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ABSTRACT 

A competitive mathematical model for the growth of two species is considered in this study. The 

main goal of the present study is to investigate the roles of two different growth functions: the 

logistic growth and the food limited growth. We established the main results that determine the 

asymptotic stability of semi-trivial as well as the coexistence solutions. If higher carrying capacity 

is embodied for the population following logistic growth then competitive exclusion of a food 

limited population is imminent and vice versa.   
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1. Introduction 

Extensive level of competition among the species is practically prevalent in every level of natural 

world. Mathematical models are developed and analyzed which provide information on the growth 

rates of two species under low (Malthusian growth) and high (logistic growth) densities, when they 

are only affected by their own populations, which is known as intraspecific competition [1]. 

Extended models are studied to determine how these species interact when competing for the 

limited resources, which is called interspecific competition [6]. Interspecific competition is 

detrimental to both species per capita growth rates. In the literature, the well developed and most 

popular growth laws were established in [2, 3, 7, 9]. There are different biological considerations 

to two species competition models using different growth functions of  [2, 3, 7, 9]. In this paper, a 

competition model is introduced by considering the concept of critical population density that 

follows different growth laws. Therefore, the goal of the present study is to develop a basic 

competition model based on two different species either in interspecific or intraspecific 

competition with two different growth rates.  

The paper is organized as follows. In section 2, we describe the auxiliary result to analyze the 

model and a brief description of the reaction terms for species u and w, and these will be used in 

the rest of the paper. Equilibrium analysis of semi-trivial steady states and coexistence solutions 

are investigated in section 3 by linearizing our considered problem.  
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The key ingredients of Section 4 are to consider different carrying capacities for numerical 

simulations supporting the theoretical results and this characterization is referred to as the 

crowdiness effect. In this case, we show that the population following the food limited growth goes 

to extinction if higher crowdiness tolerance is incorporated with the logistic population for 

particular . Finally, Section 5 presents summary of the results.  

 

2. Method of Analysis 

Taking into account of two different species, we consider the following system of nonlinear 

differential equations  
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where, u(t) and w(t) represent the density of the populations at time t, and K1, K2 are the carrying 

capacities of the respective species u and w, respectively. Similarly, r1, r2 are the two intrinsic 

growth rates of u and w, respectively, and  is a positive constant. There are various methods to 

analyze the stability of nonlinear systems. Some popular methods of stability of nonlinear systems 

are Lyapunov satbility criteria [8, 10] and LaSalle’s invariance principle [4, 5]. 

For mathematical analysis of the model (1), we consider the Hartman-Grobman theorem as 

described below:  

Theorem 1. [6] (Hartman-Grobman) If the linearization matrix has no zero or pure imaginary 

eigenvalues then the phase portrait for the system near the equilibria (u, v) can be obtained from 

the phase portrait of the linear system via a continuous change of coordinates.  

Remark 1. In particular, this means that if the matrix has no zero or pure imaginary eigenvalues, 

then the stability properties of the equilibria (u, v) of the system are the same as those of the 

equilibrium 0 of the linear system.  

It is rare that an analytic formula for the solution of (1) can be constructed, so we usually must 

construct a numerical solution or study the qualitative behavior of the solution. A qualitative 

analysis proves extremely helpful for constructing numerical solutions. In either case, we find it 

convenient to study the solutions in the phase plane (u, w).  

For simplicity, let us introduce the following two functions  
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and rewrite the system (1) as follows:  
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of the system (2) can be thought of as a parametrized curve which we refer to as integral curves of 

the system. We can use the fact that the vector (du/dt, dw/dt) is tangent to the solution curve 

defined by (u(t), w(t)). A graph of a family of solutions is called a phase portrait and can be 

generated from the direction field or numerically. A disadvantages of both the direction filed or 

numerical approach is that the parameters in (2) need to be specified.  

Since equilibria of a system occur at points where the coordinates have derivative zero 

simultaneously. The equilibrium, steady state or critical points are constant solutions, u(t) = u* and 

w(t) = w*, which satisfy the nonlinear system of equations f(u, w) = 0 and simultaneously h(u, w) = 

0. The equilibria of the system (2) are (u*, w*) = (0, 0), (K1, 0), (0, K2). Later sections for test out of 

the stability analysis at the equilibira.  

 

3. Stability Analysis at the Equilibria 

In this section, first we have linearized the system for further analysis. Rearrange the functions f(u, 

w) and h(u, w) as follows  
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To find the linearization matrices at the equilibria, we first calculate  
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Substituting the coordinates of the equilibria into these formulae, we obtain the linearization 

matrices.  

Equilibrium (0, 0): At the equlibrium point (0, 0), four partial derivatives are  

fu(0, 0) = r1; fw(0, 0) = 0; hu(0, 0) = 0 and hw(0, 0) = r2 

Then the linear system  

ur
dt
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and the linearization matrix at (0, 0) is  
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corresponding eigenvalues of ܯ(଴,଴) are ߣଵ = ଵݎ > ଶߣ ,0 = ଶݎ > 0. Put ݎଵ = 10 and ݎଶ = 5 which 

gives ߣଵ = 10, ଶߣ = 5 and the eigenvectors  

 ቀ10ቁ and ቀ01ቁ,  

respectively.  

Both eigenvalues of the linearization matrix ܯ(଴,଴) are real and positive which concludes that the 

equilibrium point (0,0) is a repeller. Biologically, when both of the species are present in the same 

ecological niche they will repel each other and leave the sub-domain of the habitat until unless 

other factors are considered. At this critical point the system is always unstable, see Fig. 1.   
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