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ABSTRACT

In this paper we derive the formulation of one dimensional linear and nonlinear system of second
order boundary value problems (BVPs) for the pair of functions using Galerkin weighted residua
method. Here we use Bernstein and Legendre polynomials as basis functions. The proposed method
is tested on several examples and reasonable accuracy is found. Finally, the approximate solutions
are compared with the exact solutions and also with the solutions of the existing methods.

Keywords: Galerkin method, second order linear and nonlinear BVP, Bernstein and Legendre
polynomials.

1. Introduction

Ordinary differential systems have been focused in many studies due to their frequent appearance
in various applications in physics, engineering, biology and other fields. Wazwaz [1] applied the
Adomian decomposition method to solve singular initial value problems in the second order
ordinary differential equations, Ramos [2] proposed linearization techniques for solving singular
initial value problems (1VPs) of ordinary differential equations, and there are other papers [7 — 9]
for solving second order IVPs. However, many classical nhumerical methods used to solve second-
order IVPs that cannot be applied to second order BVPs. For a nonlinear system of second order
BVPs [3], there are few valid methods to obtain the numerical solutions. Many authors [10, 11]
discussed the existence of solutions to second order systems, including the approximation of
solutions via finite difference method. Lu [4] proposed the variational iteration method for solving
a nonlinear system of second order BV Ps. Since piecewise polynomias can be differentiated and
integrated easily and can be approximated to any function of any accuracy desired. Hence
Bernstein polynomials have been used by many authors. Very recently, Bhatti and Bracken [5]
used Bernstein polynomials for solving two point second order BVP, but it is limited only to first
order nonlinear IVP. Besides spline functions and Bernstein polynomials, there are another type of
piecewise continuous polynomials, namely Legendre polynomias[6].
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Therefore, the purpose of this paper is devoted to use two kinds of piecewise polynomials:
Bernstein and Legendre polynomials widely for solving system of linear and nonlinear second
order BV P exploiting Galerkin weighted residua method.

2. Some Special Polynomials

In this section we give a short description on Bernstein [5] and Legendre [6] polynomials which
are used in this paper.

(a) Bernstein polynomials

The general form of the Bernstein polynomials of nth degree over the interval [a, b] is defined by
(6]

x—a)i(b—x)""
Bin(x) = (?)( (;Ea)n) ,a<x<b i=012 oo,

Note that each of these n 4+ 1 polynomials having degree n satisfies the following properties:

i. Bin(x) =0, ifi<Oori>n,
i YitoBin(x) =1
iii. Bin(a) = B;,(b) =0, 1<i<n

Thefirst 11 Bernstein polynomials of degree ten over the interval [0,1] , are given below:

i Bo10(x) = (1 —x)*°
i Bj10(x) = 10(1 — x)°x
iii. By 10(x) = 45(1 — x)8x?
iv. B3 10(x) = 120(1 — x)7x3
V. By10(x) = 210(1 — x)%x*
Vi.  Bgio(x) = 252(1 — x)5x°
vii. Bg1o(x) = 210(1 — x)*x*
viii. By 10(x) = 120(1 — x)3x7
iX. Bg1o(x) = 45(1 — x)%x®
X. Bg10(x) = 10(1 — x)x°

Xi. Bio,10 = x*°

All these polynomia will satisfy the corresponding homogeneous form of the essential boundary
conditions in the Galerkin method to solve aBVP.

(b) L egendre Polynomials
The genera form of the Legendre polynomials [6] over theinterval [1, —1] isdefined by

N . (2n — 2r)!
pn(x) = ;(_1) 2 (n—rl(n—2n!"

n-2r
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where N =§forneven and N =n7_1 for n odd.

Thefirst ten Legendre polynomials are given below
pi(x) =x
p(x) =5 (3x2 — 1)
ps(x) =2 (5x° — 3x)

pa(x) = %(35x4 —30x2% +3)

ps(x) = §(63x5 — 70x3 + 15x)

pe(x) = - (231x° — 315x* + 105x2 — 5)

p,(x) = i(429x7 — 693x5 + 315x3 — 35x)

pe(x) = — (6435x® — 1201x° + 6903x* — 1260x? — 35)

Po(x) = 318(12155969 — 25740x7 + 18018x5 — 4620x3 + 315x)

1
P1o(x) = ﬁ(46189x10 —109395x® + 90090x°® — 30030x* + 3465x2 — 63)

3. System of Second Order Differential Equations

General linear system of two second-order differential equations in two unknowns functions u(x)
and v(x), isasystem of the form [2]

a (U + a, (v + az;()u’ + a,(x)v' + as(u + ag(x)v = f1(x)
by O)u" + by (x)v" + b3 ()u’ + by ()v' + bs(x)u + bg(x)v = fo(x)

where a;(x), b;(x), fi(x), f,(x) ae given functions, and a;(x),b;(x)are continuous,
i=1,234,5,6

And genera nonlinear system of two second-order differentia equations in two unknowns
functions u(x) and v(x), isasystem of the form [4]

a; )u" + a, ()" + az (U’ + a,(X)v' + as()u + ag(x)v + Nl(u, v) = fl(x))
by C)u" + by (x)v" + b3 (x)u’ + by (x)v' + bs(x)u + bg(x)v + N,(w, v) = f,(x)

where a;(x), b;(x), fi(x), fo(x) are given functions, N;N, are nonlinear functions and
a;(x), b;(x) arecontinuous, i = 1,2,3,4,5,6
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4, Formulation of Second Order BVP

Let us consider the one dimensional system of second order differential equations|[3]

—u”(x) + q(ulx) + r(v(x) = f(X)}

—v"(x) + s()vx) + t(x)ulx) = g(x) @

for the pair of functions u(x) and v(x) in 0 < x < 1. Since each equation is of second order, two
boundary conditions are required to specify each of the solution components u(x) and v(x)
uniquely. For convenience, we assume homogeneous Dirichlet data at the ends as boundary
conditions

w(0) = u(1) = v(0) = v(1) = 0 )

The data include the prescribed functions f, g, q,r, s and t, which are assumed to be bounded and
sufficiently smooth to ensure subsequent variational integrals are well defined and the problem is
“well posed”.

Let us consider two trial approximate solutions for the pair of functions u(x) and v(x) of system
(2) given by

i(x) =Xk, a;pi(x),n = 1} "

v(x) = X bipi(x),n = 1

where a; and b; are parameter, p;(x) are co-ordinate functions (here Bernstein and Legendre

polynomials) which satisfy boundary conditions (2).

Now apply Galerkin Method [1] in system (1) we get weighted residual system of equations
Jy (=" () + qQEG) + () FC))pi () dx = f FGPpi(x) dx} @
Jy (=" (x) + s@)a(x) + t)BE))p; (x) dx = f| f()pi(x) dx

Integrating by parts and setting p; (x) = 0 at the boundary x = 0 and x = 1, then we obtain system
of weighted residual equations

[ @ P + 4@ ap: () + r(@)F(x) pi(x)) dx = [} F()pi(x) dx}
[ P () + P00 + EE)Ax) pi(x)) dx = [ g(X)pi(x) dx

Now putting the representation (3) into (5) we get

®)

1 n n n
|, Qo @rie) +a(0 Y ap, I + 7 Y by vy P di
Jj=1 j=1 j=1

- fo FPx) dx
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fo O byp/ PG + 56 Y by py ) + £ Yy py(Ipi(x)) dx
=1 =1 =1
1
- fo 90OP(x) dx

We can write above equation as

n

> ( f 1 [(p; P 0)) @ + (9D IPi)) @ + (I ()pe(3)) By dx)

j=1

- fo Fpx) dx

Z( f pj (P (0)) by + (5GP I (3)) by +(t(x>pj<x)pl(x))a,]dx)

=1

- jo 9P dx

i=123,..,n
Equivaently,

n
Z(Aj'iaj + Bj'iaj) = Fi
j=1

n
Z(Ci,ibj +D;,0;) = G;
=1

i=123,..,n
where,

(6)

1
430 = [ 1(iewie0) + @Coms CopCn) d
B = | reomomeo) d
1
Fi= [ fmedx
0
o= | e i) + (5w, CIp ()

1
Dy, = f (P, (P () dx

1
G = [, 9(0)pi(x) dx
ij=123 ..,n
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Fori=1,2,..,n we get system of linear equations, which involve parameter a; and b; which can
be obtained by solving system (6). System (6) can be assembled by element matrix contribution
[3]. Since there is no direct method to solve nonlinear BV Ps, so we describe the proposed method
for nonlinear BV Ps through numerical examplesin the next section.

5. Numerical Examples

In this study, we use three BV Ps; two linear and one nonlinear, which are available in the existing
literature [4], the Dirichlet boundary conditions are considered to verify the effectiveness of the
derived formulations. For each case we find the approximate solutions using different number of
parameters with Bernstein and Legendre polynomials, and we compare these solutions with the
exact solutions, and graphically which are shown in the same diagram.

Example 1

Consider the following system of equations [4]

u'(x) +xulx)+xvlx) =2 } -
v"(x) 4+ 2x v(x) + 2x u(x) = -2 @)
subject to the boundary conditions
u(0) =u(1) =0, v(0)=v(1)=0 (8)

where 0 < x < 1. The exact solution of (7) areu(x) = x? —x and v(x) = x — x2.
Solutions using Bernstein polynomials:

We use Bernstein polynomials as trial solution to solve the system (7). Consider tria approximate
solutions be

n

ii(x) = Z a; Bi,w(x)]

©)
5(0) = ) b Biao ()
i=1

where a; and b; are parameter and B; 1o(x) are co-ordinate functions of Bernstein polynomials
which satisfy conditions (8).

Using the method illustrated in section 4, finally we get,

n 1
> ( f [(=B10) Bi10@)) @) + (x B;10(x) Biao () @ + (x B0 () Biao () by dx)
=1 0

-| OB o (6) dx 10(a)
0
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n

Z < fo 1 (=B} 1000 B1o(0)) b + (22 Bj10(x) By1o () ) by + (2 B 10(x) Bizo () ] dx)

j=1

= f g(x)B; 10(x) dx
0

i=12..,n

10(b)

The above equations are equivalent to the matrix form

n
Z(Ai.iai + Hjiq;) = F;
=1

n
Z(C]'lb] + Dj‘iaj) = Gi
j=1

where,

1
Aj; = f [(_B]{,IO(X)BL{JO(X)) + (x Bj,1o(x)Bi,10(x))] dx
Hio= | Biao(Biao() dx
R=| 2 (0By10() dx
0
Cii= f [(_B]{,10(X)Bi,,10(x)) + (2x Bj10(x)B;10(x))] dx

D, = fo (2% By 10 (x)By 10 (X)) dx

Gi = [, —2Bi1p(x)dx i,j=12,..,n

Similarly, we can derive the equation (10) using L egendre polynomials.

Table 1: Results of u(x) of equation (7) in Example 1

Approximate Absolute error Approximate Absolute error Absolute error
X Exactvalue | Solutionu(x) Solution u(x) [4]
Legendre polynomia n=2 Bernstein polynomia n=9

0.0 | 0.0000000000 | 0.0000000000 0.0000000000 0.000000000 0.0000000000 0.0000000000
0.1 | —0.0900000000 | —0.0900000000 | 6.9388939 x 10~18 | —0.09000000 2.8008740130 x 10~** | 0.0000000000
0.2 | —0.1600000000 | —0.1600000000 | 2.7755575 % 107 | —0.16000000 3.6821549280 x 10~** | 0.0000000000
0.3 | —0.2100000000 | —0.2100000000 0.0000000000 | —0.21000000 6.2091685960 x 10~ | 0.0000000000
0.4 | —0.2400000000 | —0.2400000000 0.0000000000 | —0.24000000 1.0877099220 x 10~'* | 0.0000000000
0.5 | —0.2500000000 | —0.2500000000 0.0000000000 | —0.25000000 1.3281251100 x 10~'* | 0.0000000000
0.6 | —0.2400000000 | —0.2400000000 0.0000000000 | —0.24000000 1.0877088120 x 10~'* | 0.0000000000
0.7 | —0.2100000000 | —0.2100000000 0.0000000000 | —0.16000000 6.2091748410 x 10~ | 0.0000000000
0.8 | —0.1600000000 | —0.1600000000 0.0000000000 | —0.16000000 3.6821518060 x 10~ | 0.0000000000
0.9 | —0.0900000000 | —0.0900000000 0.0000000000 | —0.09000000 2.8008692590 x 10~ | 0.0000000000
1.0 | 0.0000000000 | 0.0000000000 0.0000000000 | 0.000000000 0.0000000000 0.0000000000
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Figure 1: Graphical representation of exact and approximate solutions of u(x) of equation (7)

Table 2: Results of v(x) of equation (7) in example 1

x Approximate Absolute error Approximate Absolute error Absolute error
Exact value Solution v(x) Solution v(x) 4
Legendre polynomial n=2 Bernstein polynomia n=9
0.0 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000 0.0000000000 0.0000000000
0.1 | 0.0900000000 | 0.0900000000 |6.9388939x107*% | 0.0900000000 |2.8008740130x107* | 0.0000000000
0.2 | 0.1600000000 | 0.1600000000 |2.7755575x10™ | 0.1600000000 |3.6821549280x10™* | 0.0000000000
0.3 | 0.2100000000 | 0.2100000000 | 0.0000000000 | 0.2100000000 |6.2091685960x107 | 0.0000000000
0.4 | 0.2400000000 | 0.2400000000 | 0.0000000000 | 0.2400000000 |1.0877099220x107* | 0.0000000000
0.5 | 0.2500000000 | 0.2500000000 | 0.0000000000 | 0.2500000000 |1.3281251100x10™* | 0.0000000000
0.6 | 0.2400000000 | 0.2400000000 | 0.0000000000 | 0.2400000000 |1.0877088120x107* | 0.0000000000
0.7 | 0.2100000000 | 0.2100000000 | 0.0000000000 | 0.1600000000 |6.2091748410x107 | 0.0000000000
0.8 | 0.1600000000 | 0.1600000000 | 0.0000000000 | 0.1600000000 |3.6821518060x10™ | 0.0000000000
0.9 | 0.0900000000 | 0.0900000000 | 0.0000000000 | 0.0900000000 |2.8008692590x10™* | 0.0000000000
1.0 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000 0.0000000000 0.0000000000
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Figure 2: Graphical representation of exact and approximate solutions of v (x) of equation (7)
Example 2:

Consider the following system of equations [4]
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u"(x) + (2x — D' (x) + cos(mx)v'(x) = —n? sin(mx) + (2x — 1) cos(mx) (11)
V'(x) + xu(x) = 2+ xsin(mx)

suhject to the boundary conditions

u(@)=u(1)=0, v(0)=v(1) =0 (12

where 0 < x < 1. The exact solutions of (11) are u(x) = sin(nx) and v(x) = x* —x.

Using the same procedure of example 1 we get the following Table 3 and graphs.

Table 3: Results of (x) of equation (11)

Approximate Absolute error Approximate Absolute error Absolute error
¥ Exact value Solution v(x) Solution v(x) [4]
Legendre polynomial n=3 Bernstein polynomial n=8
0.0 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000 0.0000000000
0.1 | 0.3090169944 | 0.3087639360 |2.53058374x107* | 0.3215460957 | 1.252910136x1072 | 3.00000000x107*
0.2 | 05877852523 | 0.8095597440 |5.42749625x10™ | 0.8230835958 | 1.406660147x107 | 2.50000%000107°
0.3 | 0.8090169944 | 0.8095597440 |5.42749625x107* | .08230835958 | 1.406660147x1072 | 7.80000000x107°
0.4 | 0.9510565163 | 0.9506716800 |3.84836395x107* | 0.9507983300 | 2.5186306x107* 1.66000000%x107
0.5 | 1.0000000000 | 0.9991240000 |8.76000000x107* | 0.9691424805 | 3.085751953x1072 | 2.77000000x107?
0.6 | 0.9510565163 0.950673160 |3.83300295x10™ | 0.9539908751 | 2.93435882x10° | 3.87000000x1072
0.7 | 0.8090169944 | 0.8095624320 |5.45437625x10* | 0.8134388915 | 4.42189715x10° | 4.59000000x107
0.8 | 0.5877852523 | 0.5885213440 |7.36091707x107* | 05536130521 | 3.417220016x107 | 4.49000000%x107
0.9 | 0.3090169944 | 0.3087662400 |2.50754374x107* | 0.3147098746 | 5.692880216x10° | 3.09000000x107
1.0 | 0.0000000000 | 0.0000000000 0.0000000000 | 0.0000000000 0.0000000000 0.0000000000
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Figure 3: Graphical representation of exact and approximate solutions of u(x) of equation (11)
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Table 4: Results of v(x) of equation (11)

Rupa& Isam

X Approximate Absolute error Approximate Absolute error Absolute error
Exact vaue Solution v(x) Solution v(x) [4]
L egendre polynomial n=3 Bernstein polynomial n=4
0.0 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000 0.0000000000 0.0000000000
0.1 | 0.3090169944 | 0.3087639360 |2.53058374x10*| 0.3215460957 | 1.252910136x107 |3.00000000x10™*
0.2 | 05877852523 | 0.8095597440 |5.42749625x10™ | 0.8230835958 | 1.406660147x1072 |2.50000x000107
0.3 | 0.8090169944 | 0.8095597440 |5.42749625x10™ | 0.8230835958 | 1.406660147x107 |7.80000000x107
0.4 | 0.9510565163 | 0.9506716800 |3.84836395x107* | 0.9507983300 2.5186306x10*  |1.66000000x10™>
0.5 | 1.0000000000 0.950673160 |8.76000000x10 | 0.9691424805 | 3.085751953x102 |2.77000000x107
0.6 | 0.9510565163 0.950673160 |3.83300295x10™* | 0.9539908751 | 2.93435882x10° |3.87000000%x107
0.7 | 0.8090169944 | 0.8095624320 |5.45437625x107*| 0.8134388915 | 4.42189715x107° |4.59000000%x107
0.8 | 05877852523 | 0.5885213440 |7.36091707x10™ | 0.5536130521 | 3.417220016x107 |4.49000000x107
0.9 | 0.3090169944 | 0.3087662400 |2.50754374x10*| 0.3147098746 | 5.692880216x10° |3.09000000x107
1.0 | 0.0000000000 | 0.0000000000 | 0.0000000000 | 0.0000000000 0.0000000000 0.0000000000
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Figure 4: Graphical representation of exact and approximate solutions of v(x) of equation (11)
Example 3:

Consider the following equations [4]

u"(x) + xu'(x) + cos(mx)v'(x) = sin(x) + (x* — x + 2) cos(x) + (1— 2x) cos(mx)

13
V() + xu' (x) + u?(x) = =2+ xsin(x) + x(x =D ? sin?(x) + (x? — x) cos(x). 13
subject to the boundary condition
u(0) =u(1) =0, v(0)=v(1)=0 14

where 0 < x < 1. The exact solutions of (13) are u(x) = (x — 1) sin(x) and v(x) = x —x°.

We use Legendre polynomias astrial approximate solution to solve the system (13). Consider tria
solution be of the form
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u(x) = Zn: biLi(x)]

: (15)
) = ) hili(®)

where a; and b; are parameter L;(x) are co-ordinate functions of Legendre polynomias which
satisfy conditions (14).

Using the method illustrated in section 4, finally we get

n

Z <J: [(—L}(x) L; (x)) a; + ((x L;(x) L',-(x)) a; + (cos(nx) L';(x) L]-(x)) b,-] dx)

Z fol (_Lﬁ'(x) L'i(X)) b; + ((x L;(x) L,i(x)) + Z ax L2, (x)L]-(x)> a; |dx

i=1 =1

= flfz (L (x) dx 0 =12, . 16(b)
0

The above equations are equivalent to the matrix form

n
Z(Ai,jai +Byja;) = F 17(a)
=1
n
Z(Ci,jbi +(Dij + Ey)a;) = G 17(b)
i=1
where,

1

A= [ ((~5eL@) + (@ V@)

Bi; = fol(cos(nx) L';(x)Li(x)) dx

F = fl(sin(x) + (x? — x + 2) cos(x) + (1 — 2x) cos(mx))L;(x) dx
’ 1

¢, = f (-LLE) dx
0

D;; = fol(x L(x)L';(x)) dx

E, = fo (; 0y 12 (0L () dx
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G; = fol(—z + xsin(x) + x(x — 1)%sin?(x) + (x? — x) cos(x))L;(x) dx

Rupa & Islam

The initial values of these coefficients a; are obtained by applying Galerkin method to the BVP
neglecting the nonlinear term in 17(b). That is, to find initial coefficients we will solve the
system

n

Z{Ai_jai +Byja;} = F

i=1
n

Z{Ci'jbi + Di'jai} = Gj

i=1

whose matrices are constructed from

17(c)

Ay = jo 1 ((—L}(x)L’i(x)) +((x L'i(x)Lj(X)))dx
Byj= f 1(COS(nx) L’,-(x)Lj(x)) dx
0

F = fol(sin(x) + (x% = x + 2) cos(x) + (1 — 2x) cos(mx))L; (x) dx

Table 5: Results of (x) of equation (13)

x Approximate Absolute error Approximate Absolute error Absolute error
Exact vaue Solution v(x) Solution v(x) [4]
Legendre polynomial n=2 Bernstein polynomia n=9
0.0 | 0.0000000000 | 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.1 | —0.0898500750 | 0.0000000000 |1.421902218x107° | -0.0898555699 | 5.494900000x10°° 3.00000x10™*
0.2 | -0.1589354646 |-0.0912719772 | 7.683689640x10* | —0.1589352157 | 2.489000000x107 | 2.50000x107
0.3 | -0.206641447 |-0.1597038336 |6.095282628x10* | —0.2068641998 | 5.51000000x107° 7.80000x10°
0.4 | -0.2336510054 |-02062546164 | 1.767632585x10~° | —0.2336500057 9.9970000x107" 1.66000%x1072
05 | —0.2397127693 |-0.2318833728 | 2.163619305x10°° | —0.2397123941 | 3.75200000x107 2.77000x107
0.6 | —0.2258569894 |-0.2375491500 | 1.645994158x10~ | —0.2258523662 | 4.62320000x10° 3.87000%x107
0.7 | -0.1932653062 |-0.2242109952 | 4.373505713x10™* | —0.1932605023 | 4.80390000%x10°° 4,59000x107
0.8 | —1434712182 |-0.1928279556 |8.878602201x10* | —0.1434700211 | 1.19710000x107° 4.49000%x107
0.9 | -0.0783326910 |-0.1443590784 | 1.430719837x107° | —0.0783311456 | 1.54540000%x10°° 3.09000%x107
1.0 | 0.0000000000 | 0.0000000000 | 0.0000000000 0.0000000000 0.0000000000 0.0000000000

= [ (-pitico) ax
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D, = jé (xL,; (X)L (x))dx

D, = f;(—2+ xsin(x) + x(x — D) sin®(x) + (x* - x) cos(x)) L, (x)dx

ij=1,2,..n

Doy |

Figure 5: Graphical representation of exact and approximate solutions of u(x) of equation (13)

Table 6: Results of v¢ (x) of equation (13) using

x Approximate Absolute error Approximate Absolute error Absolute error
Exact value Solution v(x) Solution v(x) [4]
Legendre polynomial n=2 Bernstein polynomia n=9

0.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.1 0.0900000000 0.0891388543 8.61145740x10™* 0.0899952168 4.78320000x10°° 0.0000000000
0.2 0.1600000000 1.1593721549 6.27845120x10™ 0.1600002894 2.89400000%x10°7 0.0000000000
0.3 0.2100000000 0.2103612466 3.61246620%x10™ 0.21009999877 9.99877000%x10°° 0.0000000000
04 0.2400000000 0.2417674742 1.76747424x1072 0.23999999998 2.0000000%107*° 0.0000000000
05 0.2500000000 0.2532521825 3.25218250%107% 0.2511119953 9.95300000x10~" 0.0000000000
0.6 0.2400000000 0.2444767162 4.47671616x1072 0.2400001511 1.51100000x1077 0.0000000000
0.7 0.2100000000 0.2151024200 5.10241998x1072 0.2099999899 1.01000000x10°® 0.0000000000
0.8 0.1600000000 0.1647906387 4,79063872x107° 0.1599879652 1.20348000x107° 0.0000000000
09 0.0900000000 0.0932027171 3.20271714x10°° 0.0900501123 5.01123000%x10°° 0.0000000000
1.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

Once the initial values of the coefficients a;, are obtained from the system 17(c), they are
substituted into equation 17(b) to obtain new estimates for the values of «,. This iteration process
continues until the converged values of the unknown parameters are obtained. Substituting the
final values of the parameters into (14), we obtain an approximate solution of the BVP (13).

Conclusions

We have derived, in details, the formulation of system of second order BV Ps by Galerkin weighted
residual method. This method enables us to approximate the solutions at every point of the domain
of the problem. In this method, we have used Legendre and Bernstein polynomials as the tria
functions in the approximation. The concentration has given not only on the performance of the
results but also on the formulations.
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Figure 6: Graphical representation of exact and approximate solutions of v(x) of equation (13)

We may notice that the formulations of this study are easy to understand and may be implemented
to solve for BVP. Some linear and nonlinear examples are tested to verify the effectiveness of the
desired formulations whose analytical solutions are not available. The computed solutions are
compared with the exact solutions and we have found a good agreement. This method may be
applied for higher order BV Ps to get the desired accuracy.
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