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ABSTRACT

In this paper, R1 space in L-topological spaces are defined and studied. We give seven definitions
of R; space in L-topological spaces and discuss certain relationship among them. We show that all
of these satisfy ‘good extension’ property. Moreover, some of their other properties are obtained.
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1. Introduction

The concept of R;-property first defined by Yang [19] and there after Murdeshwar and Naimpally
[15], Dorsett [6], Dude [7], Srivastava [17], Petricevic [16] and Candil [11]. Chaldas et al [4] and
Ekici [8] defined and studied many characterizations of R;-properties. Later, this concept was
generalized to ‘fuzzy R;-propertise’ by Ali and Azam [2, 3] and many other fuzzy topologists. In
this paper we defined seven notions of R; space in L-topological spaces and we aso showed that
this space possesses many hice properties which are hereditary productive and projective.

2. Preliminaries
In this section, we recall some basic definitions and known results in L-fuzzy sets and L-fuzzy
topology.

Definition 2.1. [20] Let X be a non-empty set and [ = [0,1]. A fuzzy set in X is a function
u: X — I which assignsto each element x € X, adegree of membership, u(x) € I.

Definition 2.2. [9] Let X be a non-empty set and L be a complete distributive lattice with 0 and 1.
An L-fuzzy set in X is a function a: X —» L which assigns to each element x € X, a degree of
membership, a(x) € L.

Definition 2.3. [14] An L-fuzzy point p in X isaspecia L-fuzzy sets with membership function

p() =7 if x =x
p(x) =0 if x # x, wherer € L.

Definition 2.4. [14] An L-fuzzy point p is said to belong to an L-fuzzy set ¢ in X (p € «a) if and
only if p(x) < a(x) and p(y) < a(y). Thatisx, € a implies r < a(x).
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Definition 2.5. [10] Let X be anon-empty set and L be a complete distributive lattice with 0 and 1.
Suppose that T be the sub collection of all mappings from X to L i.e.t € L*.Then 7 is called L-
topology on X if it satisfies the following conditions:

@iy 0 ,1"€ez
(i) Ifu,,u, etthenu, Nu, €t
(iii) Ifu; € tforeachi € Athen U;cpu; € 7.

Then the pair (X, t) iscalled an L-topological space (Its, for short) and the members of 7 are called
open L-fuzzy sets. An L-fuzzy setsv iscaled aclosed L-fuzzy setif 1 —v €.

Definition 2.6. [20] An L-fuzzy singleton in X is an L-fuzzy set in X which is zero everywhere
except at one point say x, where it takes a value say r with 0 < r <1 and r € L. The authors
denoteit by x, and x,- € a iff r < a(x).

Definition 2.7. [14] An L-fuzzy singleton x,. is said to be quasi-coincident (g-coincident, in short)
with an L-fuzzy set a in X, denoted by x,qa iff r + a(x) > 1. Similarly, an L-fuzzy set @ in X is
said to be g-coincident with an L-fuzzy set 8 in X, denoted by aqp if and only if a(x) + B(x) > 1
for some x € X . Therefore ag B iff a(x) + B(x) <1 foradl x € X, where ag 8 denote an L-
fuzzy set a in X issaid to be not g-coincident with an L-fuzzy set 8 in X.

Definition 2.8. [3] Let f: X — Y beafunction and u be an L-fuzzy set in X. Then theimage f (v)
isan L-fuzzy set in Y whose membership function is defined by

F@)IO) = {sup (u )|f(x) = y}if () # B,x€ X

@)= 0if f 1 (y) =0,x €X.

Definition 2.9. [2] Let f be areal-valued function on an L-topological space. If {x: f(x) > a} is
open for every real a, then f is called lower-semi continuous function (Isc, in short).

Definition 2.10. [14] Let (X,7) and (Y, s) be two L-topological space and f be a mapping from
X,t)into(Y,s)i.e. f:(X,t) » (¥,s). Then f iscaled

(i) Continuousiff for each open L-fuzzy set u € s = f~(u) € 7.

(i) Openiff f(u) € s for each open L-fuzzy set u € .

(iii) Closed iff f(A) iss-closed for each 1 € t€ where 7€ isclosed L-fuzzy setin X.
(iv) Homeomorphismiff f isbijective and both f and £~ are continuous..

Definition 2.11. [14] Let X be a nonempty set and T be atopology on X. Let T = w(T) be the set
of al lower semi continuous (Isc) functions from (X, T) to L (with usual topology). Thus w(T) =
{u € L*:uY(a, 1] € T} for each a € L. It can be shown that w(T) is aL-topology on X. Let “P’
be the property of a topological space (X ,T) and LP be its L-topological analogue. Then LP is
called a“good extension” of P “if the statement (X, T) has Piff (X, w(T)) hasLP’ holds good for
every topological space (X, T).
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Definition 2.12. [18] Let (X;, 7;) be afamily of L-topologica spaces. Then the space (I1X;, Ilt;) is
called the product L-topological space of the family of L-topologica space {(X;, 7;):i € A} where
Ilz; denote the usual product of L-topologies of the families {z;:i € A} of L-topologieson X.

An L-topological property ‘P iscalled productive if the product L-topological space of afamily of
L-topological space, each having property ‘P aso has property ‘P'.

A property ‘P in an L-topological space is caled projective if for afamily of L-topological space
{(X;,7;):i € A}, the product L-topologica space (I1X;,IIz;) has property ‘P implies that each
coordinate space has property ‘P'.

Definition 2.13. [1] Let (X, t) be an L-topological space and A € X. we define 7, = {u|A:u € 1}
the subspace L-topologies on A induced by 7. Then (4, 7,) is called the subspace of (X, t) with the
underlying set A.

An L-topological property ‘P is caled hereditary if each subspace of an L-topologica space with
property ‘P also has property ‘P'.

3. Ry-property in L-Topological Spaces
We now give the following definitions of R;-property in L-topological spaces.
Definition 3.1. Anlts (X, 1) iscalled

@ L—-R,(i)if Vx,y€X,x+ywhenever 3w € 7 with w(x) # w(y)then I u,v € T such
thatu(x) =1L, uly) =0v(x) =0, v(y) =1landunv=0.

(b) L—Ry(i0) if Vx,y € X, x # ywhenever 3w € t with w(x) # w(y) then for any pair of
distinct L-fuzzy pointsx,, y; € S(X) and3 u,v € T suchthat x, € w,y; € uand x, € v,y, €
v,unv=0.

(¢ L —R,(iii) if Vx,y € X,x # y whenever 3w € t with w(x) # w(y) then for al pairs of
distinct L-fuzzy singletons x,.,y, € S(X), x,.qys and 3 u,v € t such that x, < u,y.qu and
Ys S v, xqvandunv =0.

(d L—R,(iv)if Vx,y € X,x# ywhenever 3w € t with w(x) # w(y) then for any pair of
distinct L-fuzzy points x,., y; € S(X) and 3 u, v € T such that x, € u,ugy, and y; € v, vgx,
andunv=0.

(e L—R,(v)if Vx,y € X,x+ywhenever 3w € t with w(x) # w(y) and for any pair of
distinct L-fuzzy points x,, ys € S(X) and 3 u, v € T such that x,. € u S coys, ys € v € cox,
andu € cov.

f) L—-—R,(wi)ifVx,y€X x+ywhenever 3w € 7 with w(x) # w(y) then 3 u,v € t such
that u(x) > 0,u(y) = 0andv(x) = 0,v(y) >0.

(@99 L—R,(wii)ifVx,y€X,x+ywhenever 3w € 7 with w(x) # w(y) then 3 u,v € T such
that u(x) > u(y) and v(y) > v(x).
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Here, we established a complete comparison of the definitions
L — Ry (ii), L — R, (iii), L — R,(iv),L — R,(v), L — R, (vi) and L — R, (vii) with L — R, (i).
Theorem 3.2. Let (X, 7) bean Its. Then we have the following implications:

/L — Ry (iv) \/L;R1(ii)

L—R,(vii) > L—R,(vi) «—— L—R,(i)
L—R,(v) /\L—‘ R, (iid)
The reverse implications are not true in general except L — R, (vi) and L — R, (vii).

Proof: L — R,(i) = L — R,(ii),L — R,(i) = L — R, (iii)can be proved easily. Now L — R, (i) =
L—R,(iv) and L —R,(i) = L —R,(v), since L —R,(ii) © L — R (iv)and L — R,(iv) & L —
R,(v). L — R, (i) = L — R,(wi); Itisobvious. L — R,(i) = L — Ry (vii), since L — R, (vi) = L —
R, (vii).

The reverse implications are not true in general except L — R, (vi) and L — R, (vii), it can be seen
through the following counter examples:

Example-1l: Let X = {x,y}, T be the L-topology on X generated by {a:a € L} U {u,v,w}
wherew(x) = 0.6, w(y) = 0.7,u(x) = 0.5,u(y) = 0,v(x) = 0,v(y) = 0.6

L ={0,0.05,0.1,0.15, .........0.95,1} and r = 0.4,s = 0.3.

Example-2: Let X = {x,y}, t be the L-topology on X generated by {a:a € L} U {u,v,w}
wherew(x) = 0.8,w(y) = 0.9,u(x) = 0.5,u(y) = 0,v(x) =0,v(y) = 0.4

L ={0,0.05,0.1,0.15, ... .....0.95,1} and r = 0.5,s = 0.4.

Proof: L — R, (ii) # L — R;(i): From example-1, we see that thelts (X, 1) isclearly L — R, (ii)
butitisnot L — R, (i). Sincethereisno L-fuzzy set in T which grade of membershipis 1.

L — R, (iii) # L — R,(i): From example-2, we see thelts (X, 7) isclearly L — R, (iii) but it isnot
R, (D).

L — R,(iv) # L — R,(i): Thisfollows automatically from the fact that
L — R,(ii) ©® L — R,(iv) and it has already been shown that L — R, (ii) #

L—R,(v) # L—R,(i): Since L—R,(iv) ©L—-R/(v)and L—R,(iv) » L—R,(i) so L—
R,(v) # L — Ry (i).But L — R, (vii) = L — R, (vi) =

L — R, (i) isobvious.



On R; Spacein L-Topological Spaces 67

4. Good extension, Hereditary, Productive and Projective Propertiesin L-Topology
We show that al definitions L — R, (i), L — R, (ii), L — R, (iii),

L—R,(iv),L — R,;(v), L — Ry(vi) and L — R, (vii) are ‘good extensions of R, — property, as
shown below:

Theorem 4.1. Let (X, T) be atopological space. Then (X,T) is R, iff (X,w(T)) isL — R,(j),
where j = i, ii, iii, iv, v, vi, vii.

Proof: Let (X,T) beR,. Choosex,y € X, x # y. Whenever 3IW € T withx e W,y ¢ W orx ¢
W,yeW then 3U,VET suchthat xe U,y ¢ U and yeV,x ¢V and UNV = @. Suppose
x €W,y ¢ W sinceW €T then1,, € w(T) with 1,,(x) # 1,,(¥). Also consider the lower semi
continuous function 14,1y, then 1,,1, € w(T) such that 1,(x) =1,1;(y) =0 and 1,(x) =
0,1,(y) =1andsothat 1, N1, =0asU NV =@. Thus (X, w(T)) isL — R, (7).

Conversdly, let (X, w(T)) be L — R, (i). To show that (X ,T) isR;. Choosex ,y € X withx # y.
Whenever 3w € T with w(x) # w(y) then 3 u,v € w(T) such that u(x) = 1,u(y) = 0,v(x) =
0,v(y)=1 and unv=0. Since w(x) # w(y), then either w(x) <w(y) or w(x) > w(y).
Choose w(x) < w(y), then3 s € L such that w(x) <s < w(y). Soitisclear that w™(s,1] €T
and x ¢ wi(s, 1], yew (s, 1]. Let U=u1}andV =v~1{1}, then U, VET and is
xeEU,ye¢U ,x¢V,yeV,andUNV =0 asunv=0.Hence(X,T)isR;.

Similarly, we can show that L — R, (ii), L — R, (iii), L — R, (iv),
L—R,(v),L — R, (vi), L — R, (vii) are also hold ‘good extension’ property.
Theorem 4.2. Let (X,7) beanlts, A € X and t, = {uld:u € 7}, then

@ X,0)isL—R ()= (A,14)isL—R,(D).

(b) (X,7)isL —R.(ii) = (4,1,) isL — R, (ii).
(© (X,7)isL — Ry(iii) = (4,1,) isL — R, (iii).
(d X,10)isL—R,(iv) = (4,14 isL — R, (iv).
(& X,1)isL—R(v) = (4,1,)isL—R,(v).
) X,0)isL—R,(vi) = (A,14)isL — R, (vi).
(@ (X,7)isL— R, (vii) = (4,7,)isL — R, (vii).

Proof: We prove only (a). Suppose (X, ) is L-topologica space and is also L — R, (i).We shall
prove that (4,7,) isL —R,(i). Let x,y € A with x # y and 3w € 1, such that w(x) = w(y),
then x,y € X with x #y as A € X. Consider m be the extension function of w on X, then
m(x) # m(y), Since (X,t) is L—Ry(i), 3u,v et such tha u(x) =1,u(y) =0,v(x) =
O,v(y)=1landunv=0. For A< X, wefind ,ul4,vlA € 7, and ulA(x) = 1,ulA(y) = 0 and
vIA(x) = 0,vlIA(y) =1 and ulAnviA=(unv)lIA=0 as x,y € A. Hence it is clear that the
subspace (4, t4) isL — Ry (i).

Similarly, (b), (c), (d), (e), (f), (g) can be proved.



68 Islam and Hossain

Soitisclearthat L — R (j),j = i,ii, ..., vi satisfy hereditary property.

Theorem 4.3. Given {(X;, t;):i € A} be a family of L-topological space. Then the product of L-
topologica space (I1X;,I1t;) is L — R,(j) iff each coordinate space (X;,7;) is L — R,(j), where
j =1i,ii,iii, v, v, vi, vii.

Proof: Let each coordinate space {(X;, t;):i € A} be L — R,(i). Then we show that the product
spaceis L — R, (i). Supposex,y € X withx # y andw € Il 7; with w(x) # w(y), again suppose
x =Ix;, y=1Iy; then x; #y; for some j € ABut we have w(x) = min{w;(x;): i € A},
andw(y) = min {w;(y;): i € A}. Hence we can find at least one w; € 7; with Wj(xj) + Wj(yj),
since each (X;,7;):i € A be L — R (i) then 3 u;, v; € 7; such that uj(xj) =1, uj(yj) = O,Uj(x]-) =
O,Uj(yj) =1 and u; N v; = 0. Now take u = ITu;, v = [Iv'; where u} = u]-,v]f =v; and u; =
v; =1 for i #j. Then u,v € llr; such that u(x) = L, u(y) =0v(x) =0,v(y) =landunv =
0. Hence the product of

L-topological spaceisaso L-topological spaceand (I1X;, 11 7;) isL — R, (i).

Conversely, let the product L-topological space (I1X;,I17;) is L — R,(i). Take any coordinate
space (Xj,rj), choose x;,y; € X;,x; # y; andw; € Ir; with w;(x;) # w;(y;). Now construct
x,y € X such that x = Tlx';,y = My'; where x; = y{ for i # j and xj = x;,y; = y;. Thenx #y
and using the product space L — R, (i), llw; € IIt; with Nlw;(x;) # Ow;(y;), since (I1X;, 11 7;) is
L —R,(i) then I u,v € Ilt; such that u(x) = L, u(y) =0v(x) =0, v(y)=1and unv =0.
Now choose any L-fuzzy point x, in u. Then 3 a basic open L-fuzzy set Tuj € Ilz; such that
X, € Muj € u whichimpliesthat r < TTu] (x) or that r < infju]r(x}f)

and hencer < IuJ (x{)V j € A ...... (i) and
u(y) =0= Mu;(y) =0 ......(i0).

Similarly, corresponding to a fuzzy point y, € v there exists a basic fuzzy open set v/ € It;
such that y, € Mv; < v which implies that

s<Vi(IVjEA.... (iii) and

v (y) =0...... (iv). Further, Muj(y) = 0= ui(y;) =0, since for j #i,x; =y; and hence
from (i), u (y;) = uf (x;) > r. Similarly, Ivf (x) = 0 = v{(x;) = 0 using (iii).

Thus we have uj(x;) >r,ui(y;) =0 and vi(y;) > s,v(x;) =0. Now consider sup,u] =
ui,Sups'Ui9 =, then u,-(xi) =1, u,-(yi) = O,U,-(xl-) =0, Vi()’i) =1 and u;Nv; = 0, ShOWing
that (X;,7;) isL — R, (D).

Moreover one can easily verify that
(X;,t),i € AisL — R, (ii) & (IIX;, 11 1;) isL — R, (ii).
(X;,7),i € AisL — R, (iii) & (X, 1 7;) isL — Ry (iii).

(Xi,Ti),i eEANisL — Rl(lV) 4 (I_IXL,H Ti) isL — Rl(w)
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X, 1,),i € AisL — R,(v) © (1IX;, M 1;) isL — R, (v).

X, 1),i EAiSL — R, (vi) & (11X, 11 7;) isL — R, (vi).

X, 1;),i € AisL — R, (vii) & (I1X;, 11 7;) isL — R, (vii).
Hence, we seethat L — R, (i), L — R, (ii), L — R, (iii), L — R, (iv),

L—R,(v),L — R,(vi), L — R, (vii) Propertiesare productive and projective.

5. Mapping in L-topological spaces

We show that L — R, (j) property is preserved under one-one, onto and continuous mapping for
Jj =1i,1ii,iii, v, v, vi, vii.

Theorem 5.1 Let (X, 7) and (Y, s) be two L-topological space and f: (X,7) — (Y, s) be one-one,
onto L-continuous and L-open map, then

@ X,0)isL—R ()= (Y,s)isL—R,(i).

(b) (X,7)isL — R,(ii) = (Y,s)isL — Ry (ii).

(© (X,7)isL — R,(iii) = (V,s)isL — Ry (iii).

(d) X,7)isL—R.(iv) = (¥,s)isL — R (iv).

® X,0)isL—R,(v)= (Y,s)isL—R,(v).

) &X,0)isL—R,(vi) = (¥,s)isL — R, (vi).

(9) X,7)isL— R (vii) = (Y,s) isL — R, (vii).

Proof: Suppose (X, 1) is L — R,(i).We shal prove that (Y,s) isL — R,(i). Let y,,y, €Y with
y1 #y, and w € s with w(y;) # w(y,). Since f is onto then 3 x;, x, € X such that f(x;) =
vy, and f(x,) =y,, dso x; # x;, a f isone-one. Now we have f~1(w) € , Since f is L-
continuous, aso we have [fT(w)(x) =wf(x) =w(y)andft(w)(x,) =wf(xy) =
w(y,).Therefore f~1(w)(x;) # f~1(w)(x,). Agan since (X,7) isL—R;(i) and 3ft(w) €T
with F~1(w)(x;) # f~t(w)(xy) thenJu,v e T

suchthat u(x;) = 1, u(x;) =0,v(x;) =0,v(xy;) =1landunv =0.

Now

f@ (1) = {supulxy): f(x) =y} =1

f@(y2) = {supulxy): f(x2) =y} =0

f@) 1) = {supv(xy): f(x1) =y1} =0

f)(y2) = {supv(xy): f(x2) =y} =1
And

fwnv)(y) = {supunv)(x): f(x) =y,
fwnv)(y,) = {sup(uNv)(x2): f(x2) =y,
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Hencef(unv)=0=fw)nf(w) =0

Since f is L-open, f(w), f(v) € s. Now it is clear that 3 f(w), f(v) € s such that (w)(y,) =1

J@W) =0,fw)(y1) =0, f(w)(y,) =1 and f(u) N f(v) = 0. Hence it is clear that the
L-topological space (Y,s) is L — R, ().

Similarly (b), (c), (d), (e), (), (g) can be proved.

Theorem 52 Let (X,7) and (Y,s) be two L-topological spaces and f: (X,1) = (¥,s) be L-
continuous and one-one map, then

@ (Y,s)isL—R,(i)= (X,7)isL —R,(i).

() (Y,s)isL—R,(ii) = (X,7)isL — R, (ii).
© (¥,s)isL — Ry(ii)) = (X,7) isL — Ry (iii).
(d)y (v,s)isL—R,(iv) = (X,1)isL — R,(iv).
e (,s)isL—R,(v) = X, 1)isL—R,(v).
) (,s)isL—R,(vi) > (X, 1) isL — R, (vi).
(9) (Y,s)isL —R,(vii) = (X,1) isL — R, (vii).

Proof: Suppose (Y,s) is L — R, (i).We shal prove that (X,7) is L — R,(i). L&t x;,x, € X with
x; #x;andw € Twithw(x;) = w(xy), = f(x;) # f(x,) asf isone-one dso f(w) € sasf isL-
open. Wehave f (w) (f (x,)) = sup {w(x1)} and f (w)(f (x)) = sup {w(x)} and fF(W)(f (x,)) #
fW)(f(xy)). Snce (Y,s) is L—Ry(),3uves such tha u(f(x))=1u(f(x)) =
0, v(f(xl)) =0,v(f(x3)) =1 and unv = 0. Thisimplies that f~1(w)(x;) =1, f 1 (w)(xy) =
0,f7'W)(x) =0,f (W) (xx) =land f'wnv) =0= f W nf'(v) =0.

Now it is clear that 3 f~(w),f *(v) €t such tha f~l(w)(x;) =1, f1w(xy) =0,
Frw)(x) =0, 1) (xy) =1 and f~1(uw) n f~1(v) = 0. Hence the L-topological space
(X, 7)isL — R, (i).

Similarly (b), (c), (d), (e), (), (g) can be proved.
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