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ABSTRACT

Numerical study of unsteady fluid flow and heat transfer through a rotating curved rectangular
channel with aspect ratio 2 and curvature ratio 0.05 has been performed by using a spectral-based
numerical method, and covering a wide range of the rotational parameter, the Taylor number 7a,
for both the positive and negative rotation of the channel. In this paper, unsteady flow
characteristics are investigated under combined action of the centrifugal, Coriolis and buoyancy
forces for the Dean number De = 1000. For positive rotation, we investigated unsteady solutions for
0 < Ta <500, and it is found that the chaotic flow turns into steady-state flow through periodic or
multi-periodic flows. For negative rotation, on the other hand, unsteady solutions are investigated
for —=500 < 7a < 0, and it is found that the unsteady flow undergoes through various flow
instabilities. Typical contours of secondary flow patterns and temperature profiles are obtained at
several values of Ta, and it is found that the unsteady flow consists of asymmetric two- to eight-
vortex solutions. The present study shows that convective heat transfer is significantly enhanced as
the secondary flow becomes stronger and the chaotic flow enhances heat transfer more effectively

than the steady-state or periodic solutions.

Keywords: Rotating curved channel; secondary vortex; unsteady solutions; Dean number, Taylor

number, time evolution.

1. Introduction

Investigation of flow and heat transfer through curved ducts and channels is an interesting subject
for researchers in the past and the present. These channels are extensively used in many
engineering applications, such as in turbo-machinery, refrigeration, air conditioning systems, heat
exchangers, rocket engine, internal combustion engines and blade-to-blade passages in modern gas
turbines. In a curved duct, centrifugal forces are developed in the flow due to channel curvature

causing a counter rotating vortex motion applied on the axial flow through the channel. This
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creates characteristics spiraling fluid flow in the curved passage known as secondary flow. At a
certain critical flow condition and beyond, additional pairs of counter rotating vortices appear on
the outer concave wall of the curved fluid passage which are known as Dean vortices, in
recognition of the pioneering work in this field by Dean [1]. After that, many theoretical and
experimental investigations have been done by keeping this flow in mind; for instance, the articles
by Berger et al. [2], Nandakumar and Masliyah [3] and Ito [4] may be referenced.

The fluid flowing in a rotating curved duct is subjected to two forces: the Coriolis force due to
rotation and the centrifugal force due to curvature. Such rotating passages are used in cooling
system for conductors of electrical generators. For isothermal flows of a constant property fluid,
the Coriolis force tends to generate vortices while centrifugal force is purely hydrostatic (Zhang et
al. [5]). When a temperature induced variation of fluid density occurs for non-isothermal flows,
both Coriolis and centrifugal type buoyancy forces can contribute to the formation of vortices.
These two effects of rotation either enhance or counteract each other in a non-linear manner
depending on the direction of wall heat flux and the flow domain. Therefore, the effect of system
rotation is more subtle and complicated, and yields new richer features of flow and heat transfer
for the non-isothermal flows. Ishigaki [6] examined the flow structure and friction factor
numerically for both the counter-rotating and co-rotating curved circular pipe with small curvature.
Selmi et al. [7] and Dennis and Ng [8] examined combined effects of system rotation and
curvature on the bifurcation structure of two-dimensional flows in a rotating curved duct with
square cross section. Miyazaki [9] examined the solution when the rotation is in the same direction
as the Coriolis force emphasizing the centrifugal force caused by the duct curvature, which is
known as co-rotating case. Selmi and Nandakumer [10] performed numerical studies on the flow
characteristics in rotating curved rectangular ducts. Wang and Cheng [11, 12] and Daskopoulos
and Lenhoff, [13] carried out a bifurcation study of the flow through a circular pipe and employed
finite volume method. They examined the flow characteristics and heat transfer in curved square

ducts for positive rotation and found reverse secondary flow for the co-rotation cases.

Time-dependent analysis of fully developed curved duct flows was initiated by Yanase and Nishiyama
[14] for a rectangular cross section. In that study, they investigated unsteady solutions for the case
where dual solutions exist. The unsteady behavior of the flow in a curved rectangular duct of large
aspect ratio was investigated, in detail, by Yanase et al. [15] numerically. They performed time-
evolution calculations of the unsteady solutions with and without symmetry condition. Wang and Yang
[16] performed numerical as well as experimental investigations of periodic oscillations for fully
developed flow in a curved square duct. They showed, both experimentally and numerically, that a
temporal oscillation takes place between symmetric/asymmetric 2-cell and 4-cell flows when there are
no stable steady solutions. Mondal et al. [17] performed numerical prediction of non-isothermal flows
through a rotating curved square duct and revealed some of such new features. Very recently, Mondal et
al. [18, 19] investigated combined effects of centrifugal and Coriolis instability of the isothermal/non-
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isothermal flows through a rotating curved rectangular duct numerically. The secondary flow
characteristics in a curved square duct were investigated experimentally by using visualization method
by Yamamoto et al. [20]. Three-dimensional incompressible viscous flow and heat transfer in a rotating
U-shaped square duct were studied numerically by Nobari et al. [21]. However, transient behavior of
the unsteady solutions is not yet resolved, in detail, for the flow through a rotating curved rectangular
duct of small curvature in the case of strong centrifugal force, which motivated the present study to fill

up this gap.

One of the most important applications of curved duct flow is to enhance the thermal
exchange between two sidewalls, because it is possible that the secondary flow may convey heat
and then increases heat flux between two sidewalls. Chandratilleke and Nursubyakto [22]
presented numerical calculations to describe secondary flow characteristics in the flow through
curved ducts of aspect ratios ranging from 1 to 8 that were heated on the outer wall, where they
studied for small Dean numbers and compared the numerical results with their experimental data.
Yanase et al. [23] and Mondal ef al. [24] studied time-dependent behavior of the unsteady
solutions for curved rectangular/square duct flow and showed that secondary flows enhance heat
transfer in the flow. Recently Norouzi et al. [25] investigated fully developed flow and heat
transfer of viscoelastic materials in curved square ducts under constant heat flux. To the best of the
authors' knowledge, however, there has not yet been done any substantial work studying the effects
of rotation on the unsteady flow behavior for the non-isothermal flow through a rotating curved

rectangular duct in the presence of buoyancy force with large pressure gradient.

In this paper, we investigate time-dependent flow behavior through a loosely coiled rotating
rectangular duct by using a spectral-based numerical scheme, and show an enhancement of
convective heat transfer by secondary flows. Studying the effects of rotation on the unsteady flow
characteristics, caused by the combined action of centrifugal, Coriolis and buoyancy forces, is an

important objective of the present study.

Nomenclature

De : Dean number ¢t : Temperature
Ta : Taylor number u : Velocity component in the x — direction
Gr : Grashof number v : Velocity component in the y — direction

h : Half height of the cross section w : Velocity component in the z — direction
d :Half width of the cross section x : Horizontal axis

L :Radius of the curvature y : Vertical axis

Pr : Prandtl number z : Axis in the direction of the main flow

t :Time A : Resistance coefficient

Greek letters

& : Curvature of the duct  p : Viscosity v : Kinematic viscosity

p : Density K : Thermal diffusivity w : Sectional stream function
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2. Flow Model and Gover ning Equations

Consider a hydro-dynamically and thermally fully developed two-dimensional flow of viscous
incompressible fluid through a rotating curved duct with rectangular cross section, whose height
and width are 24 and 2d, respectively. The coordinate system with relevant notation is shown in
Fig. 1, where x' and )’ axes are taken to be in the horizontal and vertical directions respectively,
and z’ is the axial direction. The system rotates at a constant angular velocity Q- around the '
axis. It is assumed that the outer wall of the duct is heated while the inner wall cooled. It is also
assumed that the flow is uniform in the axial direction, which is driven by a constant pressure

gradient G along the center-line of the duct.
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Figure 1. Coordinate system of the curved duct
The continuity, Navier-Stokes and energy equations, in terms of dimensional variables, are
expressed as:
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where 7 = L + x’ and u',v" and W are the dimensional velocity components in the x’, )" and z'
directions respectively and these velocities are zero at the wall. Here, P' is the dimensional
pressure, 7' is the dimensional temperature and ¢'is the dimensional time. In the above
formulations p, v, B, k and g are the density, the kinematic viscosity, the coefficient of thermal
expansion, the coefficient of thermal diffusivity and the gravitational acceleration, respectively.
Thus in Egs. (1) to (5) the variables with prime denotes the dimensional quantities. The
dimensional variables are then non-dimensionalized by using the representative length d and the
representative velocity Uy = v/d. We introduce the non-dimensional variables defined as:

u' v NI (x’ 1)_ V' z'
Uu=—,Vv=—"  W=—"W,X=|——Z L, V=", Z=—

U, U, U, d 3 a4

T U '
T:—,t:—Ot',S:i,P: P2

AT d L' pU,

where u, v and w are the non-dimensional velocity component in the x,y and z directions,
respectively; ¢ is the non-dimensional time, P is the non-dimensional pressure, & is the non-
dimensional curvature and temperature is non-dimensionalized by AT. Henceforth, all the variables

are non-dimensionalized if not specified.

A new coordinate variable y is then introduced in the y direction as y = ay, where a = (h/d) = 2 is
the aspect ratio of the duct cross section. From now on, y denotes y for the sack of simplicity.

Since the flow field is assumed to be uniform in the z-direction, the sectional stream function v is
introduced in the x and y directions as

Loy 1y
1+8x gy’ 1+6x ox

(6)

Then the basic equations for the axial velocity w, the stream function w and the temperature T are
derived from the Navier-Stokes equations and the energy equation as,
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In the above formulations, we have used four non-dimensional parameters; De, the Dean number,

Ta, the Taylor number, Gr, the Grashof number and Pr, the Prandtl number, which are defined as:

Do Gd* lzd 2\/269Td Gr e BgATd? pro b

2 - (10)

The rigid boundary conditions for the axial velocity (W) and the stream function (1) are used as
WL 3) =Wl ) =L ) =y 2D =28 e ) =2 21 =0 (an
X t

and temperature T is assumed to be constant on the walls as
,y)=1, T(-1,»)=-1,T(x, £ 1)=x. (12)
Note that, Egs. (7) - (9) are invariant under the transformation of the variables

y=-y

w(x, y,t) = w(x,—y,t)

\V(x’yat) = _\V(X,—y,t)
T(x,y,t) = -T(x,—y,t)

(13)

If the solution satisfies condition (13) it is called a symmetric solution, and if it does not an
asymmetric solution. In the present study, only Ta varies while De, Gr, 6 and Pr are fixed as De =
1000, Gr =500, 5 = 0.05and Pr = 7.0 (water).

3. Numerical Calculations
3.1 Method of numerical calculation

Equations (7) to (9) are solved numerically by using the spectral method. By this method the
expansion functions ¢7;(x) and Y (x) are expressed as

0, (x)=(1-x2)C, (x),}

(14)
v, () =1-x)2C, (%)
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where C,(x) = cos(ncos ' (x) is the n-th order Chebyshev polynomial. w(x, y, 7), y(x, y, £) and T(x, y,
?) are expanded in terms of ¢ (x) and W (x) as

W2 = X T, (00, (310, ()
wley)= 3 g\vmn (), (), (), (15)

m=0n=0

M N
Ty = X 2T, (00 ()0, () + .
where M and N are the truncation numbers in the x and y directions respectively. The expansion
coefficients w,,,,y,,,and T, are then substituted into the basic Egs. (7) - (9) and the collocation

method is applied. As a result, the nonlinear algebraic equations forw,,,y,, and 7, are
obtained. The collocation points are taken to be

. :cos{n(l—ﬁﬂ, ) :co{,{n}vi ZH (16)

wherei=1,..,M+1andj=1, .., N+ . Finally, in order to calculate the unsteady solutions, the
Crank-Nicolson and Adams-Bashforth methods together with the function expansion (9) and the
collocation methods (Gottlieb and Orszag [26]) are applied to Egs. (7) to (9). Details of the method
are available in Mondal et al. [27].

3.2 The Nusselt Number

As an index of horizontal heat transfer, the Nusselt number, Nu, is defined as

Y- <5T > 17
x=0

AT\ &x"
where the quantities with asterisk (*) denote dimensional ones, {.) denotes the mean over the heat

transfer from the walls to the fluid, x is the distance from the wall, and AT is the temperature
difference between the vertical sidewalls. Since the temperature distribution from the walls to the
fluid is not uniform due to differentially heated vertical sidewalls, Nu is different on both the
cooled and heated sidewalls. In this study, for the unsteady solutions, we define the Nusselt

number for the cooled (Nu,) and heated (Nu,) sidewalls as follows:

_Lpfler _Lpfler
Nutc - 2 J.1<< ax x_1>>dy’ nuTh 2 Il<< ax x1>>dy (18)

where (( )) denotes an average over a time interval t. When the flow field is periodic, t is normally

taken as one period, and if it is chaotic, T is chosen as an appropriate time interval.
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3.3 Numerical Accuracy

The accuracy of the numerical calculations is investigated for the truncation numbers M and N
used in this study. For good accuracy of the solutions, /N is chosen equal to 2M . The grid sizes
are taken as 12x24, 14x28, 16x32, 18x36 and 20x 40 as shown in Table 1, where A
is the resistance coefficient and W(0,0) is the axial velocity of the steady solution at
(x,¥)=1(0,0) for De = 1000, Ta =500, Gr = 500 and & = 0.05 for the aspect ratio 2. Table 1
shows that M = 16 and N = 32 gives sufficient accuracy of the present numerical solutions.

Table 1. The values of A and w(0, 0) for various values of M and N for De = 1000, Ta = 500, Gr = 500 and
curvature & = 0.05.

M N 3 w(0, 0)

12 24 0.16146237 747.250
14 28 0.17762868 748.095
16 32 0.17842799 754.551
18 36 0.17974814 755.866
20 40 0.17792901 749.861

3.4 Resistance coefficient

We use the resistance coefficient A as one of the representative quantities of the flow state. It is
also called the hydraulic resistance coefficient, and is generally used in fluids engineering, defined
as

B -P L1/ x\2

A2 =S p(w') (10)

Az d, 2

where quantities with an asterisk denote the dimensional ones, ( ) stands for the mean over the
cross section of the duct and d; is the hydraulic diameter. Since (Pl* - PZ*) /Az" =G, M\ is related to

the mean non-dimensional axial velocity (w) as

o 16¥25Dn

, 11

In this paper, A is used to calculate the unsteady solutions by numerical computations.

4. Resultsand Discussion
4.1 Case I: Positive rotation (0 <Tr <500)

In order to study the nonlinear behavior of the unsteady solutions, time evaluation calculations
are performed for —500 < Ta < 500, De = 1000, Gr = 500 and curvature 6 = 0.05. First, we
calculate unsteady solutions for positive rotation of the duct (0 < Tr < 500). Figure 2(a) shows time
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evolution of A for 7a = 0. It is found that the unsteady flow at Ta = 0 oscillates irregularly that
means the flow is chaotic. This chaotic oscillation is well justified by drawing the phase space of
the time evolution result as shown in Fig. 2(b) in the y — A plane, where y = [[wdxdy. As seen in
Fig. 2(b), the orbit of the flow evolution creates multiple paths, which shows that the flow is
chaotic. Figure 2(c) shows streamlines and isotherms for 7a = 0, where it is observed that the
streamlines of the secondary flow consist of two opposite vortices; one is an outward flow shown
by solid lines and the other one inward flow shown by dotted lines. The right-hand side of each
duct box of y and T indicates outside direction of the duct. As seen in Fig. 2(c), the unsteady flow
for Ta = 0 is an asymmetric two- and four-vortex flow pattern. Figure 3(a) shows time evolution of
the unsteady solutions for 7a = 80, where we see that the unsteady flow is also chaotic, and the
chaotic behavior is well justified by drawing a phase space of the time evolution solution as shown
in Fig 3(b). Figure 3(c) shows typical contours of secondary flow patterns (streamlines) and
temperature profiles (isotherms) for 7a = 80, where we see that the unsteady flow at 7a = 80 is an
asymmetric two- and four-vortex flow pattern. Then we perform time evolution of A for 7a = 100
as shown in Fig. 4(a). It is found the unsteady flow oscillates in an irregular pattern with different
modes of frequency, which shows that the flow is a transitional chaos (Mondal et al. [27]). In
order to well identify the nature of the flow oscillation, a phase space of the time evolution result is
shown in Fig. 4(b) for 7a = 100, which shows that the flow is a transitional chaos that turns into
multi periodic or periodic flows as Ta is increased. Typical contours of streamlines and isotherms
are then obtained and plotted in Fig. 4(c), where we see that the unsteady flow at 7a = 100 is an

asymmetric two-vortex flow pattern.
044

042F

b

038




82 Islam et al.

¢ 65 15 85

Figure 2. Unsteady results for 7a = 0. (a) Time evolution of A, (b) Phase space, (c) Streamlines
(top) and isotherms (bottom) at 6.5 <1< 9.5
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Figure 3. Unsteady results for 7a = 80. (a) Time evolution of A, (b) Phase space, (c)
Streamlines (top) and isotherms (bottom) for 17.0 <7< 18.5
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Figure 4. Unsteady results for 7a = 100. (a) Time evolution of A, (b) Phase space, (¢)
Streamlines (top) and isotherms (bottom) for 18.0 <7< 19.0
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t 10.00 10.40 10.80 11.00
Figure 5. Unsteady results for 7a = 105. (a) Time evolution of A, (b) Phase space, (c)
Streamlines (top) and isotherms (bottom) for 10.5 <t < 11.0

Then we performed time evolution of A for 7a = 105 at Dn = 1000 as shown in Fig. 5(a). Figure 5(a)
shows that the unsteady flow is a periodic oscillation for 7a = 105, which is well justified by drawing
the phase space of the time evolution result as shown in Fig. 5(b). Figure 5(b) shows that the orbit of the
oscillation is same at a certain time interval that assures that the fluid particles oscillate periodically.
Streamlines and isotherms are shown in Fig. 5(c) for 7a = 105, where we observe that the stream lines
are symmetrically distributed and produce asymmetric two-vortex flow pattern. It is also observed that
the stream lines of the temperature profiles are found to be consistence with the secondary vortices.
Then we increase the rotational speed for 105 < 7a < 500 and it is found that the unsteady flow is a
steady-state solution for any value of 7 in this range. Figures 6(a) and 7(a) show, for example, time
evolution results for 7a = 130 and 7a = 500 respectively, where steady-state solutions are observed.
Since the flow is steady-state, a single contour of each of the secondary flow patterns and temperature
profiles is shown in Figs. 6(b) and 7(b) for Ta = 130 and 7a = 500 respectively, where we see that
steady-state flow is an asymmetric two-vortex flow pattern.
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Figure 6. Unsteady results for 7a = 130. (a) Time evolution of A, (b) Streamlines (top) and
isotherms (bottom) for 7a = 130 at £ = 10.
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Figure 7. Unsteady results for 7a = 500. (a) Time evolution of A, (b) Streamlines (top) and isotherms
(bottom) for Ta = 500 at ¢ = 6.0.

4.2 Case II: Negative rotation (<500 <Ta < 0)

We investigated unsteady solutions for negative rotation of the duct at =500 < Ta < 0 for the
constant pressure gradient De = 1000 at curvature 8 = 0.05. Negative rotation means that the rotational
direction is opposite to the main flow direction. Figure 8(a) shows time evolution of A for 7a = -50 at
De = 1000, and is found that the unsteady flow at 7a = -50 is a non-periodic oscillating flow, which
oscillates with an irregular pattern that means the flow is chaotic. This chaotic oscillation is well
justified by drawing the phase space of the time evolution result as shown in Fig. 8(b). Streamlines and
isotherms for the corresponding flow parameters are shown in Fig. 8(c), where it is found that the
chaotic oscillation at 7a = -50 is an asymmetric four- to six-vortex flow patterns. Figure 9(a) shows time
evolution of A for 7a = —150, and it is found that the unsteady flow at 7a = -150 is a chaotic solutions,
which oscillates irregularly with different modes of solutions. This chaotic oscillation is well justified by
drawing the phase space of the time evolution result as shown in Fig. 9(b). Typical contours of
streamlines and isotherms for 7a = -150 are shown in Fig. 9(c), where it is found that the chaotic
oscillation at 7a = -150 is an asymmetric four-vortex flow pattern. It is observed that the streamlines of
the secondary flow patterns and isotherms of the temperature distributions are significantly distributed
that generates more heat which is transferred from the heated wall to the fluid. Then we perform time
evolution of A for 7a = -255 as shown in Fig. 10(a). It is found that the unsteady flow at 7a = -255 is a
periodic oscillation, which is well justified by drawing the phase space as shown in Fig. 10(b). Typical
contours streamlines and isotherms for 7a = -255 are shown in Fig. 10(c), where it is found that the

periodic oscillation at 7a = -255 is an asymmetric four-vortex flow pattern.
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7.50 8.00
Figure 8. Unsteady results for 7a = —50. (a) Time evolution of A, (b) Phase space, (c)
Streamlines (top) and isotherms (bottom) for 7.0 <7< 8.5
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Figure 9. Unsteady results for 7a = -150. (a) Time evolution of A, (b) Phase space, (c)
Streamlines (top) and isotherms (bottom) for 6.5 <7< 8.0
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Figure 10. Unsteady results for 7a = —250. (a) Time evolution of A, (b) Phase space, (c)
Streamlines (top) and isotherms (bottom) for 20.65 < ¢20.85

We then proceeded to perform time evolution of A for 7a = -300 at De = 1000 as shown in
Fig. 11(a). As seen in Fig. 11(a), the unsteady flow at 7 = —300 is a time-periodic solution. To
observe the time periodic behavior more clearly, we draw the phase space of the time evolution
result in Fig. 11(b) for Ta = —300, where a couple of orbits is observed instead of a single-phase
orbit, which confirms that the unsteady flow at 7a = —300 is a multi-periodic solution. Typical
contours of streamlines and isotherms for 7a = -300 are shown in Fig. 11(c), where it is found that
the multi-periodic oscillation at 7a = —-300 is only four-vortex flow pattern. If rotational speed is
increased in the negative direction up to 7a =-500, it is observed that the flow remains steady-state.
Figure 12(a) shows, for example, time evolution result for 7a = —320, where steady-state solution

is observed. Therefore, the transition from periodic-oscillating flow to steady-state solution occurs
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between 7a = —300 and Ta = -320. Since the flow is steady state, a single contour of the
streamlines and isotherms is shown in Fig. 12(b) for 7a = —320, and it is found that the secondary
flow is an asymmetric four-vortex flow pattern. In this study, it is found that if the duct rotation is
increased in the positive direction, the number of secondary vortices decreases and consequently
heat transfer does not occur substantially; however, for negative rotation, heat transfer is enhanced
significantly as the rotation is increased in the negative direction. The reason is that due to chaotic
mixing many secondary vortices generate at the outer wall of the duct which play a significant role
in transferring heat from the heated wall to the fluid (Chandratilleke ef al. [28]).

(@ “* '\ FIW w \ N' (b)EU-
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Figure 11. Unsteady results for 7a = — 300. (a) Time evolution of A, (b) Phase space, (c)
Streamlines (top) and isotherms (bottom) for 6.95 < ¢ <7.65
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Figure 12. Unsteady results for 7a = -320. (a) Time evolution of A, (b) Streamlines (top) and
isotherms (bottom) at £ = 8.0

(a) (b)
Figure 13. Temperature gradient for De = 1000, Gr = 500 and & = 0.05 for various vales of
Ta. (a) at the cooling wall (b) at the heated wall.

In order to find convective heat transfer from the heated wall to the fluid, we calculate temperature

gradients at the cooling and heated walls. In Fig. 13(a), it is shown that o on the inner (cooled)
sidewall decreases in the central region around y = 0. This is caused by the advection of the

secondary flow in the outward direction around y = 0 due to the centrifugal force. In the same
figure, it is also shown that o tends to increase in the regions other than the central region. This

is caused by the advection of the secondary flow in the inward direction there, which is a reverse

flow of the outward secondary flow in the central region. As seen in Fig. 13(b), on the other

or
hand, the temperature gradient on the outer (heated) sidewall, gincreases, as the Ta goes up,

orT
over the whole region except for small Ta. This is because the secondary flow enhances "o Dot
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only in the central region but in other regions as well. This result shows that heat transfer occurs

substantially as 7a increases for the heated sidewall.

Here we show the validation of our numerical results with the experimental studies. By using
visualization method, Yamamoto et al. [29] performed experimental investigations of the flow
through a rotating curved square duct of curvature § = 0.03, where three of the duct walls, except
the outer wall, rotate around the center of curvature at a constant rotational speed for 7a =150. In
the present study, however, we investigate flow characteristics for the rotation of the whole system
(not the three walls only), and show the validation of our study using the same curvature and
rotational speed as Yamamoto et al. [29] considered. Figures 14 show comparative study of the
experimental vs. numerical results for 7a =150, and we see that our results have a good agreement

with the experimental investigations.

De=114 (@ De =115 De =176 (b) De =415

Figure 14. Experimental vs. numerical results for rotating curved square duct flow at 7a = 150.

5. Conclusion

A spectral-based numerical study is presented for the unsteady flow characteristics through a
rotating curved rectangular duct of aspect ratio 2 and curvature ratio 0.05. Numerical calculations
are carried out for the constant Dean number 1000 and Grashof number 500 over a wide range of
the Taylor umber (7a) for both the positive and negative rotation of the duct. The outer wall of the
duct is heated while the inner wall cooled, the top and bottom walls being thermally insulated. We
investigated unsteady solutions by time evolution calculations justified by their phase spaces, and
it is found that under combined action of centrifugal, Coriolis and buoyancy forces the unsteady
flow undergoes in the scenario ‘chaotic — multi-periodic — periodic — steady-state’ if Ta is
increased in the positive rotation. For negative rotation, however, time evolution calculations show
that the unsteady flow undergoes through various flow instabilities, if 7a is increased in the
negative direction. Phase spaces were found to be very fruitful to justify the transition of the
unsteady flows. Typical contours of secondary flow patterns and temperature profiles are also
obtained at several values of Ta, and it is found that there exist two- to eight-vortex flow patterns if
the duct rotation is involved. It is found that the temperature distribution is consistence with the

secondary vortices, and secondary flows play a significant role in convective heat transfer from the
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heated wall to the fluid. It is also found that chaotic flow enhances heat transfer more substantially
than the steady-state or periodic solutions through multi-vortex flow patterns at the outer concave

wall.
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