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ABSTRACT 

By using the improved (G/G) -expansion method, we obtained some travelling wave solutions of 

well-known nonlinear Sobolev type partial differential equations, namely, the Benney-Luke 

equation. We show that the improved (G/G) -expansion method is a useful, reliable, and concise 

method to solve these types of equations. 
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1. Introduction 

The nonlinear evolution equations (NLEEs) containing the term with spatial derivatives on the 

highest order time derivative is refer as Sobolev type equation [1]. Equations of Sobolev type 

characterized by having mixed time and space derivatives appearing in the highest-order terms of 

the equation were studied by Sobolev [2] and this type of equation can be used to describe 

numerous physical phenomena [3-7].  

The nonlinear evolution equations (NLEEs) are very much significant due to its wide-ranging 

applications. In modern science nonlinear phenomena are one of the most notable fields of 

research and occur in numerous branches of science and engineering, such as, plasma physics, 

fluid mechanics, gas dynamics, elasticity, relativity, chemical reactions, ecology, optical fiber, 

solid state physics, biomechanics, etc., all are fundamentally governed by nonlinear equations. 

NLEEs are frequently used to demonstrate the motion of isolated waves. 

Since the appearance of solitary wave in natural sciences is intensifying day by day, it is important 

to seek for exact traveling wave solutions to NLEEs. The exact solutions to NLEEs help us to 

provide information about the structure of complex physical phenomena. Therefore, investigation 

of exact traveling wave solutions to NLEEs turns into an essential mission in the study of 

nonlinear physical phenomena. It is notable to observe that there is no unique method to solve all 

kind of NLEEs. For this reason, a lot of methods have been established, such as, the Jacobi elliptic 

function method [8], the homotopy perturbation method [9], the variational method [10], the 

Adomian Decomposition Method [11], the modified simple equation method [12,13], the Exp-
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function method[14], the )/( GG -expansion method [15-17], the multiple exp-function method 

[18], the tanh method [19], the extended tanh method [20], the sine–cosine function method [21], 

the exp(-Φ(ξ))-expansion method [22, 23], various important analytical method [24-30] and so on. 

Benney-Luke is very important Sobolev type equation and a formally valid approximation for 

describing two-way water wave propagation in presence of surface tension studied for a very long 

time. For its impotency, many researchers studied about the equation and have many research 

article of equation in the literature. Wang et. al. [24] studied the Cauchy problem for the 

generalized Benney-Luke equations. Gonz´alez [25] discussed about the Cauchy problem for 

Benney-Luke and generalized Benney-Luke equations. Quintero [26] made a remark on the 

Cauchy problem for the generalized Benney-Luke equation. Quintero and Grajales [27] 

investigated instability of solitary waves for the generalized Benney-Luke equation. Most recently 

Akter and Akbar [31] studied the Benney–Luke equation and the Phi-4 equations by using 

modified simple equation method to find exact solutions. Gozukizil and Akcagil [32] also studied 

the Benney-Luke equation to find some exact traveling wave solutions. 

To the best of our knowledge the improved )/( GG  expansion method with both positive/negative 

value of suffices in the trial solution has not been applied to the above mentioned equation in the 

previous literature. In this paper, we investigate the traveling wave solutions of the Benney-Luke 

equation (1) with auxiliary equation 0 GGG  and consider both the positive and 

negative value of suffices in the trial solutions. 

 

2. Description of the improved (G/G) -expansion method 

Suppose that we have a NLEE for ),( txU  in the form 

0),,,,,,( ttxtxxtx UUUUUUP  (1) 

where P is a polynomial in its arguments, which includes nonlinear terms and the highest order 

derivatives. The transformation 

)(),(  utxU , wtx  , (2) 

permits us in reducing Eq.(2) to an ODE for )( uu  

0),,,(  uuuP  (3) 

Step 2. Suppose that the solution of ODE (3) can be uttered by a polynomial in )/( GG as follows 

  


m

i

i
i

m

i

i
i GGBGGAu

10
))(/)(())(/)((  (4) 

where )(G  satisfies the ODE in  

0)()()(  GGG , (5) 

then the solutions of ODE (5) are 

When ,042   then  
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When ,042   then  
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When 0,042  , then 
21

1/
CC

CGG


  (8) 

miwBA ii ,,0;,,,,   are constants to be determined later, in which mA and mB are not both 

zero at the same time. Solitons are the outcome of a delicate balance between nonlinearity and 

dispersion and so the positive integer m  can be resolute by considering the homogeneous balance 

between the highest order derivatives and nonlinear terms arising in ODE (3). By substituting (4) 

into Eq.(3) and using the ODE (5), collecting all terms with the same order of 

miGG i ,,0;)/(   together, and setting them to zero, yields a system of algebraic equations 

for miwBA ii ,,0;,,,,   and  .  

Now, solving the algebraic equations for miwBA ii ,,0;,,,,  and  and putting them in the 

general solutions of ODE (5), we obtain the general solutions of Eq.(1). 

 
3. Traveling Wave Solution of Benney-Luke Equation  

In this section, we will make use of the improved )/( GG -expansion method to find the exact 

explicit, solitary and periodic wave solutions to the Benney-Luke equation. Let us consider the 

Benney-Luke equation in the form 

02  xtxxxtxxttxxxxxxtt uuuuuuuu  (9) 

where   and   are positive number such that 3/1   is a Sobolev type equation and 

studied for a very long time. The dimensionless parameter   is named the Bond number, which 

captures the effects of surface tension and gravity force and is a formally valid approximation for 

describing two-way water wave propagation in presence of surface tension [24-26, 31-32]. 

Now making use of the traveling wave variable wtx   into (1) we amend Eq. (1) into the 

ODE:  

03)()1( 22  uuwuwuw iv  (10) 

Integrating Eq. (10) once with respect to  and setting the integration constant equal to zero yields 
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Balance the highest order derivate term u  and the highest nonlinear terms 2u in equation (11), we 

get 1m , so the method admits the solution of the Eq.(3) in the form  

)/()/()( 110 GGBGGAAu   (12) 

where wtxutxu  ),(),( and 1A and 1B are not both zero at the same time. 

Differentiating Eq(12) and using the condition Eq (5), we reach the following equations 
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Substitute (13) and (15) into (11) and after some simplifications we achieved an expression in 

)4,3,2,1,0,1,2,3,4(,)/(  iGG i
.  

Let the coefficient of  )4,3,2,1,0,1,2,3,4(,)/(  iGG i  be zero, yields a set of algebraic 

equations about wBA ii ,, as follows: 
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Solving the above system of equations for 101 ,, BAA by Maple 13, we achieve the following 

solutions:  
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When 0,042  , then the solution is constant. 
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where tx
1)4(

1)4(
2
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  and 210 ,, CCA are arbitrary constants. 

When 0,042  , then 
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where tx
1)4(
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  and 210 ,, CCA are arbitrary constants. 

Shape of solution (15) is similar to the shape of Figures of solutions (13). 

Remark: All solutions presented in this paper have been checked with Maple by putting them 

back into the original equations. 

 

4. Explanation and Graphical Representation 

The solution ),( txu  to the solitary wave Eq. (28), Eq. (32) and Eq. (34) play an important role for 

describing different types of wave propagation of pulses through optical fibers while shock waves 

appear in the supersonic jet flow. The Eq. (28), Eq. (32) and Eq.(34) are given not only more new 

multiple explicit solutions but also many types of exact traveling wave solutions. The exact 

traveling wave solutions are obtained from the explicit solutions by choosing the particular value 

of the physical parameters. So we can appropriate values of the parameters to obtained exact 

solutions. There are various types of traveling wave solutions that are particular interest in solitary 

wave theory. Wadati [28-30] defined soliton as a nonlinear wave characterized by the following 

properties. 

(a) A localized wave propagates without change of its properties (shape, velocity etc.), 

(b) Localized waves are stable against mutual collisions and retain their identities. This in turn 

means that soliton has the properties of particle. Soliton is a localized wave that has an 

infinite support or a localized wave with exponential tails.  

In modern physics, a suffix-on is used to indicate the particle properties [28-30], for example 

phonon, photon etc. have particle properties. For this reason, the solitary wave with above 
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5. Conclusions 

The improved (G/G)-expansion method is applied successfully to obtain exact traveling wave 

solutions of the Benney-Luke equation. As a result, we obtained more exact traveling wave 

solutions including trigonometric and hyperbolic solutions. We also presented 3D and 2D figures 

of the obtained solutions. Furthermore, the improved (G/G) method appears to be quite creative, 

easier, faster and can be handled by computer easily and we used Maple-13 to solve the equation. 

The acquired solutions may be significant and important for analyzing the nonlinear phenomena 

arising in applied physical sciences. This will have a good sense to promote the extensive 

application of the equations. 
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