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ABSTRACT 

Numerical study of unsteady fluid flow and heat transfer through a rotating curved rectangular 

channel with aspect ratio 2 and curvature ratio 0.05 has been performed by using a spectral-based 

numerical method, and covering a wide range of the rotational parameter, the Taylor number Ta, 

for both the positive and negative rotation of the channel. In this paper, unsteady flow 

characteristics are investigated under combined action of the centrifugal, Coriolis and buoyancy 

forces for the Dean number De = 1000. For positive rotation, we investigated unsteady solutions for 

0  Ta  500, and it is found that the chaotic flow turns into steady-state flow through periodic or 

multi-periodic flows. For negative rotation, on the other hand, unsteady solutions are investigated 

for –500  Ta  0, and it is found that the unsteady flow undergoes through various flow 

instabilities. Typical contours of secondary flow patterns and temperature profiles are obtained at 

several values of Ta, and it is found that the unsteady flow consists of asymmetric two- to eight-

vortex solutions. The present study shows that convective heat transfer is significantly enhanced as 

the secondary flow becomes stronger and the chaotic flow enhances heat transfer more effectively 

than the steady-state or periodic solutions.  

 

Keywords: Rotating curved channel; secondary vortex; unsteady solutions; Dean number, Taylor 

number, time evolution.  

 

1. Introduction 

Investigation of flow and heat transfer through curved ducts and channels is an interesting subject 

for researchers in the past and the present. These channels are extensively used in many 

engineering applications, such as in turbo-machinery, refrigeration, air conditioning systems, heat 

exchangers, rocket engine, internal combustion engines and blade-to-blade passages in modern gas 

turbines. In a curved duct, centrifugal forces are developed in the flow due to channel curvature 

causing a counter rotating vortex motion applied on the axial flow through the channel. This 



74 Islam et al. 

creates characteristics spiraling fluid flow in the curved passage known as secondary flow. At a 

certain critical flow condition and beyond, additional pairs of counter rotating vortices appear on 

the outer concave wall of the curved fluid passage which are known as Dean vortices, in 

recognition of the pioneering work in this field by Dean [1]. After that, many theoretical and 

experimental investigations have been done by keeping this flow in mind; for instance, the articles 

by Berger et al. [2], Nandakumar and Masliyah [3] and Ito [4] may be referenced.   

The fluid flowing in a rotating curved duct is subjected to two forces: the Coriolis force due to 

rotation and the centrifugal force due to curvature. Such rotating passages are used in cooling 

system for conductors of electrical generators. For isothermal flows of a constant property fluid, 

the Coriolis force tends to generate vortices while centrifugal force is purely hydrostatic (Zhang et 

al. [5]). When a temperature induced variation of fluid density occurs for non-isothermal flows, 

both Coriolis and centrifugal type buoyancy forces can contribute to the formation of vortices. 

These two effects of rotation either enhance or counteract each other in a non-linear manner 

depending on the direction of wall heat flux and the flow domain. Therefore, the effect of system 

rotation is more subtle and complicated, and yields new richer features of flow and heat transfer 

for the non-isothermal flows. Ishigaki [6] examined the flow structure and friction factor 

numerically for both the counter-rotating and co-rotating curved circular pipe with small curvature. 

Selmi et al. [7] and Dennis and Ng [8] examined combined effects of system rotation and 

curvature on the bifurcation structure of two-dimensional flows in a rotating curved duct with 

square cross section. Miyazaki [9] examined the solution when the rotation is in the same direction 

as the Coriolis force emphasizing the centrifugal force caused by the duct curvature, which is 

known as co-rotating case. Selmi and Nandakumer [10] performed numerical studies on the flow 

characteristics in rotating curved rectangular ducts. Wang and Cheng [11, 12] and Daskopoulos 

and Lenhoff, [13] carried out a bifurcation study of the flow through a circular pipe and employed 

finite volume method. They examined the flow characteristics and heat transfer in curved square 

ducts for positive rotation and found reverse secondary flow for the co-rotation cases.  

Time-dependent analysis of fully developed curved duct flows was initiated by Yanase and Nishiyama 

[14] for a rectangular cross section. In that study, they investigated unsteady solutions for the case 

where dual solutions exist. The unsteady behavior of the flow in a curved rectangular duct of large 

aspect ratio was investigated, in detail, by Yanase et al. [15] numerically. They performed time-

evolution calculations of the unsteady solutions with and without symmetry condition. Wang and Yang 

[16] performed numerical as well as experimental investigations of periodic oscillations for fully 

developed flow in a curved square duct. They showed, both experimentally and numerically, that a 

temporal oscillation takes place between symmetric/asymmetric 2-cell and 4-cell flows when there are 

no stable steady solutions. Mondal et al. [17] performed numerical prediction of non-isothermal flows 

through a rotating curved square duct and revealed some of such new features. Very recently, Mondal et 

al. [18, 19] investigated combined effects of centrifugal and Coriolis instability of the isothermal/non-
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isothermal flows through a rotating curved rectangular duct numerically. The secondary flow 

characteristics in a curved square duct were investigated experimentally by using visualization method 

by Yamamoto et al. [20]. Three-dimensional incompressible viscous flow and heat transfer in a rotating 

U-shaped square duct were studied numerically by Nobari et al. [21]. However, transient behavior of 

the unsteady solutions is not yet resolved, in detail, for the flow through a rotating curved rectangular 

duct of small curvature in the case of strong centrifugal force, which motivated the present study to fill 

up this gap.        

       One of the most important applications of curved duct flow is to enhance the thermal 

exchange between two sidewalls, because it is possible that the secondary flow may convey heat 

and then increases heat flux between two sidewalls. Chandratilleke and Nursubyakto [22] 

presented numerical calculations to describe secondary flow characteristics in the flow through 

curved ducts of aspect ratios ranging from 1 to 8 that were heated on the outer wall, where they 

studied for small Dean numbers and compared the numerical results with their experimental data. 

Yanase et al. [23] and Mondal et al. [24] studied time-dependent behavior of the unsteady 

solutions for curved rectangular/square duct flow and showed that secondary flows enhance heat 

transfer in the flow. Recently Norouzi et al. [25] investigated fully developed flow and heat 

transfer of viscoelastic materials in curved square ducts under constant heat flux. To the best of the 

authors' knowledge, however, there has not yet been done any substantial work studying the effects 

of rotation on the unsteady flow behavior for the non-isothermal flow through a rotating curved 

rectangular duct in the presence of buoyancy force with large pressure gradient. 

         In this paper, we investigate time-dependent flow behavior through a loosely coiled rotating 

rectangular duct by using a spectral-based numerical scheme, and show an enhancement of 

convective heat transfer by secondary flows. Studying the effects of rotation on the unsteady flow 

characteristics, caused by the combined action of centrifugal, Coriolis and buoyancy forces, is an 

important objective of the present study.  
 

Nomenclature 

De  : Dean number t  : Temperature                            

Ta   : Taylor number  u   : Velocity component in the x  direction              

Gr  : Grashof number v   : Velocity component in the y  direction 

h    : Half height of the cross section w  : Velocity component in the z  direction 

d     : Half width of the cross section x  : Horizontal axis 

L   : Radius of the curvature y  : Vertical axis                                   

Pr  : Prandtl number z  : Axis in the direction of the main flow 

t    : Time     : Resistance coefficient 

Greek letters 
    : Curvature of the duct      : Viscosity                           : Kinematic viscosity 

    : Density                             : Thermal diffusivity        : Sectional stream function 
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where r = L + x and vu , and w  are the dimensional velocity components in the yx , and z 
directions respectively and these velocities are zero at the wall. Here, P  is the dimensional 

pressure, T   is the dimensional temperature and t  is the dimensional time. In the above 

formulations , , ,  and g are the density, the kinematic viscosity, the coefficient of thermal 

expansion, the coefficient of thermal diffusivity and the gravitational acceleration, respectively. 

Thus in Eqs. (1) to (5) the variables with prime denotes the dimensional quantities. The 

dimensional variables are then non-dimensionalized by using the representative length d and the 

representative velocity U0 = /d. We introduce the non-dimensional variables defined as:  
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where u, v and w are the non-dimensional velocity component in the yx,  and z directions, 

respectively; t is the non-dimensional time, P is the non-dimensional pressure,  is the non-

dimensional curvature and temperature is non-dimensionalized by T. Henceforth, all the variables 

are non-dimensionalized if not specified.  

A new coordinate variable y is then introduced in the y  direction as ayy  , where a = (h/d)  2 is 

the aspect ratio of the duct cross section. From now on, y denotes y  for the sack of simplicity. 
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Then the basic equations for the axial velocity w, the stream function   and the temperature T are 

derived from the Navier-Stokes equations and the energy equation as, 
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In the above formulations, we have used four non-dimensional parameters; De, the Dean number, 

Ta, the Taylor number, Gr, the Grashof number and Pr, the Prandtl number, which are defined as: 
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The rigid boundary conditions for the axial velocity ( )w and the stream function ( ) are used as 
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and temperature T is assumed to be constant on the walls as 

T(1, y) = 1,  T (–1, y) = –1, T(x,  1) = x. (12) 

Note that, Eqs. (7) - (9) are invariant under the transformation of the variables 
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If the solution satisfies condition (13) it is called a symmetric solution, and if it does not an 

asymmetric solution. In the present study, only Ta varies while De, Gr,  and Pr are fixed as De = 

1000, Gr =500,  = 0.05and Pr = 7.0 (water).  

 

3. Numerical Calculations 

3.1 Method of numerical calculation 

Equations (7) to (9) are solved numerically by using the spectral method. By this method the 
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where Cn(x) = cos(ncos–1(x) is the n-th order Chebyshev polynomial. w(x, y, t), (x, y, t) and T(x, y, 
t) are expanded in terms of )(xn  and )(xn as 
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where M and N are the truncation numbers in the x and y directions respectively. The expansion 

coefficients mnmnw , and mnT are then substituted into the basic Eqs. (7) - (9) and the collocation 

method is applied. As a result, the nonlinear algebraic equations for mnmnw ,  and mnT  are 

obtained. The collocation points are taken to be 
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where i = 1, ..., M + 1 and j = 1, ..., N + 1. Finally, in order to calculate the unsteady solutions, the 

Crank-Nicolson and Adams-Bashforth methods together with the function expansion (9) and the 

collocation methods (Gottlieb and Orszag [26]) are applied to Eqs. (7) to (9). Details of the method 

are available in Mondal et al. [27]. 

3.2 The Nusselt Number 

As an index of horizontal heat transfer, the Nusselt number, Nu, is defined as 
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where the quantities with asterisk (*) denote dimensional ones, . denotes the mean over the heat 

transfer from the walls to the fluid, x is the distance from the wall, and T is the temperature 

difference between the vertical sidewalls. Since the temperature distribution from the walls to the 

fluid is not uniform due to differentially heated vertical sidewalls, Nu is different on both the 

cooled and heated sidewalls. In this study, for the unsteady solutions, we define the Nusselt 

number for the cooled (Nuc) and heated (Nuh) sidewalls as follows:      
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where   denotes an average over a time interval . When the flow field is periodic,  is normally 

taken as one period, and if it is chaotic,  is chosen as an appropriate time interval.  
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3.3 Numerical Accuracy  

The accuracy of the numerical calculations is investigated for the truncation numbers M and N  

used in this study. For good accuracy of the solutions, N  is chosen equal to 2M . The grid sizes 

are taken as 12 24, 14 28, 16 32, 18 36     and 20 40 as shown in Table 1, where   

is the resistance coefficient and (0,0)w  is the axial velocity of the steady solution at 

( , ) (0,0)x y  for De = 1000, Ta =500, Gr = 500 and 0.05   for the aspect ratio 2. Table 1 

shows that M = 16 and N = 32 gives sufficient accuracy of the present numerical solutions. 
 
Table 1. The values of  and w(0, 0) for various values of M and N for De = 1000, Ta = 500, Gr = 500 and 

curvature  = 0.05. 
 

M N  w(0, 0) 

12 24 0.16146237 747.250 

14 28 0.17762868 748.095 

16 32 0.17842799 754.551 

18 36 0.17974814 755.866 

20 40 0.17792901 749.861 

3.4 Resistance coefficient 

We use the resistance coefficient  as one of the representative quantities of the flow state. It is 

also called the hydraulic resistance coefficient, and is generally used in fluids engineering, defined 

as  
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PP

h








, (10) 

where quantities with an asterisk denote the dimensional ones,   stands for the mean over the 

cross section of the duct and *
hd is the hydraulic diameter. Since  ,/)( **

2
*

1 GzPP  is related to 

the mean non-dimensional axial velocity w  as  

                                                          ,
3

216
2

w

Dn
                                                           (11) 

In this paper,  is used to calculate the unsteady solutions by numerical computations. 

 

4.  Results and Discussion       

4.1 Case I: Positive rotation (0  Tr  500)  

       In order to study the nonlinear behavior of the unsteady solutions, time evaluation calculations 

are performed for –500  Ta  500, De = 1000, Gr = 500 and curvature  = 0.05. First, we 

calculate unsteady solutions for positive rotation of the duct (0  Tr  500). Figure 2(a) shows time 
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heated wall to the fluid. It is also found that chaotic flow enhances heat transfer more substantially 

than the steady-state or periodic solutions through multi-vortex flow patterns at the outer concave 

wall.  

 

REFERENCES 

[1]  Dean, W. R., 1927. Note on the motion of fluid in a curved pipe. Philos. Mag., 4: 208-223. 

[2]  Berger, S.A., Talbot, L. and Yao, L. S., 1983. Flow in Curved Pipes, Annual. Rev. Fluid. Mech., 35: 
461-512. 

[3]  Nandakumar, K and Masliyah, J. H., 1986. Swirling Flow and Heat Transfer in Coiled and  Twisted 
Pipes, Adv. Transport Process., 4: 49-112. 

[4]  Ito, H, 1987. Flow in Curved Pipes, JSME Int. J., 30: 543-552. 

[5]  Zhang, J. S. Zhang, B. Z. and Jii J., 2001. Fluid flow in a rotating curved rectangular duct, Int. J. Heat 
and fluid flow, 22: 583-592.  

[6]  Ishigaki H., 1996. Laminar Flow in Rotating Curved Pipes. Journal of Fluid Mechanics, 329: 373-
388.  

[7]  Selmi, M., Namdakumar, K. and Finlay W. H., 1994.  A bifurcation study of viscous flow through a 
rotating curved duct, J. Fluid Mech. 262: 353-375. 

[8]  Dennis, S. C. R. and Ng, M., 1982. Flow in a Curved Channel. Quarterly Journal of Mechanics and 
Applied Mathematics, 35: 305.   

[9]  Miyazaki, H., 1973. Combined Free and Force Convection Heat Transfer and Fluid Flow In Rotating 
Curved Rectangular Tubes. Trans. ASME C: J. Heat Transfer, 95: 64-71.  

[10]  Selmi, M. and Namdakumar, K., 1999. Bifurcation Study of the Flow Through rotating Curved Ducts, 
Physics of Fluids, 11: 2030-2043. 

[11]  Wang, L. Q. and Cheng, K.C., 1996. Flow Transitions and combined Free and Forced Convective 
Heat Transfer in Rotating Curved Channels: the Case of Positive Rotation, Physics of Fluids, 8: 1553-
1573. 

[12]  Wang, L. Q. and Cheng, K.C., 1995. Physics Review, E, 51: 1555. 

[13]  Daskopoulos, P. & Lenhoff, A. M., 1990. Flow in curved ducts. Part 2. Rotating ducts, Journal of 
Fluid Mechanics, 217: 575-593.    

[14]  Yanase, S. and Nishiyama, K., 1988. On the bifurcation of laminar flows through a curved rectangular 
tube, J. Phys. Soc. Japan, 57(11): 3790-3795.  

[15]  Yanase, S., Kaga, Y. and Daikai, R., 2002. Laminar flow through a curved rectangular duct over a 
wide range of the aspect ratio, Fluid Dynamics Research, 31: 151-183.  

[16]  Wang, L. and Yang, T., 2005. Periodic Oscillation in Curved Duct Flows, Physica D, 200: 296-302.  

[17]  Mondal, R. N., Alam M. M. and Yanase, S., 2007. Numerical prediction of non-isothermal flows 
through a rotating curved duct with square cross section, Thommasat Int. J. Sci and Tech., 12: 24-43. 

[18]  Mondal, R. N., Islam, M. Z. and Islam, M. S., 2013. Transient Heat and Fluid Flow through a Rotating 
Curved Rectangular Duct: The Case of Positive and Negative Rotation, Procedia Engineering, 56: 
179-186. 

[19]  Mondal, R.N., Ray, S.C. and Yanase S., 2014. Combined Effects of Centrifugal and Coriolis 
Instability of the Flow through a Rotating Curved Duct with Rectangular Cross Section, Open Journal 
of Fluid Dynamics, 4: 1-14.  

[20]  Yamamoto, K., Xiaoyun W., Kazuo N., Yasutaka H., 2006. Visualization of Taylor-Dean Flow in a 
curved duct of square cross-section, J. Fluid dynamics research. 38: 1-18. 



92 Islam et al. 

[21]  Nobari, M. R. H., Nousha, A. and Damangir, E., 2009. A Numerical Investigation of Flow and Heat 
Transfer in Rotating U-Shaped Square Ducts. Int. J. Thermal Sciences, 48: 590-601.  

[22]  Chandratilleke, T. T. and Nursubyakto, 2003. Numerical prediction of secondary flow and convective 
heat transfer in externally heated curved rectangular ducts, Int. J. Thermal Sciences, 42(2): 187-198. 

[23]  Yanase, S., Mondal, R. N. and Kaga, Y., 2005. Numerical Study of Non-isothermal Flow with 
Convective Heat Transfer in a Curved Rectangular Duct, Int. J. Thermal Sciences, 44: 1047-1060.  

[24]  Mondal, R. N. Kaga, Y., Hyakutake, T. and Yanase, S., 2006. Effects of curvature and convective heat 
transfer in curved square duct flows, Trans. ASME, Journal of Fluids Engineering, 128(9): 1013-
1023. 

[25]  Norouzi, M., Kayhani, M. H., Nobari, M. R. H. and Demneh, M. K., 2009. Convective Heat Transfer 
of Viscoelastic Flow in a Curved Duct, World Academy of Science, Engineering and Technology, 32: 
327-333.  

[26]  Gottlieb, D. and Orazag, S. A., 1977. Numerical Analysis of Spectral Methods, Society for Industrial 
and Applied Mathematics, Philadelphia, USA. 

[27]  Mondal, R. N., Kaga, Y., Hyakutake, T. and Yanase, S., 2007. Bifurcation diagram for two-
dimensional steady flow and unsteady solutions in a curved square duct, Fluid Dynamics Research, 
39: 413-446. 

[28]  Chandratilleke, T. T., Nadim, N. and Narayanaswamy, R., 2012. Vortex structure-based analysis of 
laminar flow behavior and thermal characteristics in curved ducts, Int. J. Thermal Sciences, 59: 75-86. 

[29]  Yamamoto, K., Wu, X., Nozaki, K. and Hayamizu, Y., 2006. Visualization of Taylor–Dean flow in a 
curved duct of square cross-section, Fluid Dynamics Research, 38(1): 1-18. 


