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ABSTRACT 

We use Galerkin finite element method (GFEM) to solve second order linear and nonlinear 

boundary value problems (BVPs). First we develop FEM formulation for a class of linear and 

nonlinear BVPs. Then we present convergence analysis of the method. Later, we give the solution 

of some nonlinear BVPs with Diritchlet, Neumann and Robin boundary conditions. All results are 

compared with the exact solution and sometimes with the results of the existing method to verify 

the convergence, stability and consistency of this method. The results are depicted graphically as 

well as in the tabular form. 
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1. Introduction 

Numerical methods play a vital role in science and engineering in terms of solving and analyzing 

problems. Solutions to scientific and engineering problems can be achieved more easily by 

numerical method with the help of computers. So the importance of numerical analysis is 

increasing day by day, because most of the natural phenomena can be described by differential 

equations with varying boundary conditions easily, but the solutions of which cannot be obtained 

analytically except very simple cases. To solve these problems, we use several methods such as 

Finite Difference Method (FDM), Galerkin Method, Collocation Method, Least Square Method, 

Sub-domain Method [1], Adomian Decomposition Method [2], Shooting Method [3] etc.  

Prior to its conception, the finite difference method held a dominant position in the numerical 

solution of continuum problem. But it gives value at particular points only and cannot be used to 

evaluate the values at the desired points between two grid points. Without that it takes more 

computational cost for getting higher accuracy. For this limitations of the FDM, people start to use 

Galerkin Method, Collocation Method and Least Square Method for solving differential equations. 

These methods employ trial functions which must satisfy the boundary conditions. This is little easy 

in simple problems but in real life problems it is too tough to find these types of trial functions. 
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So in recent years, Galerkin Finite Element Method (GFEM) [5] is becoming very much popular 

technique for obtaining approximate solutions to the ordinary differential equations and the partial 

differential equations that arise in science and engineering applications. Because GFEM gives a 

polynomial at each point instead of value, so it can give value at any point within the domain. To 

apply GFEM, no need to convert the boundary value problems into initial value problems. In this 

method one can easily use the finite element shape functions instead of trial functions. It is a 

general technique for constructing approximate solutions to the boundary value problems. For this 

reason GFEM is widely used in solving differential equations.  

Islam et al. [4] use Galerkin finite element method for solving initial boundary value problems of 

differential equations. Bhatti and Bracken [6] solved the nonlinear BVP with only Diritchlet 

boundary conditions which is limited within first order, where Islam and Shirin [7] solved the 

linear and nonlinear boundary value problems by using Galerkin Method with the help of 

Bernoulli polynomials.  

To the best of our knowledge, none have solved the nonlinear boundary value problems with all 

boundary conditions by Galerkin finite element method yet. So in this paper, our main concern is 

to solve the nonlinear boundary value problems with all boundary conditions by using Galerkin 

finite element method. 

 

2. Finite Element Formulation for Second Order Linear BVPs 

Let us consider the general second order boundary value problem [5] − ݔ݀݀ ൬(ݔ)݌ ൰ݔ݀ݑ݀ + (ݔ)ݑ(ݔ)ݍ = ܽ					,	(ݔ)݂ ≤ ݔ ≤ ܾ																																																																												(1)	 
whose boundary conditions are  ݑ(ܽ) = ଵݎ 									൬(ݔ)݌ ൰{௫ୀ௔}ݔ݀ݑ݀ = ߬ଵ																																																																																																								(2ܽ) 
(ܾ)ݑ = ଶݎ 									൬(ݔ)݌ ൰{௫ୀ௕}ݔ݀ݑ݀ = ߬ଶ																																																																																																								(2ܾ) 
where ݑ(ܽ)	or		߬ଵ	 and ݑ(ܾ)	or ߬ଶare specified numbers. Let us divide the domain ܽ	 ≤ 	ݔ	 ≤	ܾ	into ݊	sub-domains. Fig 1 shows the domain that is partitioned into ݊	elements of equal (not 

necessary) length. The nodes ݅	 = 	1, 2, 3, . . . . . . . , ܰ	and the corresponding ݔ௜ are numbered 

sequentially from left to right starting with element [1]. The total number of degrees of 

freedom	ܰ	 = 	 	ߛ) − 	1) 	× 	݊	 + 	1, where 	ߛ	is the number of nodes in each element and ݊		is the 

number of elements in whole domain. The elements are numbered in a similar manner additionally 

with parenthesis		[݁].  



Generalized Galerkin Finite Element Formulation for the Numerical Solutions 149 

 

Fig 1: Domain Discrimination for Quadratic Shape Function. 

Let the typical trial solution of an element [݁]	be given by 

(ݔ)෤ݑ =෍ ௝ܽ߶௝௡
௝ୀଵ  (3)																																																																																																																																							(ݔ)

Here	ݔ	 represents the independent variable in the problem. The functions ߶௝	(ݔ)		are known as the 

trial functions or standard basis functions [5]. The coefficients ௝ܽ are to be determined, parameters 

(called degrees of freedom or generalized co-ordinate) since ݑ෤(ݔ)	is a function of ݔ	as well as	 ௝ܽ. 
Now the weighted residual equation for typical element [݁]	of the pattern (1) is න ൤− ݔ݀݀ ൬(ݔ)݌ ൰ݔ෤݀ݑ݀ + (ݔ)෤ݑ(ݔ)ݍ − ൨				(ݔ)݂ ߶௜(ݔ)݀ݔ = 0	
[௘] 																												ܽ ≤ ݔ ≤ ܾ																					 

Integrating first term by parts and after simple modification, we get the following form 

෍ ௝ܽ න ൤(ݔ)݌ ݀߶௜݀ݔ ݀߶௝݀ݔ + 	௜߶௝൨߶(ݔ)ݍ
[௘] ݔ݀		 =௡

௝ୀଵ 		න 	ݔ݀(ݔ)௜߶(ݔ)݂
[௘] − ൤−(ݔ)݌ ݔ෤݀ݑ݀ ߶௜൨[௘]	 

This is an element equation for the typical element [݁]		may be written in the conventional 

matrix form as ൣܭ[௘]൧{ܽ	} 	=   (4)																																																																																																																																										{[௘]ܨ}
Where ܭ[௘] and ܨ[௘]	are called the Stiffness matrix and the Load vector. The entries of ܭ[௘] and ܨ[௘] are  ܭ௜,௝[௘] 	= 	න ൤(ݔ)݌ ݀߶௜݀ݔ ݀߶௝݀ݔ + 	௜߶௝൨߶(ݔ)ݍ

[௘]  (5ܽ)																																																																																											ݔ݀
௜[௘]ܨ = 	න 	ݔ݀(ݔ)௜߶(ݔ)݂

[௘] − ൤−(ݔ)݌ ݔ෤݀ݑ݀ ߶௜൨[௘] 																																																																																								(5ܾ) 
If we take the quadratic shape functions, then the bilinear form and the linear functional are 

computed element by element as follows 

[ଵ]ܭ = ቎ܭଵ,ଵଵ ଵ,ଶଵܭ ଶ,ଵଵܭଵ,ଷଵܭ ଶ,ଶଵܭ ଷ,ଵଵܭଶ,ଷଵܭ ଷ,ଶଵܭ ଷ,ଷଵܭ ቏	 , [ଶ]ܭ = ቎ܭଵ,ଵଶ ଵ,ଶଶܭ ଶ,ଵଶܭଵ,ଷଶܭ ଶ,ଶଶܭ ଷ,ଵଶܭଶ,ଷଶܭ ଷ,ଶଶܭ ଷ,ଷଶܭ ቏	 , ……… . , [௡]ܭ = ቎ܭଵ,ଵ௡ ଵ,ଶ௡ܭ ଶ,ଵ௡ܭଵ,ଷ௡ܭ ଶ,ଶ௡ܭ ଷ,ଵ௡ܭଶ,ଷ௡ܭ ଷ,ଶ௡ܭ ଷ,ଷ௡ܭ ቏ 
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[ଵ]ܨ = ቐܨଵଵܨଶଵܨଷଵቑ	, [ଶ]ܨ = ቐܨଵଶܨଶଶܨଷଶቑ	, ……………………………………………………… , [௡]ܨ = ቐܨଵ௡ܨଶ௡ܨଷ௡ቑ 

After computing for all elements and assembling, we finally get the system of equation of the form 
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   (6)               

The resulting formal expression is called the element equations. Solving the system of equations 

(6), we will find the values of	ܽଵ, ܽଶ, ܽଷ, . . . . . . . . , ܽே. Then putting these values into equation (3), 

we will obtain the piece-wise polynomial for each element.  

The solution of equation (6) will be unique, if ܭ	is a non-singular matrix. In order to ensure that ܭ	is non-singular, the basis functions must be linearly independent. By definition, a set of 

functions ߶௝(ݔ)	(݆	 = 	1, 2, . . . , ݊)	 is linearly independent if 

෍ ௝ܽ߶௝௡
௝ୀଵ (ݔ) = 0 

implies that ௝ܽ = 	0	for	݆	 = 	1, 2, . . . , ݊. It is easy to show that ߶௝(ݔ)		are linearly independent 

since no shape function can be expressed as the scaler multiple of other shape function. 

 

3. Finite Element Formulation for Second Order Non-linear BVPs 

Consider the radiation fin. The fin is assumed to liberate heat to its surrounding only through 

radiation. By using the one-dimensional form of the energy equation, the following nonlinear BVP 

is obtained for the solution of the temperature distribution [13] ݀ଶܷܴ݀ଶ + ൤ 1ܴ + 	ߩ − 1)ߙ݊ܽݐ − ߙ݊ܽݐ(ܴ + ൨ߠ ܷܴ݀݀ − ସ(1ܷߚ − ߙ݊ܽݐ(ܴ + ߠ = 0	,							1 ≤ ܴ ≤ 3																						(7ܽ) ܷ(0) = 1  and  	ቀௗ௎ௗோቁோୀଵ = 	 ସଷଷ 																																																																																																																		(7ܾ) 
Then following the above procedure, we finally get the compact form 
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෍ ௝ܽ න ቎݀߶௜ܴ݀ ݀߶௝ܴ݀ − ൤ 1ܴ + 	ߩ – 1)ߙ݊ܽݐ − ߙ݊ܽݐ(ܴ + ൨߶௜ߠ ݀߶௝ܴ݀	
[௘]

௡
௝ୀଵ + 1)ߚ − ߙ݊ܽݐ(ܴ + ௜߶௝߶ߠ ൭෍ܽ௞߶௞௡

௞ୀଵ ൱ଷ൩ 	ܴ݀ =	ቈ߶௜ ݀ ෩ܷܴ݀቉[௘] 																																(8)	 
 ݅, ݆, ݇ = 1, 2, ……………݊ 

The above equation can be written for each element in the matrix form as ൣܭ[௘] + [௘]ܣ൧[௘]ܮ =  (9)																																																																																																																																[௘]ܨ	
Where the entries of the matrices ܭ[௘], ,[௘]ܮ	 ,	௜,௝[௘]ܭ are		[௘]ܨ		and		[௘]ܣ ,௜,௝[௘]ܮ	 	 ௝ܽ 	and	ܨ௜[௘]	respectively 

given by ܭ௜,௝[௘] = 	න ൤݀߶௜ܴ݀ ݀߶௝ܴ݀ − ൤ 1ܴ + 	ߩ − 1)ߙ݊ܽݐ − ߙ݊ܽݐ(ܴ + ൨߶௜ߠ ݀߶௝ܴ݀ ൨	
[௘] ܴ݀																																																	(10ܽ) 

௜,௝[௘]ܮ = 	න 	቎ 1)ߚ − ߙ݊ܽݐ(ܴ + ௜߶௝߶ߠ ൭෍ܽ௞߶௞௡
௞ୀଵ ൱ଷ቏	

[௘] 	ܴ݀																																																																					(10ܾ) 
௜[௘]ܨ = 	 ൤߶௜ ෤ܴ݀൨[௘]ݑ݀ 																																																																																																																																							(10ܿ) 
where ݅, ݆, ݇ = 1, 2, ……… , ݊ 

Assembling those matrices following the above procedure, we find a nonlinear system of equation 

whose matrix form is 

	ܭ]  + {ܽ}[ܮ	 = 	  (11)																																																																																																																																					{	ܨ}
which gives ܰ × ܰ stiffness matrix. For finding initial values of		 ௝ܽ, we neglect the nonlinear 

term	ܮ from equation (11), then the equation (11) becomes 	[ܭ]{ܽ} = 	  (12)																																																																																																																																															{	ܨ}
Then we can find the initial values of coefficients		 ௝ܽ 	solving equation (12) by the method described in 

the previous section. After getting the values of		 ௝ܽ, we substitute into equation (11) and starts Picard 

iteration [8]. The iteration process will continue until we find the desired accurate values of		 ௝ܽ. Then 

substituting the values of 	 ௝ܽ into equation (3), we get a piece-wise polynomial with variables ݔ		for 

each element. Now we can compare this results with the exact results. 

By using collocation method with the Haar wavelets, Siraj-ul-Islam et al. [13] have found a 

numerical result, which is given in Table 1. Here we use 0.05 = ߠ ,60 = ߙ ,0.5 = ߩ and  0.1 = ߚ. 

From table 1, we observe in the present method, we just use only 31 nodes with 20 iterations, 

where Siraj-ul-Islam [13] used 256 nodes. 
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Table 1: Numerical results of exact and approximate solutions of equation (7) using 15 quadratic elements 
and 20 iterations. 

 

R GFEM Solutions for 31 
Nodes 

Haar Solutions for 256 
Nodes [13] 

Na’s Solutions by 
Shooting Method [14] 

0 1 1 1 

0.066667 0.963456166479602   

0.13333 0.931912530848484   

0.200000 0.904401279068787 0.90440 0.9044 

0.266667 0.880229197969537   

0.333333 0.858889116152377   

0.400000 0.840005387663005 0.84000 0.8400 

0.466667 0.823299799316353   

0.533333 0.808570102628505   

0.600000 0.795676981962007 0.79567 0.7956 

0.666667 0.784537299941699   

0.733333 0.775122793856479   

0.800000 0.767464535844083 0.76746 0.7673 

0.866667 0.761664843415977   

0.933333 0.757920551199750   

1.000000 0.756565900245134 0.75656 0.7564 

 

4. Convergence Analysis 

Let us consider the general second order boundary value problem − ݔ݀݀ ൬(ݔ)݌ ൰ݔ݀ݑ݀ + (ݔ)ݑ(ݔ)ݍ = ܽ																		,	(ݔ)݂ ≤ ݔ ≤ ܾ																																																													(13ܽ) 
with boundary conditions ݑ(ܽ) = (ܾ)ݑ = 0																																																																																																																																								(13ܾ) 
To obtain an approximate solution of equation (13a), we construct a finite dimensional subspace of (ܫ)ܧand select a trial solution 

(ݔ)෤ݑ =෍ ௝ܽ߶௝௡
௝ୀଵ  (14)																																																																																																																																				(ݔ)

where ߶௝(ݔ)satisfies the boundary conditions, i.e ߶௜(ܽ) = ߶௝(ܾ) = 0															 
The family of functions that can be written in this way will be denoted by	ܵ(ܫ). The 

functions	߶௝(ݔ), called basis functions, will be defined such that	ܵ(ܫ) ⊂  is the (ܫ)ܧ	,where ,(ܫ)ܧ	
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energy space. Here the number ݊	is the dimension of ܵ(ܫ), ܰ denotes the number of elements and ݈௞	denotes the length of kth element.  

Our main goal is to minimize the error of approximate result in the energy norm. In the following 

discussion, we will denote the exact solution by ݑா௑		and the approximate solution by	ݑிா. We 

have to find ݑிா	߳	 ሚܵ(ܫ) such that ݑ)ܤிா, (ݒ = 	ݒ	for all (ݒ)ܨ ∈ 	ܵ଴(ܫ). Where B is a bilinear form 

on	෩ܵ (ܫ) × ܵ଴(ܫ) .     
Theorem 1  

The error of approximation ݁ ∶= ா௑ݑ	  in the(ܫ)is orthogonal to all test functions in ܵ଴	ிாݑ	−	

following sense [11] ܤ(݁, (ݒ = 	ݒ∀																						0	 ∈ 	 ܵ଴(ܫ)																																																																																																								(15) 
This is a basic property of the error of approximation, known as the Galerkin orthogonality. 

Proof 

Since ܵ଴(ܫ) 	⊂ ,ா௑ݑ)ܤ	  ,then	(ܫ)଴ܧ	 (ݒ 	= 	ݒ∀								(ݒ)	ܨ	 ∈ 	ܵ଴(ܫ)																																																																																																							(16)  ݑ)ܤிா, (ݒ = ݒ∀									(ݒ)	ܨ	 ∈ 	 ܵ଴(ܫ)																																																																																																									(17)  
Subtracting (17) from (16), we get ݑ)ܤா௑ ,ிாݑ	−	 (ݒ 	= 	ݒ∀																									0	 ∈ 	 ܵ଴(ܫ) ܤ(݁, (ݒ 	= 	ݒ∀																																													0	 ∈ 	 ܵ଴(ܫ)  
Which is the equation (15). 

Theorem 2 

The GFEM will select the coefficients of the basis functions in such a way that the energy norm of 

the error ||݁||ா will be minimum [11]. i.e. ||ݑா௑ ||ா	ிாݑ	−	 					= 	min		||ݑா௑ 	− 	ݑ∀										ா||	ݑ	 ∈ 	 ሚܵ(ܫ)																																																											(18) 
Proof 

The error of approximate solution is				݁ ∶= ா௑ݑ	   .ிாݑ	−	

For an arbitrary	ݒ	 ∈ 	 ܵ଴(ܫ), ா||	ݒ|| ≠ 	0, we have from the definition of energy norm ห|݁ + หாଶ|ݒ = ݁)ܤ12	 + ,ݒ ݁ +  (ݒ
																			= 	 ,݁)ܤ12 ݁) + ,݁)ܤ12 (ݒ + ,ݒ)ܤ12 ݁) + ,ݒ)ܤ12 =																			 (ݒ 	 ,݁)ܤ12 ݁) + ,݁)ܤ (ݒ + ,ݒ)ܤ12  (19)																																																																																									(ݒ
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Now since ܤ(݁, (ݒ 	= 	ݒ∀	0	 ∈ 	ܵ଴(ܫ) from the preceding theorem and 	ห|ݒ|หா ≠ 0 ⇒	 ห|ݒ|หଶா > 0 ⇒ ,ݒ)ܤ12 (ݒ > 0 

Then from equation (19), we get ห|݁ + หாଶ|ݒ = ,݁)ܤ12	 ݁) + ,ݒ)ܤ12 ⇒ (ݒ ห|݁ + หாଶ|ݒ > ห|݁|หாଶ  ⇒ ห|݁|หாଶ < ห|݁ + หாଶ|ݒ  ⇒ ห|ݑா௑ ிா|หாଶݑ	−	 < ห|ݑா௑ ிாݑ	−	 + หாଶ|ݒ  ⇒ ห|ݑா௑ ிா|หாଶݑ	−	 < ห|ݑா௑ − หாଶ|ݑ  ⇒ ห|ݑா௑ 	ிா|หாݑ	−	 = ݉݅݊ห|ݑா௑ − 	หா|ݑ  

Hence proved. 

This theorem shows that the selection ܵ(ܫ)	is of crucial importance, since the error of 

approximation is determined by	ܵ(ܫ). This theorem also shows that if ݑா௑	happens to lie in ܵ(ܫ) 
then	ݑிா 	=  ா௑. Furthermore, the theorem shows that if we construct a sequence of finite elementݑ	

spaces ଵܵ 	⊂ 	 ܵଶ 	⊂	. . . . ⊂ 	 ܵ௡ and compute the corresponding finite element solutions )ݑ	(1୊୉, ,ிா(2)	ݑ . . . ,   then the error measured in the energy norm will decrease	ிா(݊)	ݑ

monotonically with respect to increasing	݊. 

 

5. Numerical Examples and Results 

In this section, we consider four nonlinear problems to verify the proposed method described in 

section 3. All the computations are performed by MATLAB. The error of the approximate 

solutions are estimated by  |(ݔ)ݑ ௨෥(௫)௨(௫)	and  ቚ௨(௫)ି |(ݔ)෤ݑ	− ቚ 
Where (ݔ)ݑ is the exact solution and ݑ෤(ݔ) is the approximate solution. 

Example 1: 

Here we consider a nonlinear boundary value problem with Diritchlet Boundary 

Conditions. This problem arises in the finite deflections of an elastic string under a 

transverse load [9] ݀ଶݔ݀ݑଶ = 	−ቆ1 + ଶߪ ൬݀ݔ݀ݑ൰ଶቇ ,													0 ≤ ݔ ≤ 1																																																																																			(20ܽ) 
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The results are depicted in Fig 8 and 9. We can see that Wazwaz [10] found maximum accuracy 

2.48497479  10–7 by taking up to 14 terms of his series solution where we find maximum 

accuracy 1.32498612  10–12. 

 

6. Conclusion  

In this paper, we have provided a detail formulation for Generalized Galerkin finite element 

method for the case of both linear and nonlinear boundary value problems with convergence 

analysis. We have also given the solutions of three nonlinear second order BVPs with Diritchlet, 

Neumann and Robin boundary conditions and one nonlinear Eigen Value problem. The method has 

been applied directly without using the linearization or any other restrictive assumptions. In each 

example, we have compared the approximate results obtained by the proposed method with the 

exact solution and have found an excellent agreement. All results are depicted graphically as well 

as in tabular form. From these results, we can conclude that GFEM can be applied as a general 

technique to find the numerical solution of nonlinear BVPs instead of finite difference method, 

Galerkin method and Collocation method with haar wavelets. This proposed method can also be 

applied to solve the higher order nonlinear BVPs and partial differential equations. 
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