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ABSTRACT

The main purpose of this work is to provide application of differential forms in physics. For this
purpose, we describe differential forms, exterior algebra in details and then we express Maxwell’s
equations by using differential forms. In the theory of pseudo-Riemannian manifolds there will be
an important operator, called Hodge Star Operator. Hodge Star Operator arises in the coordinate
free formulation of Maxwell’s equation in flat space-time. This operator is an important ingredient
in the formulation of Stoke' stheorem.

K eywor ds. Homogeneous, Inhomogeneous, Hodge Star operator, differential forms.

1. Introduction

In mathematical field of differentiad geometry and tensor calculus, differential forms are an
approach to multivariable calculus that is independent of co-ordinates. Differential formg[5]
provide a unified approach in defining integrands over curves, surfaces, volumes and higher
dimensional manifolds. The modern notion of differential forms as well as the idea of the
differential form being the wedge product of the exterior derivative, forming an exterior algebra,
was pioneered by ElieCartan[3].

2. Differential Forms

A differential k-form ¢ is a sum of terms of the forms A(xy, x,, ..., xp)dx, Adx,, A ... Adx;, .
Addition of forms and multiplication of forms by functions, is defined in the usua way.
Multiplication of formsis defined by “concatenation”; i.e.,

(dxy Adxp, A .. Adxp, JA(dxs, Adxs, A ... Ndxg,)
= dx,, Ndx,, \ ... Adx,, Ndxs Ndx,, N\ ... Adxg,
subject to the conditions dxiN\dx; = —dx;\dx;
dx; ANdx; =0

wherei and j are between 1 and n.
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3. Exterior Differentiation

Definition: Exterior differentiationd is the operation taking a C" k-form¢e (forr > 1) to a
C™Y(k + 1)-form d¢ defined by the following properties:

1) (Linearity) For constants c; and ¢, and forms ¢, and ¢,
d(c1p1 + c202) = c1d(1) + c2d(@2)
2) For aO-formi.e., afunction ¢ = A(xy, x5, ..., X,)
do = dA
= Ay, (X1, X2, ooy Xp)dxg + - + Axn(xl,xz, ey Xp)d Xy
3) For ak-formi.e, afunction @ = A(x;, X, ..., X,)dXr, AdXy, A .o AdX, .

dg = (dA) A (dxy, Adxy, A . Ady,)

4. The Hodge Star Operator

The binomial coefficient which represents the dimension of the space of p-forms QP (M) is the
number of ways of selecting p(unordered) objects from a collection of n objects. It is evident that

n n
(p) = (n - p)
which means that there are as many p-forms as (n — p)-forms. In other words, there should be a
way of converting p-forms to (n — p)-forms, for instance, 3-forms on 4-dimension can be
converted to 1-forms and vice versa. The operator that does this conversion is called the Hodge
Star Operator [9].

Definition 4.1: The Hodge Star Operatoris the unique linear map on a semi-Riemannian manifold
from p-formsto (n — p)-forms defined by

* QP (M) - Q=P (M)
such that for all ¢,n € QP (M),
Axn = (&, n)dV

This is an isomorphism between p-forms and (n — p)-forms, *n is cadled the dual of n and
dV = dx* A ...Adx™ is the volume forms. Suppose that dx!,...,dx" are positively oriented
orthonormal basis of 1-forms on some chart (U, ¢,) on a manifold M. In particular dV = dx* A
WA dx™,

Let1<i <--<i, <nbeanordered distinct increasing indices and let j; < -+ < j,_, be their
complement inthe set {1,2, ..., n}, then,

dx AL Adx? Adxdt AL A dxIrr = sng(Ddxt AL A dx™
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Where sng(l) is the sign of the permutation i; <,...,<i, in {1,2,..,n}. In other words, the
wedge products of p-forms and (n — p)-formsyields the volume form up to asign. We claim that

* (dxil A A dxip) = sgn([)gil ,,,gipdxh A A dxIn-p (4.11)
Where sgn(l)e;, gy, = *1
Therefore, we have

o (dxt A A dx?) = sgn(De;, i, SGN(D g, e 8, dXTA LA dx'v

n
= sgn(sgn(J) l_[ g dxt A L Adxp

k=1
=#2= (—1)P(-P)+s

where[ -, &, = (—1)® and s isthe signature of the metric.

The signature of the metric s = 0 for Riemannian manifold and s = 1 for Lorentzian manifold,
thus,

—1)p(n-p) i i i
W2 { (-1 for Riemannian manifold 4.12)

(—1)P=P)*+1for Lorentzian manifold

We could rewrite (4.11) by introducing the totally anti-symmetric Levi-Civita permutation symbol
defined by

+1 if (il, . ip)is an even permutation of (1,2, ..., n)
€ignip — ) —1 if (il, s ip)is an odd permutation of (1,2, ...,n) (4.13)
0 otherwise.
The Levi-Civita symbol [5] of all the indices up is equal to the permutation with al the indices
down on Riemannian manifold,

— g
.= glulp
1,alp

€
Since the Riemannian metric [5] which is positive definite is used to raise or lower indices.
However, this is not the case in Minkowski (Lorentzian manifold) 4-dimensiona space-time,
where index raising lowering is done with Minkowskimetric n,,. Thus, in Minkowski 4-

dimensional space-time
€i0i1izi3 = _61011L2L3'(60123 = 1)1

Sincengy, = —1. Theindices iy, i, i, i3 are any of the integers 0,1,2,3. The important thing to note
isthat raising or lowering the index 0 introduces a negative sign. Using (4.13) we obtain

s (dxti A Adxte) = ——¢lloy it A LA donep (4.14)

(n-p)! J1endn

Example 4.1 Suppose dx!,dx?,dx3 are a basis of 1-forms on some chart (U,, ¢,) on 3-
dimensional Riemannian manifold [9]. Then using (4.13) and (4.14) we obtain
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* dxl dx’t AdxT2 = —(623dx Adx® + €d,dx® Adx?) = €,3dx? Adx® = dx? Adx3

2[ Eh}z

1 1

* dx? =5 mzdx Adx)z = 5(613dx Adx3 + €2,dx3 Adxl) = —€,3dxt A dx3
= —dx* Adx®

1 . ) 1
xdx® = Eemzdxh Adx)2 = 2 (e3,dx* Adx? + €3,dx? Adxt) = €153dxt Adx? = dx! Adx?
Conversely,

* (dx? Adx®) = —613dx =dx?!

* (—dx* Adx3) = ;6%3dx2 =dx? (4.15)

* (dx* Adx?) = %eézdaﬁ =dx3 )

Suppose dx?, dx',dx?,dx? are a basis of 1-forms on some chart (U,, ¢,) on 3-dimensional
Minkowski space-time [6]. Then,

* (dx! Adx®) = —Iejll(}zdx’1 Adx)2 = €y153dx? Adx® = dx? Adx®

* (dx? Adx®) = > f‘}zdxf1 AdxIz = €y1,3dx® Adxt = dx3 Adx? (4.16)
* (dx® Adx®) = _.6133 dxJt Adx)2 = €yyp3dxt Adx? = dx' A dx?

Conversely,
* (dx® Adx®) = —‘ €% dxt Ndx/2 = —€gyp3dxt Adx® = —dx® A dxﬂ
* (dx3 Adxt) = 2, }311}2dx11 Adx)z = €3150dx? Adx® = —dx? A dx° (4.17)
* (dxt Adx?) = = €2 dxt Adx)2 = €550dx3 Adx® = —dx3 A dx°

21 1112

Notice something interesting in the above example, in 4-dimensional Minkowski space-time, the
dua (Hodge Star Operator) of a2-formisalso a2-formthat is,

x: Q2(M) - Q2(M), with *2=-1 (4.18)
The dual of a3-form in 4-dimensional Minkowski space-timeis given by
* (dx® Adx? Adx®) = €323dx® = €1530dx? = —dx°
* (dx® Adxt Adx®) = ed13dx? = —€gq3,dx? = dx? (4.19)
* (dx® Adx? Adx®) = €023dxt = —€gpz,dxt = —dx?! '
* (dxO Adx® Adx?) = €d12dx® = —€gqp3dx3 = —dx3
Conversely,
* dx© 3[6]1]2]3(13(}1 Adx)z Adx)3 = —epip3dxt Adx? Adx® = —dx® Adx? Adx®
wdxl =2l dxit Adxiz Adx3 = €,9p5dx® A dx? Adx® = —dx® A dx? A dx®

31 1j2J3 (4.20)

* dx? dxt AdxT2 AdxT3 = €,013dx% Adx Adx® = dx® Adx® Adx®

1
3| 111213

3 _1 - 2 _
* dx 3|6]1J213dx LA dxTz AdxT3 = €301,dx® Adxt Adx? = —dx® Adx® A dx?
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The exterior derivative [4] and Hodge Star Operator on R3 yield the known classical operators
curl, divergence and gradient of vectors as we show now

Suppose f isa0-form on R3. Then
df = 9,fdx* + 0,fdx? + 95 fdx® (4.21)

If the coordinates are Cartesian, then the components are the components of the gradient of f.
Thus,

df = Vf.dx
Let A = Adx + A,dx? + Asdx® beal-formon R3. Then
dA = 0,A;dx? Adxt + 33A,dx3 Adx + 9, A,dxt Adx? + 0;A,dx3 A dx?
+0;A3dxt Adx® + 0,A5dx?
dA = 0,A;dx? Adxt + 33A,dx3 Adxt + 9, A,dxt Adx? + 0;A4,dx3 A dx? \
Ad? +0,Azdxt Adx® + 0,A5dx? A dx3
= (alAz - azAl)dxl A dxz + (61A3 - 63A1)dx1 A dx3 + (62A3 - 63A2)dx2 A dx3
* dA = (0,43 — 034,)dxt — (8,45 — 034,)dx? + (0,4, — 9,4;)dx?

If the components are Cartesian, then the components are that of the curl avector A. That is,
*dA = (VxA).dx
Notice that,
x* A= Adx® Adx® + Aydx® Adxt + Azdx? A dx?
d*A= (alAl + azAz + 63A3)dx1 A dxz A d.x3
xd* A= (0,4, + 0,4, + 0;4;) = V. A in Cartesian coordinates.
4.1 Equations of Electromagnetics

The eguations that relate the electromagnetics quantities will now be presented. Their proper
introduction, in a textbook manner, should start with a description of the basic experiments
(Coulomb, Ampere, Faraday, etc.): leading step by step to the final result using differential forms
all along. This article does not allow enough space to do this properly. Therefore, we shall state the
equations without other justification than their interna consistency and their agreement with the
familiar vector calculus expressions.

The equations of electromagnetics are displayed in Tables I, 1I. All quantities are represented by
form of various degrees, and they are designated by the letters conventionally used in the vector
representation. The vector corresponding to a one-form is obtained by means of the over bar
operator (eg., E — E = E),while a vector corresponding to a two-form results from the star
operator composed with the over bar

(eg., ] » ] =%7). Note that vectors corresponding to one-forms and two-forms are sometimes
caled polar and axial, respectively. This indicates different behavior under reflection which are
obvious for differential forms submitted to a pullback under this operation.
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The equations decompose into two sets displayed in Table | (Maxwell-Faraday) and Table Il
(Maxwell-Ampere). In the upper part of these tables, diagona arrows represent the operator d
(with respect to space variables) and horizontal arrows the time derivative &, or, for fields at
frequency w, the product —i @ (€'“* convention). (The arrows for d go down in Table |, up in Table
I1.) A bar across an arrow means a negative sign. The quantity in any circle is the sum of those
contributed by the arrows leading to it.

Thus, B=aA, 0=dE + §B,E = -dg—dA etc.
Sinced.d =0, dB = 0 follows from B = dA.

Conversely (Poincare lemma), if dB = 0 within aball or a domain homeomorphic to it, there exists
an A in that domain such that dA = B.

Tablel Tablell

Maxwell- Faraday Equations M axwell-Amper e Equations

O-form o
3-form ;@

Sl CSS CH N I,
®

3-form

Space-Time Formulation Space-Time Formulation

! A-¢dt B+Edt D-Ha't p-dat

OO0 @D+
|-form  2-form  3-form 2-form  3-torm  4-form

The equationsin Tables | and Il have the same expression in any system of coordinates. This cases
to be true when the relations between the two tables are considered. With vector notations, this
relation is expressed by

D =¢, EB = y,H (4.1.11)
where eq, 1 are the materia constants, permittivity, and permeability.

In these equations, E and H correspond to one-forms E and H, D and B totwo-formsD and B.
The relation between the forms becomes

D =eg*Eand B = y*H (4.1.12)
where * isthe star operator. We shall write
D=ecE B=uH (4.1.13)

Making € and y into operators eg*, 1o*, that include the star.
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4.2. Sokes Theoremin R3

LetS c R3 beasmooth open surface bounded by aclosed curve C. If F(x, v, z) beacontinuous
vector function which has continuous first partial derivativesin S < R? , then

§ F.di = [[. (VxF).ids (4.2.11)
whereft is the outward drawn unit normal vector to S ¢ R3.
Using the differential form the above Stoke’ s theorem can be put in compact form as,

JI; do = [, o (4.2.12)
where S, represents asurface in R3 and dSrepresentsits boundary (aclosed curvein R3?).
4.3 Generalized Soke' s Theorem

Let VP ¢ M™ be a compact oriented submanifold with boundary aV in a manifold M™. Let w?~?
be a continuously differentiable (p — 1)-form on M™. Then

fvda)""1 = fava_l

5. Covariant Form of Maxwell’s Equations

Maxwell’s equation [9] can be cast into covariant form. As Einstein expressed it “The general laws
of nature are to be expressed by equations, which hold good for all systems of coordinates, that is,
are covariant with respect to any substitution whatever.

Maxwell’s theory of electromagnetism is, alongside with Einstein’s theory of gravitation, one of
the most beautiful of classical field theories. Having chosen units in which py =€,=c =1,
Maxwell’ s equations then take the form :

V.E=p (5.12)
0E

vxB-Z=j (5.12)

V.B=0 (5.13)

VXE+2=0 (5.14)

where, E and B are the electric and magnetic fields, p and J are the charge and current densities.
Taking the divergence of equation (5.11) and substituting equation (5.12) into the resulting
equation, we obtain the continuity equation

Vj+2=0 (5.15)
Note that, we have used the fact that for any vector H and scalar S
V.(VXH)=0
Vx(VS) =0
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Also, since equation (5.13) always holds, this means that B must be a curl of a vector function,
namely the vector potential A4,

B=VXxA (5.16)
Substituting equation (5.16) into equation (5.14), we obtain
0A
vx(E+2) =0 (5.17)

Which means that the quantity with vanishing curl in equation (5.17) can be written as the gradient
of ascalar function, namely the scalar potential @,

0A

E=-Vo-2

(5.18)

The minus sign attached to the gradient is for technical convenience. Thus, Maxwell’ s equation [6]
can be written in covariant form by introducing the four vector potential A% and the electric current
four-vector potential /* defined by
A% = (D,A", A%, A%) = (A%, AT, A%, A%)
J = J4I% %) = (%5150
Equation (5.16) and (5.18) can then be written out explicitly in component form, for example
0AY 04A® 0Ar 043
0 I _ T T _ 9341 _31g3
27 9x3  9xt T Oxz Ox, 074" 074
0A° 0A' 04 0A°

—————=———=60A1—61A0
! oxt 0x° 0dx, 0xg

It is evident that the E and B fields are element of the second-rank, anti-symmetric, contravariant
field-strength tensor F*¥ defined by

FoB = 9248 — 9B 4 (5.19)

Explicitly, thefield-strength is

0 E, E E;
-E;, 0 By -B,
—E2 _Bg 0 31
_E3 BZ _B1 0

Fob = (5.20)

wherea corresponds to the rows and S corresponds to the columns. The components of the fields
in equations (5.16) and (5.18) can be easily identified as
Ei = FOL’

1 .. .
B; = EeU"FJk, i,jk=123

where the Levi-Civita symbol

. +1 Lf (ivj! k) = (1r2’3)l (3!1v2)v (2’3!1)!
eF =41 if (i,j,k) = (1,3,2),(3,2,1),(2,1,3),
0 otherwise.
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Itisvery easy to show that the covariant field tensor defined by
Foup = 0,A5 — 054, (5.21)
has components
0 -E -E, -E
Fag = NayNpaF"* = g; _%3 %3 _BE;)Z (5.22)
E; B, —B; 0
The Homogeneous Maxwell’ s equations (5.13) and (5.14) correspond to the Jacobi identities
OYF*F + 9*FPY + 9BFY® = (5.23)
whereq, B,y are any of the integers 0,1,2,3. For instance, if y = 1,a = 2,8 = 3 we have from
equations (5.20) and (5.23)
0'F3% + 9?F'3 + 33F?*' = —(0'B, + 3°B, + 9°B3) = —(8,B, + 3,B, + 95B3) =0
which indeed agrees with equation (5.13).
The Inhomogeneous Maxwell’s equations [9] (5.11) and (5.12) can be written as
dpF bk = |« (5.24)
For instance,if a« = 0, we have from (5.20) and (5.24)
0oF% + 0;F%1 + 0,F%2 + 0;F% = 0,E, + 0,E, + 0;E; = p (5.25)
which indeed agrees with equation (5.12).
Notice that, the four Maxwell’s equations have been reduced to a set of two equations (5.23) and
(5.24). The continuity equation (5.15) was obtained from the inhomogeneous equations (5.11) and

(5.12), similarly, the continuity equation in covariant form can be obtained from (5.24) by
operating d,, on both sides of equation (5.24). Thus,

0] = 0,05FF =0 (5.26)

Since 8,0, is symmetric in a and 8 while F%# is antisymmetric in aand 8. The expression (5.26)
is the conservation of electric charge whose underlying symmetry is gauge invariance.

6. The Homogeneous M axwell’s Equation

Having developed the mathematical language of differential forms [1], we hereby apply it to
Maxwell’s equations. First, consider the Homogeneous Maxwell’ s equations [9] (5.13) and (5.14),
notice that in the language of differentia forms, the divergence of a vector has been shown to be
the exterior derivative of a 2-form on R3. The curl of a vector has also been shown to be the
exterior derivative of 1-form on R3. Thus, instead of treating the magnetic field as a vector
B = (B,, B, B3) we will treat it asa2-form

B = Bdx? Adx® + B,dx3 Adx! + Bydx! A dx? (6.11)
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Similarly, instead of treating the electric field as a vector E = (E;, E,, E3), we will treat it asa 1-
form,

E = Eldxl + Ezdxz + E3d.x3 (6.12)

Next, we shall consider the electric and magnetic fields as the inhabitants of space-time and
assume that the manifold M to be a semi-Riemannian manifold [2] equipped with the Minkowski
metric, in other words, as a 4-dimensional Lorenzian manifold or space-time. Furthermore, we
shall assume that the space-time M can be split into a 3-dimensional manifold S, space with a
Riemannian metric and another space R for time. Then

M=RXxS

Let x!(i = 1,2,3) denote local coordinates on an open subset U € S, and let x° denote the
coordinate on R, then the local coordinates on Rx U < M will be those given by x% =
(x%,x1, x%,x3) = (t,x) with the metric defined by

-1.0 0 0
_[o0o 10 0

=0 o0 1 o (6.13)
0 00 1

which is called flat metric tensor or flat Minkowski metric tensor [6], , 8 = 0,1,2,3. We can now
combine the electric and magnetic fields into a unified electromagnetic field F, which is a 2-form
onR x U € M defined by

F =B+ E Adx° (6.14)

In component form, we have

F = Fapdx® A dx? (6.15)
Where F,z isgiven by (5.22).
Explicitly, we have

F =Edx* Adx® + E,dx? Adx® + E;dx® Adx® +

Bydx? Adx3 + Bydx3 Adx' + Bydx® A dx? (6.16)
Taking the exterior derivative of (6.14) we obtain

dF =d(B+E Adx®) =dB + dE A dx° (6.17)
In general, for any differential form n on space-time, we have

n = ndx! (6.18)

wherel ranges over iy, i, ..., i, and n; isafunction of spacetime. Taking the exterior derivative [3]
of (6.18), we obtain

dn = 0ymdx* Adx! + 9,m,dx? Adx" + d3mdx® Adx! + dgn,dx® A dx!
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= o dxt Adx" + 9gn,dx® A dx', i=123
=dm+dx° Adgn

whered; is the exterior forms on a space-time, we shall split the exterior derivative into space-like
part and time-like part. Using the identity above, we obtain the following from (6.17)

dF = d,B + dx° A 0yB + (dsE + dx°® A 9E) A dx®
=d;B+dx° AdyB + d,E Adx® + dx® AOyE A dx®
=dB + (d E + 0yB) A dx°
Now dF = 0 isthe same as
dsB =0 (6.19)
d;E+0,B=0 (6.20)
The equation (6.19) and (6.20) are exactly the same as (5.13) and (5.14).

In order to be fully convinced that this is true [9], let’s do the caculation explicitly in component
form. Taking the exterior derivative of F in (6.16), we obtain

dF = (0,B, + 0,8, + 95B3)dx* A dx? Adx® + (0,E; — 03E; + 8,B1)dx° A dx? A dx®
+(03E; — 01E5 + 09B,)dx® A dx3 Adxt + (0,E, — 0,E; + 09B3)dx° Adx® Adx?
Notethat dF = 0 isthe sameas
9,By + 0,B, + 0;B; = 0
0yEs — 03Ey + 03B, = 0
93E, — 0,E5 + 34By = 0
0,E, — 0,E; + 9yB5 = 0

The above four equations are exactly the same as (5.13) and (5.14). Hence, the Homogenous
Maxwell’ s equations correspond to the closed form dF = 0.

7. The Inhomogeneous M axwell’s Equations

In the old fashioned formulation of Maxwell’s equations (see (5.12)-(5.14)), the Homogenous and
the Inhomogeneous [9] versions are somehow related by reversing the role of Eand B. In the
language of differential forms, this reversal relationship will lead to treating E as a 2-form and B
as al-form. Interestingly, the Hodge Star Operator does this work efficiently since one can easily
convert a 1-form in 3-dimensional space to a 2-form and vice versa. Starting form (6.16) and using
the results established in (4.16) and (4.17), we obtain

*F = —B;dx* Adx® — B,dx? Adx® — B3dx® Adx® +
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Eidx? Adx® + Eydx® Adx + Egdx A dx? (7.12)
Or F = 2 (x F)opdx® A dxcP (7.12)

where
0 B B, B
_ | —B: 0 E; -E,
(* F)a/? - _Bz _E3 0 E1
_Bs E2 _E1 0

(7.13)

A close look at (6.16) and (7.11) shows that the effect of the dual operator on F amounts to the
exchange

Ei — _Bland Bi L4 Ei,i = 1,2,3 in (522)

This is the main difference between the Homogeneous and the Inhomogeneous Maxwell’s
equations. Another difference is that the Inhomogeneous version contains p and J. In the language
of differential forms, we shall use the fact that the metric allows us to convert a vector field into a
1-form. Combing the charge density and current density / into a unified vector field on Minkowski
space-time, we obtain

] =]%, = pdy +J10; +J?0, + ]38 (7.14)
withMinkowski metric (6.13), we obtain the 1-form

] = JgdxP = J*dx' + J2dx? + J3dx® — pdx® (7.15)
where

Jg = Napl® (7.16)

Let = denote the Hodge Star Operator on space, using (4.15) we can easily see that (7.11) is the
same as

x F =+, E —%g B Adx® (7.17)
which amounts to the exchange

E » — %, BandB %, E
In (6.14), taking the exterior derivative of (7.17), we obtain

dxF=dgx;E+0dy*; EAdX® —dg s BAdx° (7.18)
Applying Hodge Star Operator [5], we obtain

#dxF =—x;dg*; EAdx® — 0F +x, dg %5 B (7.19)
If weset xd « F = ] and equate components, we obtain

x.dgx E=p (7.20)

—0oE +*, dg *s B = Jidxli = 1,2,3 (7.2)

which is exactly the Inhomogeneous Maxwell’ s equation as can be shown explicitly by taking the
exterior derivative of (7.11).
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d «F = (0,E; + 0,E, + 03E3)dx* A dx? Adx® + (058, — 0,85 + 0oE;)dx® A dx? A dx3

+(a331 - 61B3 - aoEz)de A dxl A dxs + (azBl - 0132 + 60E3)dx0 A dxl A dxz (7.22)

Now * d x F = ] corresponds to

0,E1 + 0,E, + 0zE; =p
0,B3 — 03B, — 0oE; =J*
03B, — 8,B; — 04E, = J?
0,8, — 0,B; — 04E; = J?

Notice that, the above four equations are exactly the same as (5.11) and (5.12) anddso*d * F = |
issimilar to (5.24). Thus, the Maxwell’ s equations correspond to

dF =0, *d=*F =].

8. Conclusion

We know there are four classical Maxwell’s equations. In our treatment we have been able to
express them by two equations. We may expect that these will be useful in further research of
Maxwell’s equations.
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