GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 37 (2017) 147-159

GENERALIZED GALERKIN FINITE ELEMENT
FORMULATION FOR THE NUMERICAL SOLUTIONS
OF SECOND ORDER NONLINEAR BOUNDARY
VALUE PROBLEMS

Hazrat Ali" and Md. Shafiqul Islam
Department of Applied Mathematics, University of Dhaka, Dhaka-1000, Bangladesh
"Corresponding author: naim2010math@gmail.com

Received 13.07.2017 Accepted 26.10.2017

ABSTRACT

We use Gaerkin finite element method (GFEM) to solve second order linear and nonlinear
boundary value problems (BVPs). First we develop FEM formulation for a class of linear and
nonlinear BVPs. Then we present convergence analysis of the method. Later, we give the solution
of some nonlinear BV Ps with Diritchlet, Neumann and Robin boundary conditions. All results are
compared with the exact solution and sometimes with the results of the existing method to verify
the convergence, stability and consistency of this method. The results are depicted graphically as
well asin the tabular form.
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1. Introduction

Numerical methods play a vital role in science and engineering in terms of solving and analyzing
problems. Solutions to scientific and engineering problems can be achieved more easily by
numerical method with the help of computers. So the importance of numerica analysis is
increasing day by day, because most of the natural phenomena can be described by differentia
equations with varying boundary conditions easily, but the solutions of which cannot be obtained
analytically except very simple cases. To solve these problems, we use several methods such as
Finite Difference Method (FDM), Galerkin Method, Collocation Method, Least Square Method,
Sub-domain Method [1], Adomian Decomposition Method [2], Shooting Method [3] etc.

Prior to its conception, the finite difference method held a dominant position in the numerica
solution of continuum problem. But it gives value at particular points only and cannot be used to
evauate the values a the desired points between two grid points. Without that it takes more
computational cost for getting higher accuracy. For this limitations of the FDM, people start to use
Gderkin Method, Collocation Method and Least Square Method for solving differential equations.
These methods employ tria functions which must satisfy the boundary conditions. Thisislittle easy
insimple problems but in real life problemsit istoo tough to find these types of trial functions.
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So in recent years, Galerkin Finite Element Method (GFEM) [5] is becoming very much popular
technique for obtaining approximate solutions to the ordinary differential equations and the partial
differential equations that arise in science and engineering applications. Because GFEM gives a
polynomia at each point instead of value, so it can give value a any point within the domain. To
apply GFEM, no need to convert the boundary value problems into initial value problems. In this
method one can easily use the finite element shape functions instead of trial functions. It is a
generd technique for constructing approximate solutions to the boundary value problems. For this
reason GFEM iswidely used in solving differential equations.

Islam et al. [4] use Galerkin finite element method for solving initial boundary value problems of
differential equations. Bhatti and Bracken [6] solved the nonlinear BVP with only Diritchlet
boundary conditions which is limited within first order, where Islam and Shirin [7] solved the
linear and nonlinear boundary value problems by using Galerkin Method with the help of
Bernoulli polynomials.

To the best of our knowledge, none have solved the nonlinear boundary value problems with all
boundary conditions by Galerkin finite element method yet. So in this paper, our main concern is
to solve the nonlinear boundary value problems with all boundary conditions by using Galerkin
finite element method.

2. Finite Element Formulation for Second Order Linear BVPs

Let us consider the general second order boundary value problem [5]

d d
- (PO ) +a@ut) = (), asx<h a

whose boundary conditions are

d

Ww=n  (pg) =mn (2a)
d

Ww=n () == (2b)

where u(a) or t; and u(b) or 7,are specified numbers. Let us divide the domain a < x <
b into n sub-domains. Fig 1 shows the domain that is partitioned into n elements of equal (not
necessary) length. The nodes i = 1,2,3,....... ,N and the corresponding x; are numbered
sequentially from left to right starting with element [1]. The total number of degrees of
freedomN = (y — 1) x n + 1, where y is the number of nodes in each element and n is the
number of elements in whole domain. The elements are numbered in a similar manner additionally
with parenthesis [e].
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Fig 1: Domain Discrimination for Quadratic Shape Function.

Let thetypical trial solution of an element [e] be given by

n

1) = ) ;) ©

j=1

Herex represents the independent variable in the problem. The functions ¢; (x) are known as the
trial functions or standard basis functions [5]. The coefficients a; are to be determined, parameters
(called degrees of freedom or generalized co-ordinate) since ii(x) is afunction of x aswell as q;.

Now the weighted residua equation for typical element [e] of the pattern (1) is
f [—— p(x) —) + @a@) - F&) ]cpi(x)dx -0 a<x<b

Integrating first term by parts and after simple modification, we get the following form

Za, f [0 S8 1 g opigy| ax = j FeOBiCIdx |- p(x)—qx]

e

This is an element equation for the typical element [e] may be written in the conventional
matrix form as
[K[e]]{a} = {F[e]} @)

Where K€l and Fle] are called the Stiffness matrix and the Load vector. The entries of K€l and
Flel are

k= [ oG gt s acsa]ax (50)

le] _ ~[-pe o,
e _ f[e]f(x)d,i(x)dx |-»0o dx@][e] h)

If we take the quadratic shape functions, then the bilinear form and the linear functiona are
computed element by element as follows
Kii Ki, Kis Kiy Ki, Kis Kii Kz Ki3
KW =K}, K}, Kis|, K@ =|KZ2 K2, Kiz|,. ..., KM =|K}y K} K3
Ki, Ki, Ki, K3, K%, K3, K31 K3p K3z
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Fi Ff Ff!
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After computing for al elements and assembling, we finally get the system of equation of the form

KL KL, K 0 o 00 © o ofal[ F

Ky Kip  K3s 0 0 P : R -9 P
K, Ki, Kiz+Ka Ko Kd Do : A -9 Fi+F?

0 0 K& K3 K i : S F?
P K& K&, Ki+KEy 0 0 : R I I S

0o o 0 . SRS R i N

. . . . 0 o ol : :
0 Kiz'+Kh Ki, K| R+ R

P : : P K&, K3, Kislays F
0 . = .. .. 00 Ky KL Kslal| B ]

The resulting formal expression is called the element equations. Solving the system of eguations
(6), we will find the values of a,,a,,as,........ ,ay. Then putting these values into equation (3),
we will obtain the piece-wise polynomial for each element.

The solution of equation (6) will be unique, if K is a non-singular matrix. In order to ensure that
K is non-singular, the basis functions must be linearly independent. By definition, a set of
functions¢;(x) G = 1,2,...,n) islinearly independent if

n

> a0 =0

Jj=1

implies that a; = 0forj = 1,2,...,n. It is easy to show that ¢;(x) are linearly independent
since no shape function can be expressed as the scaler multiple of other shape function.

3. Finite Element Formulation for Second Order Non-linear BVPs

Consider the radiation fin. The fin is assumed to liberate heat to its surrounding only through
radiation. By using the one-dimensional form of the energy equation, the following nonlinear BVP
is obtained for the solution of the temperature distribution [13]

d2U+[ 1 tana du pU* “o L<Rr<3 7a)
drR? [R+p (@A —-R)tana+6ldR (1 -Rtana+6 ' - T @
vo=1ad () =7 (7b)

Then following the above procedure, we finally get the compact form
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, d¢; dg; 1 tana do,
;aj‘f[e] dR dR [R +p (1 —R)tana+9] Ty
ﬁ n 3 ) dﬁ

Lik=12.n

The above equation can be written for each element in the matrix form as

[Kle] 4 Llel]alel = ple] 9
Where the entries of the matrices K€, Llel, Alel and Flel are KE] , L[f]] a; and Fl.[e] respectively
given by
do;do; 1 tana do;
le] _ e — )
Ky = f [dR dR [R +p (1-Rtana+ 9] ¢ dR]dR (10a)
[e]
n 3
lel = f #(I).d}. Z adr | | dr (10b)
L () |(1 = R)tana +6 """/ o
dii
[e]
F~ = P 10
= |0zl (100)
wherei,j,k=1,2,...... ,n

Assembling those matrices following the above procedure, we find a nonlinear system of equation
whose matrix formis

[K + Ll{a} = {F} 1D

which gives N X N dtiffness matrix. For finding initial values of a;, we neglect the nonlinear
term L from equation (11), then the equation (11) becomes

[Kl{a} = {F} (12)

Then we can find the initial values of coefficients a; solving equation (12) by the method described in
the previous section. After getting the values of a;, we subdlitute into equation (11) and starts Picard
iteration [8]. The iteration process will continue until we find the desired accurete values of a;. Then
substituting the values of a; into equation (3), we get a piece-wise polynomial with variables x for
each element. Now we can compare this results with the exact results.

By using collocation method with the Haar wavelets, Sirgj-ul-Isam et al. [13] have found a
numerical result, which is given in Table 1. Herewe use p = 0.5, ¢ =60, 8 =0.05and f§ = 0.1.
From table 1, we observe in the present method, we just use only 31 nodes with 20 iterations,
where Sirgj-ul-Islam [13] used 256 nodes.
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Table 1: Numerical results of exact and approximate solutions of equation (7) using 15 quadratic elements
and 20 iterations.

R GFEM Solutionsfor 31 | Haar Solutionsfor 256 Na’'s Solutions by
Nodes Nodes[13] Shooting Method [14]
0 1 1 1
0.066667 0.963456166479602
0.13333 0.931912530848484
0.200000 0.904401279068787 0.90440 0.9044
0.266667 0.880229197969537
0.333333 0.858889116152377
0.400000 0.840005387663005 0.84000 0.8400
0.466667 0.823299799316353
0.533333 0.808570102628505
0.600000 0.795676981962007 0.79567 0.7956
0.666667 0.784537299941699
0.733333 0.775122793856479
0.800000 0.767464535844083 0.76746 0.7673
0.866667 0.761664843415977
0.933333 0.757920551199750
1.000000 0.756565900245134 0.75656 0.7564

4. Convergence Analysis

L et us consider the general second order boundary value problem

d d
- (p0 %)+ auE = f@), asx<b (130)
with boundary conditions
u(a) =ud) =0 (13b)

To obtain an approximate solution of equation (13a), we construct afinite dimensiona subspace of
E(Iand select atria solution

n

() = ) 4y () (14)

Jj=1
where ¢; (x)satisfies the boundary conditions, i.e
¢i(a) = ¢;(b) =0

The family of functions that can be written in this way will be denoted by S(I). The
functions ¢; (x), called basis functions, will be defined such that S(I) ¢ E(I), where, E(I) is the
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energy space. Here the number n is the dimension of S(I), N denotes the number of elements and
l,, denotes the length of kth element.

Our main goal is to minimize the error of approximate result in the energy norm. In the following
discussion, we will denote the exact solution by ugy and the approximate solution by uz;. We
have to find upg € S(I) such that B(ugg, v) = F(v) for al v € S,(I). Where B is a bilinear form
onS() x So(D) .

Theorem 1

The error of approximation e := ugy — ugg is orthogona to al test functions in Sy(I)in the
following sense [11]

B(e,v) = 0 Vv € So(I) (15)
Thisisabasic property of the error of approximation, known as the Galerkin orthogonality.
Pr oof

Since Sy(I) © Ey(I) then,

B(ugyx,v) = F (v) Vv € S,(I) (16)
B(ugg,v) = F (v) vv € Sy(I) 17)
Subtracting (17) from (16), we get

B(ugx — upp,v) = 0 Yv € So(1)

B(e,v) =0 Vv € Syo(D)

Which isthe equation (15).
Theorem 2

The GFEM will select the coefficients of the basis functions in such away that the energy norm of
the error ||e]|z will be minimum [11].i.e.

lugx — upg |l = min |lugy — ullg vu € S(I) (18)

Proof
The error of approximate solutionis e := ugy — Ugpg.

For an arbitrary v € Sy(I), ||v ||z # 0, we have from the definition of energy norm

1
||e +v||z = EB(e-l—v,e-I—v)

1 1 1 1
= EB(e, e) +§B(e,v) +§B(v,e) +EB(17,17)

= %B(e,e)+B(e,v)+%B(v,v) (19)
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Now since B(e,v) = 0Vv € S,(I) from the preceding theorem and
||17||E =0
2
= |Ivl| ;>0
1
=>-B(,v) >0
2
Then from equation (19), we get
1 1
||e + v||z = EB(e,e) + EB(U, V)
= |le +V||Z > ||e||ir
2 2
= ||e||E < ||e +U||E
2 2
= ||uEX - uFEIlE < ||uEX - uFE+U||E
2 2
= ||uEX - uFE||E < ||uEX —u||E
= ||uEX - uFEllE = minlluEX _u||E
Hence proved.

This theorem shows that the selection S(I)is of crucial importance, since the error of
approximation is determined by S(I). This theorem also shows that if ugy happens to lie in S(I)
thenupy = ugy. Furthermore, the theorem shows that if we construct a sequence of finite element
spaces S; € S, c....c S, and compute the corresponding finite element solutions
u( Dpg, u g, ..., u(n)pg then the error measured in the energy norm will decrease
monotonically with respect to increasing n.

5. Numerical Examples and Results

In this section, we consider four nonlinear problems to verify the proposed method described in
section 3. All the computations are performed by MATLAB. The error of the approximate
solutions are estimated by

u(x)— t(x)

lu(x) — @(x)| and |T

Where u(x) isthe exact solution and i (x) is the approximate solution.
Example 1:

Here we consder a nonlinear boundary value problem with Diritchlet Boundary
Conditions. This problem arises in the finite deflections of an €elastic string under a
transverse load [9]

d?*u 5 duy?
W:_ 1+0 (a) B 0<x<1 (2061)
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u0)=0andu(1)=0 (20b)
The exact solution is
3]
COSG x—E
ux)=—In ————= 21
9 o2 cosc/2 @D

Now using the proposed method illustrated in section 3, we find the system of nonlinear equation

[K+L]{a} ={F} (22)
where the entries of K, L and F are given by
do, do,
lel _ i
Kis =g {d_xl o | & (23a)
dp. n
L% =~fq {624% s kilaktbk} dx (23b)
Fl9 = d du 23
i —I[e](l)i(x) X+ d%& (23c)
[e]
0.14 o 1012
@ Apprsimats o
35 (e} ® ® o]
0.105 © ©
3 o [¢]
= N [0} o
s 5 ° °
g 0.07 o
2 2 ? o] o
s g 15
O o
0.035 1
o [e]
0o 00 T T T T o}
0 02 04 06 08 1 0 02 04 06 o8 1
Values of x Values of x
Fig 2: Graphical representation of exact and Fig 3: A plot of absolute error of the approximate
approximate solution. solutions.

Here we use ¢ = % . Using 20 quadratic elements and 10 iterations for example 1, we find the
results presented in Fig 2 and 3. Cuomo and Marasco [9] found maximum accuracy 2 x 107 by
using finite difference method.

Example 2:

Now we consider a nonlinear boundary value problem with Neumann Boundary Conditions. This
equation is the well-known Burgers Equation. The one dimensional Burgers equation is as
follows[12]
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u'+ud + u%sin(Zx) Osxsg (249)

u()=1land U’ [gj =0 (24b)

The exact solution of this problemis

u(x) = sin(x) (25)
By applying GFEM with 30 quadratic elements and 15 iterations, we find the following results that
isshown in Fig 4 and 5.

129

Values of ulx)
o
[ ]
L]
Absolute Error

0 0.6 11 16 o 04 aa 12 16

Walues of x Walues of x

Fig 4: Graphica representation of exact and Fig 5: A plot of absolute error of the exact and
approximate solutions of example 2. approximate solution.

Example 3:
Here we consider a nonlinear boundary value problem with the Robin Boundary Conditions[7].

du 1 N
y—§(1+x+u) , O0<x<1 (268)
u(0) - u(0) = —% and u'(Q) +u(l) =1 (26(b)

The exact solution of the problem is given by
u(x):i—x—l (27)
2—-X

—— Lxact Z— Abaclubs Exror o
B Approximate . |
003 e
5 ©
-0.08 1 _ e
= B
E] o4 (=]
= ). 2 =]
g 0m 3 @
3 g3 °
= < )
012 OO
2 OOOO
" ‘ M
0.1, o
1 ] 02 04 08 08

0z 04 06 08
Values of x Values of x

Fig 6: Graphical representation of exact and Fig 7: A plot of absolute error of the exact and
approximate solutions. approximate solution.
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By applying GFEM with 30 quadratic elements and 10 iterations, we find the following results that
is shown in Fig 6 and 7. The maximum accuracy obtained by Islam and Shirin [7] by using
Galerkin Method with the help 10 Bernoulli polynomials and 8 iterationsis 1.508438x 107°°,

Example 4:

Now we consider an eigenval ue problem [10]

u"+xe" =0, O<x<1 (283
Whose boundary conditions are

u@@=u®)=1 (28b)

This is the famous one dimensional Bratu’s boundary value problem which is of great interest in
Magneto hydrodynamics.

If we put L =—1 in eguation (28a), then the exact solution of this problemis

u(x) =-n2 +In(y(x)) (29)
Where

1(X) = {Cosec[_c(b;— D j}

And cistheroot of the equation

c 2
{cosec{—ﬂ =2
4
Normally c lies between 0 and% . Here we use ¢ = 1.336055695.

<1070

0.02 155 °
14
0008 4 © ©
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@ @
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> 0064 < 06 ° °
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02 o]
o 40%%%, o
042 0 S —
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Fig 8 Graphica representation of exact and Fig 9: A plot of absolute error of the exact and
approximate solutions. approximate solution.
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The results are depicted in Fig 8 and 9. We can see that Wazwaz [10] found maximum accuracy
2.48497479 x 107 by taking up to 14 terms of his series solution where we find maximum
accuracy 1.32498612 x 1072,

6. Conclusion

In this paper, we have provided a detail formulation for Generalized Galerkin finite element
method for the case of both linear and nonlinear boundary value problems with convergence
analysis. We have aso given the solutions of three nonlinear second order BV Ps with Diritchlet,
Neumann and Robin boundary conditions and one nonlinear Eigen Value problem. The method has
been applied directly without using the linearization or any other restrictive assumptions. In each
example, we have compared the approximate results obtained by the proposed method with the
exact solution and have found an excellent agreement. All results are depicted graphicaly as well
as in tabular form. From these results, we can conclude that GFEM can be applied as a general
technique to find the numerical solution of nonlinear BV Ps instead of finite difference method,
Galerkin method and Collocation method with haar wavelets. This proposed method can aso be
applied to solve the higher order nonlinear BV Ps and partial differential equations.
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