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ABSTRACT 

This study deals with the derivation of tidal potential and tide generating forces. Tidal potential is 

derived from the gravitational attraction of masses of the moon and the sun and from this potential 

tide generating forces are derived taking its horizontal gradients. 

 

Keywords: Gravitational attraction; Low water; High water; Tidal potential; Tide generating forces. 

 

1.  Introduction 

The phenomenon of oceanic tides has been observed and studied by humanity ever since the dawn 

of civilization.  Obviously people must early have noticed the connection between high and low 

water and the position of the moon and the sun. Due to regularity of phenomena it became closely 

associated with the flow of time as the very name tides indicates. The established equilibrium 

theory due to Newton [7] explains well the forces that generate the tides. Newton’s equilibrium 

theory of tides also explains the observed dominant semidiurnal periodicity of ocean tides. Up to 

then it had been a mystery that high water occurs both with the moon overhead and also about 12 

hours later when the moon is on the other side of the earth. Today Newton’s equilibrium theory 

provides the correct tide generating force to which the oceans respond hydro dynamically in a 

rather complicated fashion. Although Newton discovered the true astronomic nature of tide, it was 

Laplace [5] who derived the first hydrodynamic equations of ocean tides. Laplace’s tidal equations 

contain the tide generating force in terms of Newton’s equilibrium tide as the forcing function. The 

reviews by Cartwright [1], Schwiderski [9, 10] and Davies et al. [2] survey central parts of the 

literature. Again if the earth were an ocean planet with no land, and of the ocean were very deep, 

the two process would produce a pair of bulges of water on earth, one on the side facing the moon, 

one on side away the moon. Considering these facts, in this study a clear derivation of the forces is 

given and the derivation of tidal potential and tide generating forces are presented in detail. 

 

2. Tide Generating Force and Tidal Potential 

Tidal oscillations are the response of the ocean and the earth to the gravitational pull of the other 

celestial bodies. These oscillations can be calculated from hydrodynamic equations for a self-
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gravitating ocean on the rotating and elastic earth. The field derive tides is called the tidal potential 

and it rises mainly from the gravitational attraction of the moon and the sun in which other 

heavenly bodies other than the earth also take part. If the earth were an ocean planet without land 

and if the influence of inertia and currents are ignored, the gravity gradient produces a pair of 

bulges of water on earth, one on the side facing the moon or sun, one on the side away from the 

moon or sun. Here, following the discussion in Pugh [8] and Stewart [11], a clear derivation of the 

forces is given.  

Derivation of tide generating potential 

Firstly, tides generated by the gravitational attraction of the moon are calculated. If the effects due 

to the diurnal rotation of the earth are ignored, the potential at a point P on the surface of the earth, 

shown in Fig.1, due to the gravitational pull of the moon is given by (see Nakamura et al. [6]) 
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where M is the mass of the moon, G is the universal gravitational constant, R is the distance of the earth 

centre from that of the moon, and 1r  is the distance from the centre of the moon to the point P . 

 

 

 

 

 

 
 

Figure 1:  Diagram to show the location of the general point P on the earth's surface. 

Using the cosine formula in triangle OPA (Fig.1), we get  

r2
1 = r2 + R2 – 2rR cos  

Using this relation in Eq. (1), we have 
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Thus the tidal potential due to the gravitational pull of the moon given by Eq. (2) can be written as 
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where V0 = cos,  V1 = 
1
2 (3 cos2 – 1),  V2 = 

1
2 (5 cos3 – 3 cos). 

The first term in Eq. (3) is constant and so has no associated force. The second term generates a 

uniform force parallel to OA. This can easily be confirmed by differentiating Eq. (3) with regard to 

,cosR  which gives  
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The third term of Eq. (3) is the major tide generating term. The fourth and higher terms may be 

neglected because
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. Therefore the effective tide generating potential due to the 

gravitational pull of the moon can be given by  
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Figure 2:  Rotation of the earth with respect to its axis. 
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But the earth is not fixed; it spins (Fig. 2). Therefore, the changing of tidal potential at a fixed 

geographic coordinate on the earth is needed to be determined. This can easily be determined from 

the astronomical establishment (see Fig. 3)  

cos  = sin  sin  + cos  cos  cos    (5) 

In Eq. (5),  is the latitude or lunar angle,  is the declination of the moon north of the equator 

whose effects are shown in Fig. 4, and  is an hour angle of the moon. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Location of P relative to the sub-lunar point V. 

The declination and Greenwich hour angle (GHA) are the coordinates, shown graphically in Fig. 5, 

(latitude and longitude) of the geographical position of the sun or the moon, where the line from 

the sun or moon to the centre of the earth intersects its surface. The local hour angle is: LHA = 

GHA +/- longitude. 

Substituting for cos  in Eq. (4), we have 
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Figure 4    Effects of the declination of the moon. 

 

 

 

 

 

 

 

 

Figure 5  Declination of the sun or moon and Greenwich hour angle. 

Then, the total tidal potential of the moon and the sun for the earth is thus given by 

V = VN + VM 
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In Eq. (6), the terms related to cos2 is termed as semi-diurnal tides, while the terms consist of 

sin2 are called the diurnal tides and the terms related to  3 sin2 – 1 are long-period tides. For the 

lunar tidal potential, those periods are approximately 12 hours, 24 hours and 14 days respectively. 

For the solar tidal potential, they are close to 12 hours, 24 hours and 180 days respectively. 

Doodson [3] expanded Eq. (6) into Fourier series by choosing frequencies shown in Table 1 

(Stewart [11]):  

 

Table 1 Fundamental tidal frequencies. 

 
 Frequency (degree/hour) Period Source and mening 

f1
 14.49205211 1 lunar day Local mean lunar time 

f2
 0.54901653 1 month Mean longitude of the Moon 

f3
 0.04106864 1 year Mean longitude of the Sun 

f4
 

0.00464184 8.847 years Longitude of the Moon’s perigee 

f5
 -0.00220641 10.613 years Longitude of the Moon’s ascending note 

f6
 0.000000196 20.940 years Longitude of the Sun’s perigee 

 

Table 2 Constants associated with major tidal constituents. 

 
Tidal 
species 

Darwin 
name 

n1
 n2

 n3
 n4

 n5
 n6

 Equilibrium 
Amplitude 

period 

Semi-diurnal n1 = 2    

Principal lunar M2
 2 0 0 0 0 0 0.242334 12.4206 

Principal solar S2
 2 2 -2 0 0 0 0.112841 12.0000 

Lunar elliptic N2
 2 -2 0 1 0 0 0.046398 12.6584 

Lunisolar K2
 2 2 0 0 0 0 0.030704 11.9673 

Diurnal n1 = 1    

Lunisolar K1
 

1 1 0 0 0 0 0.141565 23.9344 

Principal lunar O1
 1 -1 0 0 0 0 0.100514 25.8194 

Principal solar P1
 1 1 -2 0 0 0 0.016813 21.0659 

Lunar elliptic Q1
 

1 -2 0 1 0 0 0.019256 26.8681 

Long period n1 = 0    

Fortnightly Mf

 
0 2 0 0 0 0 0.041742 327.85 

Monthly Mm
 

0 1 0 -1 0 0 0.022026 661.31 

Semi-annual Ssa
 

0 0 2 0 0 0 0.019446 4383.05 

Doodson’s expansion, however, leads to an elegant decomposition of tidal constituents into groups 

with similar frequencies and spatial variability. Each tidal constituent has a particular frequency 

with different Doodson integer numbers in  so that 
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665544332211 fnfnfnfnfnfnf  .   (7) 

If the ocean surface is equilibrium with tidal potential, the largest tidal constituents would have the 

equilibrium amplitude in the Table 2. Individual tidal constituent has its equilibrium  equation. The 

tide generating forces form the tidal potential are thus given by 
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As according to Pugh [8],  yxgV , . 

 According to Kowalik and Proshutinsky [4], for diurnal species 

i (x, y) = Ki sin2 cos(it + i + ), (9)
 

for semi-diurnal species 

i (x, y) = Ki cos2 cos(it + i + 2), (10)
 

and for long  period species    
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In the above Eqs. (9-11), ,iK  i and i are tidal amplitudes, frequencs and astronomical 

arguments respectively and  and  are latitude and longitude of the interest position respectively. 

The values of the constants ,iK i  and i are shown in Table 2 (see, Kowalik and Proshutinsky 

[4]).   

 
3. Conclusion 

Sea level variation is of major concern in Bangladesh because vast low-lying area of the country 

experiences large tidal range, heavy river run-off and frequent severe storm surges. For the study 

of sea level rise accuracy of tidal data is an essential prerequisite. The present study will provide 

good information about the tidal potential and tide generating force along the coastal belt of 

Bangladesh. The findings of the study can be applied in storm surge modeling.  
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