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ABSTRACT 

Power method is frequently used for finding largest Eigen-pair. On the other hand, Inverse Power 

method is utilized to find smallest Eigen-pair. Using shifting property, Power method and/or 

Inverse Power method can be used to find out other desired Eigen pairs too. Several lemmas based 

on Power method with shifting property are presented here. Moreover, a Modified Hybrid Iterative 

Algorithm based upon both Power method and Inverse Power method is proposed to find both 

largest and smallest Eigen-pairs simultaneously with ease. Several experiments have been 

performed to investigate the robustness and effectiveness of the algorithm. The proposed algorithm 

is able to find both (largest and smallest) Eigen-pairs successfully and efficiently. Moreover, the 

proposed algorithm is able to find out the nature (positive and negative sign) of the Eigen values 

and in some cases the algorithm is also able to find out the second largest Eigen pair in 

consequence. 

 

Keywords: Eigen value, Eigen vector, Power method, Inverse Power method, Iterative method, 

Modified Hybrid Iterative Algorithm. 

 

1.  Introduction 

Eigen value  problems arise naturally from a wide variety of scientific and engineering 

applications: such common applications include structural dynamics [17], quantum mechanics 

[18], electrical networks, control theory and design [14,20], bioinformatics [10], acoustic field 

simulations [13], electromagnetic modeling of particle accelerators [11], Markov chains [4], 

pattern recognition [8], stability analysis [14], mathematical  physics [3], image processing [7], 

geophysics, molecular spectroscopy, particle physics [6] and many other areas. Some efficient 

methods are available in the literatures which are dedicated to find out only Eigen values. But for 

finding corresponding Eigen vectors much more efforts are necessary. The best known direct 

method is the QR-algorithm which is able to find all Eigen values. This method is based on the QR 

decomposition of a matrix and this method is also implemented in Software package like Mat Lab 

function eig( ). The QR iteration algorithm for computing the Eigen values of a general matrix 

came from an elegantly simple idea that was proposed by Heinz Rutishauser in 1958 and refined 

by Francis in 1961-1962. But this method is failed to find corresponding Eigen vectors.  
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On the other hand, Power method for Eigen value problems is implemented in various fields of 

application where only largest Eigen pairs are important [2, 5, 12 and 16]. Again Inverse Power 

method is used to find out smallest Eigen pair. Moreover, using shifting property, Power method 

and/or Inverse Power method is also applicable to find out desired Eigen-pair. It is important to 

note that various areas of science and engineering seek both largest as well as smallest Eigen-pairs 

for different reasons other than algorithmic gains. There exist some important fields of application 

in which second largest (smallest) Eigen-pair are also required. 

Beside Power method and Inverse Power method, there are several methods available which are 

able to find both Eigen values and Eigen vectors. Chang et al. [1] proposed several refinements of 

the Power method that enable the computation of multiple extreme Eigen-pairs of very large 

matrices by using Monte Carlo simulation method. Panju [15] examined some numerical iterative 

methods for computing the Eigen values and Eigen vectors of real matrices. He examined five 

methods – from the simple Power iteration method to the more complicated QR iteration method. 

The derivations, procedure, and advantages of each method are briefly discussed there. Besides, 

Zhang P. et al. [21] have recently developed a general solution strategy for Power method. 

Recently, Li et al. [19] propose a bound for ratio of the largest Eigen value and second largest 

Eigen value in module for a higher-order tensor. From this bound, one may deduce the bound of 

the second largest Eigen value in module for a positive tensor, and the bound can reduce to the 

matrix cases. In [21], a general solution strategy of the modified power iteration method for 

calculating higher Eigen-modes has been developed and applied in continuous energy Monte Carlo 

simulation. A variant of power method is applied to continuous energy Monte Carlo simulation. 

After the brief literature review, which is presented in section 1 the article is organized as follows:  

In Section 2, we present some preliminaries related to the proposed algorithm. The proposed 

Hybrid Iterative algorithm is presented in Section 3. The experimental study as well as discussion 

is delivered in Section 4. Finally conclusion is drawn in Section 5. 

 

2.   Preliminaries 

Before presenting the proposed algorithm it is worthwhile to discuss some related issues.  If A be a 

square matrix, then the matrix Eigen value problem is defined as follows: 

Ax = λx       (1) 

where λ is called Eigen value and x (≠0) is called corresponding Eigen vector in brief (λ, x) is 

called Eigen-pair. 

It is noted that the Power method is able to find out the largest Eigen value which is denoted here 

as First Eigen value. On the other hand by using shifting property the Power method is able to find 

out further Eigen value. We call this shifted Eigen value as Second Eigen value provided the 

shifted parameter should be first Eigen value. Incorporating these two terminologies we have the 

properties and results (Lemma 1 – 4) below. 
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Property (First Eigen value): The Eigen value obtained by Power method is the largest in 

magnitude among all Eigen values but it is not necessarily the largest in actual value. 

Property (Shifting Property): If (λ, x) be any Eigen-pair of equation (1) and α be any scalar 

quantity, then (λ- α) be an Eigen value of (ۯ − ۯ)    So we have .(۷ࢻ − ܠ(۷ࢻ = ࣅ) −  (2) ܠ(ࢻ

Here (λ- α, x) be the Eigen-pair of the shifting Eigen value problem (2).    

Property (Second Eigen value):  Using shifting property, shifting with first (largest) Eigen value, the 

Modified Power method is able to find out another Eigen value and corresponding Eigen vector.   

Using these properties in power method Jamali and Alam [9] have proposed some Lemmas which 

are stated below. 

Lemma 1: If first (largest) Eigen value is positive and second Eigen value is also positive 

(produced by shifting largest one) then first Eigen value be the largest both in magnitude as well as 

in actual value. On the other hand the second Eigen value is the smallest both in magnitude as well 

as in actual value. In consequence, all Eigen values are positive in sign. 

Lemma 2:  If first (largest) Eigen value is positive and second Eigen value is negative (produced 

by shifting largest one) then the first Eigen value be the largest both in magnitude as well as in 

actual value. On the other hand the second Eigen value (obtained by the algorithm) is the smallest 

in actual value but it is the largest in magnitude among all negative Eigen values (if any).  In 

consequence, some Eigen values along with largest Eigen value are positive and some Eigen 

values are negative in sign (if exist). 

Lemma 3: If first (largest) Eigen value is negative and second Eigen value is also negative 

(produced by shifting largest one) then first Eigen value be the largest in magnitude but smallest in 

actual value. On the other hand the second Eigen value is the smallest in magnitude but largest in 

actual value. In consequence, all Eigen values are negative in sign. 

Lemma 4: If first (largest in magnitude) Eigen value is negative and second Eigen value is 

positive (produced by shifting largest one) then first Eigen value be the largest in magnitude but 

smallest in actual value. On the other hand the second Eigen value is the largest in actual value and 

it is also largest among all positive Eigen values (if any). In consequence, some Eigen values along 

with largest Eigen values are negative in sign and some Eigen values are positive in sign (if exist).   

For proofs and detailed discussion see our paper [9]. In the following section, we have developed a 

Modified Hybrid Iterative Algorithm based on these Lemmas. Actually the proposed approach is 

the algorithm of sequential uses of Power method and Inverse Power method when necessary. 

These Lemmas control the flow of execution of the proposed algorithm implicitly. Moreover they 

help to identify the nature of Eigen values explicitly.  
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3.  Proposed Modified Hybrid Iterative Algorithm 

Since our proposed algorithm is based on Power method as well as Inverse Power method it is of 

importance to have a brief look on the algorithm of these two methods [see Table 1 and Table 2]. It 
is worthwhile to mention that by using shifting property, the Power method, sometimes, fails to 

find out absolute smallest Eigen-pair because of the nature of the Eigen spectrum. In such 

condition, Inverse Power method is necessary to find out the smallest Eigen pair. 

 

Table 1: Algorithm of Power Method                             Table 2: Algorithm of Inverse Power Method 
 

 

 

 

 

 

 

 

 

 

 
 

By exploiting the lemma and hybridizing both the Power method and Inverse Power method, we 

have developed the Hybrid Modified Iterative (HMI) algorithm which can find out the largest as 

well as smallest Eigen-pairs and also the nature of the Eigen spectra. The algorithm of the 

proposed HMI is given below: 

Modified Hybrid Iterative Algorithm ( ) 

{ 

Step (1):  read A 

  Set B=A 

  Set{λ, x}={λ0, x0} 

  for r =1, 2   do 

                      { 

  if    r =1 

Inverse Power Method ( ){ 
     Step (1):  read A    

set  x = z0                                            
 set   ζ= ζ0 
set   Imax 
for k = 1,2,, Imax  do  
{ 

Step (2):     Ay = x 
Step (3):     x = y / ||y||2 
Step (4):     v = Ax                           
Step (5):     θ = x * v  
Step (6):     if ||y –  ν||2 ζ    

                        set (λ , x )= (θ , x)               
                        else continue 

                     } 

                       end for            
Step (7): accept (λ , x ) =(1/θ, x) 
} 

Power Method ( ){ 
     Step (1): read A                                          

 set   y = x0                                            
 set   ξ= ξ0 
 set   Imax 
for   k = 1,2, …, Imax do 
       { 

     Step (2):       ν = y / ||y||2 
     Step (3):      y = Aν                                 
     Step (4):      θ = ν * y  
     Step (5):      if ||y – θ ν||2 ξ |θ|,           

         set (λ , x )= (θ , ν)                       
                       else continue 
                       } 
                  end for 
     Step (6): accept (λ , x )= (θ , ν)   
     } 
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 { 

Step (2): apply Power method ( ) 

  output  {λ1, x1} 

Step (3) :  find s1, such that  λ1 =s1|ߣଵ| 
Step (4): output {λ1, x1, s1} 

  r = r+1                                      

          } 

  else if r =2  

             { 

Step (5):  set B=A- λ1I 

Step (6): apply Power method ( ) 

  output  {σ2, y2} 

Step  (7) : λ2 = σ2+ λ1 

  find s2, such that  λ2 = s2|ߣଶ| 
Step (8):  output {λ2, x2, s2} 

  }                                                     

  } 

  end for                           

Step (9) :   if (s1 = s2 and > 0) 

   { 

  Output : {(λ1, x1), (λ2, x2),(all λi≥ 0)} 

Step (10) :   Stop                                                               

  } 

  else if (s1= s2 and <0) 

  { 

            Output : {(λ1, x1), (λ2, x2),(all λi≤ 0)} 

Step (11) :  Stop                                                                   

  } 
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  else if (s1≠ s2 and s1> 0) 

  { 

  Output : {(λ1, x1), (λ2, x2),(sign of all λi )} 

Step (12) :    continue                                                           

  } 

  else if (s1≠ s2 and s1<0) 

  { 

  Output : {(λ1, x1), (λ2, x2),( sign of all λi)} 

Step (13) :     continue                                                        

  }  

Step (14) : Set B =A 

  Set{λ, x}={λ0, x0} 

Step (15) : Apply Inverse Power method ( ) 

  output ሼߣଷ∗ ,  ૜ሽܠ

Step (16) :  find s3, such that  ߣଷ∗  = s3|ߣଷ∗ | 
Step (17): Output : {(λ1, x1), (ߣଷ∗ , x3),( sign of all λi)} 

 Stop (18): Stop and end 

  }            

The proposed MHI algorithm is able to find out both the largest and the smallest Eigen-pairs, and 

the nature of Eigen spectrums. Moreover, in some cases the algorithm is also able to find out 

second smallest Eigen-pairs successfully. In the pseudo-code of the proposed algorithm, we have 

observed that there is a for loop, with index r = 1 and 2, which is analogous to Power method. The 

first larger loop will start with r =1. When r =1, for the call of function Power method ( ), the 

algorithm will be able to produce largest Eigen pair. In Step (4), the algorithm will determine the 

sign of largest Eigen value, which is helpful for the identification of second Eigen value. After 

execution of Step (4), the value of r will be increased to 2. So, in the second iteration within this 

loop, the algorithm skips step (2) to step (4) and as a result, the algorithm will start execution from 

Step (5). In Step (5) the original matrix A is transformed to B by the shifting element λ1  such that 

Eigen values of Bare Eigen values of A but shifted by λ1(the largest Eigen value of A). Again the 

algorithm calls the function Power method( ). Therefore, again the function Power method( ) 

produces the largest Eigen pair of B rather than A. Consequently, in step (8), the algorithm finds 

out second Eigen pairs of the given matrix A successfully. As the value of r = 2, the algorithm 
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escape from the first major loop and enter into next step namely Step (9). The Step (9) consists of 

some conditional arguments. If the sign of both Eigen values are same then without executing the 

function Inverse Power method ( ) the algorithm is able to find out both absolutely largest and 

smallest (ignore the sign) Eigen values, corresponding Eigen vectors and nature of Eigen spectra. 

But if the sign of both Eigen values are not same, then second Eigen value produced by Power 

method ( ) is not absolutely (ignoring sign) smallest Eigen value though smallest in value. 

Therefore the algorithm proceeds to next steps i.e. Step (14), (15), (16), (17) and finally (18). 

When the algorithm executes Step (15) the Inverse Power method ( ) function is run. As a result 

the absolute smallest Eigen value and corresponding Eigen vector along with nature of the Eigen 

values are found.  

 

4.   Experimental Results and Discussion 
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In order to test the effectiveness of the proposed algorithm and validity of the lemmas 

simultaneously (as the algorithm incorporates these lemmas implicitly) we have implemented the 

algorithm and performed several intensive numerical experiments. At first we have performed 

experiments on a12  12 Test Prob. 1and output is reported in the Table 3. To test the validity of 

the proposed algorithm and the lemmas, the problem is also solved by Mat Lab solver and output 

is also incorporated in the Table 3 namely last column of the table. It is observed that the proposed 

algorithm finds the first Eigen value 43.6996 and sign of the Eigen value is positive. On the other 

hand, we have also observed that the largest Eigen value obtained by the Mat Lab solver is also 

43.6996. That is the algorithm is successfully able to find out the largest Eigen value. Now we 

observe that the second Eigen value obtained by the algorithm is -15.8665 and sign of the second 

Eigen value is negative. So according to the lemma 2, the second Eigen value is not smallest (in 

magnitude) Eigen value but largest Eigen value among all the negative Eigen values. Moreover, 

the spectrums of Eigen value consist of both positive and negative values in which the largest 

value is of positive sign. We observe that the experimental results agree with the lemmas. That is 

the second Eigen value is not smallest Eigen value regarding magnitude but largest in magnitude 
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among all negative value though smallest Eigen value if we consider sign of each Eigen value. 

Now since the second Eigen value is not absolutely smallest   Eigen value, so for finding out the 

smallest (in magnitude)  
  
Table 3: Finding Eigen pairs and comparison of values for the Test Prob. 1 

 

Eigen pairs and sign of  Eigen value obtained by  
Modified Hybrid Iterative Algorithm  

 Eigen values  
(Mat Lab). 

  Eigen value  Sign  Eigen 
values (ߣ) 

Eigen  vector  
(X) 

 

First Eigen Value  
(Largest  Eigen value ) 

( in magnitude) 

 
+ ve 

 
43.6996 

 

[0.92073, 0.782303, 0.851719, 
0.767980, 1.000000, 0.876090 , 
0.849523, 0.453403, 0.599790, 
0.641932, 0.480074, 0.799947] 

 
43.6996 
12.1565 
10.8018 

7.8891 
5.9091 

1.8160 
-0.7210 
-4.9082 
-6.5833 
-8.4682 

- 0.7250 
- 15.8666 

 

Second  Eigen value 
 (second Largest negative 
Eigen value (among the 
negative  values) 

 
- ve 

 
 

-15.8665 

[-0.708442,-0.233479, 
-0.394794,0.193943, 1.00000, -
0.124613,0.721741, 0.195695, 

0.801014,0.0019818, 
 -0.731598, -0.876232] 

Smallest  Eigen value 
(in magnitude) 

- ve  
-0.72098 

 

[ 0.10929, -0.261378,  
-0.274267, 0.241883,  
-0.106012,0.0853739, 

-0.394766, 1.000000, 0.174666, 
-0.0421989, 0.421505, 

 -0.26894] 

Second smallest positive 
Eigen value 

+ ve  
 

1.815937 

[ -0.115199 ,0.224341,  
-0.00357368,  

-0.416398 , -0.0414743 ,0.189909, 
0.21043 , -0.408524,0.382283, -

0.228485 ,1 , 
-0.535562 ] 

Eigen values and corresponding Eigen vectors, the algorithm needs to execute further steps and the 

next subsequent step has executed Inverse Power method ( ) function. Thus the algorithm finds 

out the Eigen value which value is -0.72098 and sign is negative.  It is observed that the smallest 

Eigen value obtained by the Mat Lab is -0.7210 which is almost identical with the Eigen value 

obtained by the proposed algorithm. We also observe that the algorithm is able to find not only 

Eigen values but also able to find out corresponding Eigen vectors which is displayed in the 

column 4 of the Table 3. 

Now for further experimental study, we have considered the Test Prob. 2 given below. We 

observe that in the Test Prob. 2, the transformation matrix F is of order 8. The experimental 

results are displayed in the Table 4. To compare the results obtained by our proposed algorithm 

and Mat Lab solver we have juxtaposed the results in the Table 4 also.  
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Test Prob. 2 






































61310815020720

31124151623273

1024342018362922

0815205907401225

1516187804312821

2223364031854050

0727291228404437

203222521503757

 

It is observed that the sign of both first and second Eigen values obtained by the proposed 

algorithm are positive. So according to the lemmas the first Eigen value should be absolutely 

largest Eigen values whereas the second one should be absolutely smallest Eigen value. Moreover 

according to the lemma all the Eigen values should be positive in sign.  By comparing the 

experimental results with Mat Lab value, we may conclude that the proposed algorithm able to 

find out largest and smallest Eigen-pairs efficiently and legitimated the lemmas. 

 
Table 4: Finding Eigen pairs and comparison of Eigen values for the Test Prob. 2 
 

Eigen pairs and sign of  Eigen value obtained by  

Modified Hybrid Iterative Algorithm  

Mat Lab 

Eigen 
value 

 Eigen 
values  

 (ߣ)

Sign  Eigen vector  

(X) 

All  Eigen 
values 

1stEigen 
value 

(Largest 
Eigen 
value)   

 

229.048 

 

+ve [0.905122,0.789705,0.877491,0.733968,1, 

646421,0.474731,0.91332,0.668277] 

 

229.0477 

108.0800   
68.7215 

  50.3789 

  38.0092   
18.0295 

  
15.27732.4559 

2ndEigen  
value  

(Smallest 
Eigen 
value)  

 

2.456 

 

+ve [-0.714502, 1, 0.109971, -0.100363, 0.257215, 
-0.540873 ,-0.191723, 0.156506] 

 
5.  Conclusion 

By exploiting the Lemmas we have developed a Hybrid Modified Iterative (HMI) algorithm.  In 

this algorithm we have incorporated both Power method and Inverse Power method to find both 

the largest and the smallest Eigen pairs simultaneously.  Several experiments have been carried out 

for the validation of the algorithm as well as lemmas. According to the  numerical experiments 

considered here it  may be concluded that the proposed algorithm is  able to find out both 
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absolutely largest as well as absolutely smallest Eigen values and corresponding Eigen vectors 

successfully. Moreover the algorithm is able to find out the nature of the Eigen spectrums. But it is 

worthwhile to mention here that the proposed algorithm carries some shortcomings of Power 

method namely finding Eigen value when the largest (smallest) Eigen value is duplicated and 

finding complex Eigen values.  
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