3201169 3.320000692 3.320103599 3.320045839 3.320203371 3.320095354 
0.7 4.0551999 4.055078198 4.055116362 4.055147040 4.055123037 4.055090919 
0.8 4.9530324 4.953185177 4.952925161 4.953170513 4.952940136 4.953000248 
0.9 6.0496475 6.051991010 6.049666932 6.050050001 6.049767117 6.049871790 
1.0 7.3890561 7.389017224 7.388946877 7.388914554 7.389003478 7.389008097 

 

 
Fig. 3: Absolute error graphs in Collocation with ݊ = 5 
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Observing the absolute error curves for the five polynomials in collocation method, it is evident 
that there is no way to say which one is better because there are fluctuations in the errors over the 
domain for all polynomials. 

4.2 Numerical Example 2: 

Consider the linear FIE of 2nd kind given by  

(ݔ)߶ −
1
2
න(1 +

1
ݔ2

ଶݐଶ +
1

ݔ24
ସݐସ)߶(ݐ)݀ݐ

ଵ

଴

= 0   , ݔ ≤ ݔ ≤ 1 

Similar to the first example, in first part of numerical investigation, approximate solutions in 
Galerkin and Collocation methods are presented in the Table 5 and Table 6 respectively for LH 
polynomials, ܪܮ௡(ݔ )with ݊ = 1, 2, 3, 4, 5. 
 
Table 5: Approximate solution using Galerkin method with LH polynomial 

 ݔ
߶෨(ݔ) 

݊ = 1 ݊ = 2 ݊ = 3 ݊ = 4 ݊ = 5 
0. 1.0768217268 0.7345357689 0.597420743 0.544698552 0.539678377 

0.1 1.0681688403 0.662451017 0.627497758 0.637864575 0.639877857 
0.2 1.061438817 0.690079480 0.7236842557 0.743214516 0.743684945 
0.3 1.056631658 0.785984399 0.845436854 0.850835140 0.8493576643 
0.4 1.053747363 0.922427455 0.968943166 0.9583943798 0.957144189 
0.5 1.052785931 1.075368772 1.083571040 1.067114707 1.067521001 
0.6 1.0537473628 1.224466917 1.1886018641 1.179013535 1.1805868454 
0.7 1.056631658 1.353078900 1.290247924 1.295205773 1.296129108 
0.8 1.061438817 1.448260173 1.398953827 1.415076061 1.413997756 
0.9 1.068168840 1.500764628 1.526981989 1.5361406302 1.534525529 
1.0 1.0768217268 1.505044602 1.686282173 1.654431152 1.6588222732 

 
Table 6: Approximate solution using Collocation method with LH polynomial 

 ݔ
߶෨(ݔ) 

݊ = 1 ݊ = 2 ݊ = 3 ݊ = 4 ݊ = 5 
0. -6.043165468 0.522585022 0.52666768 0.538536763 0.538854554 
0.1 -9.3064748201 0.428750454 0.578678769 0.633631046 0.639229060 
0.2 -11.8446043165 0.478132501 0.692810103 0.741003813 0.743395398 
0.3 -13.657553957 0.624769379 0.827546551 0.850138962 0.84930308 
0.4 -14.7453237410 0.828106572 0.958797576 0.958462307 0.957134438 
0.5 -15.107913669 1.052996834 1.076174513 1.067248201 1.067437335 
0.6 -14.7453237410 1.269700186 1.179565669 1.178789952 1.180421198 
0.7 -13.657553957 1.4538839190 1.276009232 1.294630986 1.295944818 
0.8 -11.8446043165 1.586622593 1.376864005 1.414666074 1.413838218 
0.9 -9.3064748201 1.654398035 1.495277957 1.536934165 1.534300455 
1.0 -6.043165468 1.6490993426 1.64395459 1.657936746 1.658201053 
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Now in second part of numerical investigation, values of unknown parameters ܿ௜ determined by 
Galerkin method with five different polynomials Bernstein, Legendre, Chebyshev, Hermite and 
Laguerre using݊ = 5  are given in Table 7. 
 

Table 7: Unknown parameters determined by Galerkin method 

 Bernstein Legendre Chebyshev Hermite Laguerre 
ܿ଴ 0.538979 0.577959 0.597904 0.60018 1.91124 
ܿଵ 0.738979 1. 1. 0.5 -2.03584 
ܿଶ 0.950309 0.0789991 0.0596829 0.032876 1.10059 
ܿଷ 1.17297 -3.02084×10-11 -3.15527×10-11 9.3016×10-11 -0.582676 
ܿସ 1.40817 0.00138725 0.000758651 0.000379326 0.145679 
ܿହ 1.65835 -2.78855×10-12 -2.21595×10-12 3.20319×10-12 -3.96409×10-6 

Substituting the values of parameters from Table 7 with corresponding polynomials into Eq. (7), 
resulting approximate polynomials for the trial solution ߶෨(ݔ)are given in Table 8. 
 

Table 8: Approximate polynomial solution in Galerkin method 

Basis ߶෨(ݔ) 

Bernstein 0.538979 + ݔ.1 + ଶݔ 0.113297 − 7.63833 × 10ିଵଷݔଷ + ସݔ 0.00606921 − 3.606
× 10ିଵଷݔହ 

Legendre 0.538979 + ݔ.1 + ଶݔ 0.113297 − 5.11212 × 10ିଵଵݔଷ + ସݔ 0.00606921 − 2.19598
× 10ିଵଵݔହ 

Chebyshev 0.538979 + ݔ.1 + ଶݔ 0.113297 − 8.18915 × 10ିଵଵݔଷ + ସݔ 0.00606921 − 3.54553
× 10ିଵଵݔହ 

Hermite 0.538979 + ݔ.1 + ଶݔ 0.113297 + 2.31619 × 10ିଵ଴ݔଷ + ସݔ 0.00606921 + 1.02502
× 10ିଵ଴ݔହ 

Laguerre 0.538979 + ݔ.1 + ଶݔ 0.113297 + 7.28264 × ଷݔ10ି଼ + ସݔ 0.00606913 + 3.30341
×  ହݔ10ି଼

Now the numerical values of ߶෨(ݔ௜)from Table 8 are given in Table 9. 
 

Table 9: Approximations of ߶෨(ݔ௜) 

 (௜ݔ)௜ ߶෨ݔ

0. 0.538979352 
0.1 0.6401129244 
0.2 0.743520924 
0.3 0.849225200 
0.4 0.957262169 
0.5 1.0676828103 
0.6 1.180552673 
0.7 1.295951869 
0.8 1.413975080 
0.9 1.534731551 
1.0 1.6583450929 
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Finally, approximate solutions in Collocation method using five different sets of collocation 
points ܾݔ, ,݈݁ݔ,ܿݔ  ,ℎ for five different polynomials such as Bernstein, Chebyshev 1st kindݔ and ݈݃ݔ
Legendre, Laguerre and Hermite respectively with ݊ = 5  are given in Table 10. 
 
Table 10: Approximate solution in Collocation method 

 

From Table 5, 6, 9 and 10 it is evident that numerical approximations by Bernstein, Chebyshev, 
Legendre, Laguerre, Hermite and LH polynomials in both Galerkin and Collocation methods are 
converging into same direction. In contrast to example 1, resulting approximate polynomials in 
Galerkin method using Bernstein, Chebyshev, Legendre, Laguerre and Hermite polynomials as 
basis are different. Although resulting numerical solutions are same for all these polynomials. 
Approximate solutions in Collocation methods using Bernstein, Chebyshev, Legendre, Laguerre 
and Hermite polynomials as basis are same where as in example 1 numerical solutions were 
different for different polynomials. 
 
5. Conclusion 

In this research, new polynomials, called LH-polynomials of degree 2݊ are introduced. Then, 
linear Fredholm integral equation of 2nd kind is solved using Galerkin and Collocation methods 
where LH-polynomials are considered as a basis functions. It is found that Collocation method 
performed better than Galerkin method. Moreover, five different well known polynomials such as 
Bernstein, Chebyshev 1st kind, Legendre, Laguerre and Hermite are also considered in order to 
solve FIE of 2nd kind using Galerkin method. And it is also found that all the approximate 
solutions are same. It means that different types of polynomials have insignificant effect on the 
solution of FIE of 2nd kind. At the end, five different collocation points set along with these 
polynomials are considered. It is observed that five different approximate solutions are obtained. 
However, no conclusion has been made about the performance of the methods in terms of absolute 
errors. It is seen that all the methods give quite satisfactory outcomes but time required for 
computer to perform the calculations varies in two methods. Collocation method takes less time 
than Galerkin method. Then in both methods Hermite, Legendre and Chebyshev polynomials took 
less time than Bernstein and Laguerre polynomials. 
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