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ABSTRACT

A competitive mathematical model for the growth of two species is considered in this study. The
main goal of the present study is to investigate the roles of two different growth functions: the
logistic growth and the food limited growth. We established the main results that determine the
asymptotic stability of semi-trivial as well as the coexistence solutions. If higher carrying capacity
is embodied for the population following logistic growth then competitive exclusion of a food
limited population isimminent and vice versa.
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1. Introduction

Extensive level of competition among the species is practically prevalent in every level of natural
world. Mathematical models are developed and analyzed which provide information on the growth
rates of two species under low (Malthusian growth) and high (logistic growth) densities, when they
are only affected by their own populations, which is known as intraspecific competition [1].
Extended models are studied to determine how these species interact when competing for the
limited resources, which is called interspecific competition [6]. Interspecific competition is
detrimental to both species per capita growth rates. In the literature, the well developed and most
popular growth laws were established in [2, 3, 7, 9]. There are different biological considerations
to two species competition models using different growth functions of [2, 3, 7, 9]. In this paper, a
competition model is introduced by considering the concept of critical population density that
follows different growth laws. Therefore, the goa of the present study is to develop a basic
competition model based on two different species either in interspecific or intraspecific
competition with two different growth rates.

The paper is organized as follows. In section 2, we describe the auxiliary result to analyze the
model and a brief description of the reaction terms for species u and w, and these will be used in
the rest of the paper. Equilibrium analysis of semi-trivia steady states and coexistence solutions
areinvestigated in section 3 by linearizing our considered problem.
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The key ingredients of Section 4 are to consider different carrying capacities for numerical
simulations supporting the theoretical results and this characterization is referred to as the
crowdiness effect. In this case, we show that the population following the food limited growth goes
to extinction if higher crowdiness tolerance is incorporated with the logistic population for
particular . Finally, Section 5 presents summary of the results.

2. Method of Analysis

Taking into account of two different species, we consider the following system of nonlinear
differential equations

du_ rlu(t)(l— MJ

dt K,
L U@)+ ) M
dw s
at = rzW(t) 1+B u(t)li_ W(t)
2

where, u(t) and w(t) represent the density of the populations at time t, and K3, K are the carrying
capacities of the respective species u and w, respectively. Similarly, ry, r, are the two intrinsic
growth rates of u and w, respectively, and B is a positive constant. There are various methods to
analyze the stability of nonlinear systems. Some popular methods of stability of nonlinear systems
are Lyapunov satbility criteria[8, 10] and LaSall€ sinvariance principle [4, 5].

For mathematical analysis of the model (1), we consider the Hartman-Grobman theorem as
described below:

Theorem 1. [6] (Hartman-Grobman) If the linearization matrix has no zero or pure imaginary
eigenvalues then the phase portrait for the system near the equilibria (u, v) can be obtained from
the phase portrait of the linear system via a continuous change of coordinates.

Remark 1. In particular, this means that if the matrix has no zero or pure imaginary eigenval ues,
then the stability properties of the equilibria (u, v) of the system are the same as those of the
equilibrium O of the linear system.

It is rare that an anaytic formula for the solution of (1) can be constructed, so we usually must
construct a numerical solution or study the qualitative behavior of the solution. A qualitative
analysis proves extremely helpful for constructing numerical solutions. In either case, we find it
convenient to study the solutionsin the phase plane (u, w).

For simplicity, let usintroduce the following two functions
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f(u,w) = rlu(t)[l_ Mj

Ky

1- u(t) +w(t)

K

h(u,w) = rpw(t) —————2——|.
1+B u(t) + w(t)
K2
and rewrite the system (1) as follows:

du
—=f(u,
m (u,w)
dw
— =h(u, 2
5 =) @

Any solution

_(u(t)
v(t) = [W(t)]

of the system (2) can be thought of as a parametrized curve which we refer to asintegral curves of
the system. We can use the fact that the vector (du/dt, dw/dt) is tangent to the solution curve
defined by (u(t), w(t)). A graph of a family of solutions is called a phase portrait and can be
generated from the direction field or numerically. A disadvantages of both the direction filed or
numerical approach isthat the parametersin (2) need to be specified.

Since equilibria of a system occur a points where the coordinates have derivative zero
simultaneously. The equilibrium, steady state or critical points are constant solutions, u(t) = u” and
w(t) =w’, which satisfy the nonlinear system of equations f(u, w) = 0 and simultaneously h(u, w) =
0. The equilibria of the system (2) are (u’, w) = (0, 0), (K4, 0), (0, K5). Later sections for test out of
the stability analysis at the equilibira.

3. Stability Analysis at the Equilibria

In this section, first we have linearized the system for further analysis. Rearrange the functions f(u,
w) and h(u, w) asfollows

f (u,w) :%(uKl—uz—uw)
1

h(u,w) = fz[ (©)

sz—uw—w2
Ky +Bu+pw

To find the linearization matrices at the equilibria, we first calculate
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r
f, :K—ll(Kl—Zu—w)

fW:Lu
Kl
h, ___ Kowd+p)
(K, +Bu+pw)?

_ Tp(KZ —Kou— 2K, w+BUK, — 2Buw—pu® — Bw?)

& (Ko +Bu+pw)?

Substituting the coordinates of the equilibria into these formulae, we obtain the linearization
matrices.

Equilibrium (0, 0): At the equlibrium point (0, 0), four partial derivatives are
f4(0, 0) =ry; f(0, 0) = O; hy(0,0) =0and h,(0,0) =,

Then the linear system

du_.y

dt 1

dw

— =T,W 4
prailE. @

and the linearization matrix at (0, 0) is

M (n 0
©0 =g r,

corresponding eigenvalues of Moy are 4y =1, >0, 4, =1, > 0. Put r; = 10 and r, = 5 which

gives1, = 10,1, = 5 and the eigenvectors

respectively.

Both eigenvalues of the linearization matrix M o) are real and positive which concludes that the
equilibrium point (0,0) isarepeller. Biologically, when both of the species are present in the same
ecological niche they will repel each other and leave the sub-domain of the habitat until unless
other factors are considered. At thiscritical point the system is always unstable, see Fig. 1.
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Figure 1. Eigensystem and phase portrait of the linear system (4) near (O, 0).

Equilibrium (0, K;): We can find the linear system after cal culating the following terms

r,(K,-K,) r
f,(0,K,) =222, (0,K,)=0; h, (0, K,) =——2
4(0.K5) K, (0, K3) =0 h, (0, Ky) D)
and h,(0, Ky) =—r,/(1 + B)
Then the linear system will be
du_n(K,-Ky)
dt K, ©)
dw r,
— =7 -K
ot Lap UTWoK)

and the linearization matrix at (0, K5) is
(ra(K,=K)/K, 0
Ok | —r, 11+ B) —1,/A+P)

Eigenvalues of the matrix M, Ky A€ A = — r/(1 + B) < 0and A, = ry(Ky — Kp)/Ky, where X, is
positive when K; > K, and negative for K; < Ko.

Asan example, put p =2, r; =3, r, =5 and for K; = 4, K, = 3, we have A; = -5/3, A, = ¥% and the

corresponding eigenvectors
[OJ (— 29/ 20}
and ,
1 1
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respectively. Two eigenvalues of the matrix M k,) are both real and have opposite signs. Thus the
equilibrium (0, K5) is an unstable saddle point as shown in figure 2 (Ieft). In oral habitat, if the
species u enjoys higher level of natural resources then it will out-compete as the species w
following the food limited growth.

Similarly, for Ky = 3, K, = 4 with same 3, r; and r, as above, A; = -5/3, A, = — 1 with respective

eigenvectors
0 -2/5
(=)
1 1

Since the eigenvalues A; and L, both are negative, then the critica point (0, K;) is an
asymptotically stable node shown in figure 2 (right). Therefore, if the second species has more
accessibility to the resources then the first population goes to extinction.

Figure 2. Eigensystem and phase portrait of the linear system (5) for p = 2.

Equilibrium (K4, 0): At the coordinates point of the equilibria, following expressions gives the
linear system

r,(K,—K,)
f, (K,0)=-1; f (K, 0)=-r;h,(K,0=0and h,(K,, 0)=2+—-2 1
o(Ki0) =i £,(K;, 0= -1 hy (K, 0) (K, 0= e
Now given nonlinear system converted to alinear system as
E:—rl(u+w—K1)
dt (6)

dw (K, -K,)

dt (K, +pK,)

and the linearization matrix at (K4, 0) is
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[_ y iy J
M =

(K;,0)

0 r(K,-K)/(K,+BK,)

corresponding eigenvalues of M, k,) are iy = — and A = Ry(Kz — Ky)/(Kz + BKy), here i, > O if
K, > K;and A, < 0for K, < Kj. In particular, choosing the parametersr; =3, r, = 5and § = 3, then
for Ky = 3, K, = 4, we have A, = =3, A, = 5/3 with eigenvectors

RS

respectively. The eigenvalues of the matrix Mg, k) ae both real and have oppsite sign. So, we
conclude that the equilibrium (K3, 0) is an unstable saddle point (see figure 3, left). In the
biological concept, it means the growth of the species u is no longer sustainable in a given habitat
during the competition.

Likewise, for K; = 4, K, = 3 with same values of the other parameters mentioned above, we have

A1 ==3, A, = 5/3 with eigenvectors
(OJ £— 29/ 34J
and ,
1 1

Since both eigenvalues are negative, we can summarize the critical point (K;, 0) is an
asymptotically stable point shown in figure 3 (right). So, in this circumstance as the species w will
be extinct from the given ecological niche.

respectively.
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Figure 3. Eigensystem and phase portrait of the linear system (6).
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4, Numerical Solutions

For numerical tests, consider the Runge-Kutta methods of order four to solve the system of initia
value problem (1).
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Figure 4. Numerical solutions of the Logistic-Food limited growth system of equations (1) for § = 0.5,r; =r,
= 1.0 and (left) Ky = 3.0, K, = 2.0, (right) Ky = 2.0 = K, with initial values ug = wg = 2.0.

For r; = r, = 1.0 and different carrying capacities, K; > Kj, the solution of the logistic equation
coincides with the carrying capacity Ky, while the solution of the Food-limited equation tends to 0
for B = 0.5 (see Fig. 4, left). When K; = K, both population coexist as shown in Fig. 4 (right).
Both populations are cooperating with each other when their resource distributions are equal even
though the growth functions are different.

5. Conclusion

In sum, the considered model suggests that carrying capacity plays an important role in
determination of the competition outcome between two species in a given ecological niche. If
carrying is identical, there is a possible coexistence of both species. It is aso notable that the
parameter B and intrinsic growth rates are important factors to determine which species will
survive. Thismodel can aso be applicable for particular speciesin any habitats.
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