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ABSTRACT 

The present investigation deals with the effect of slip on the hydromagnetic pulsatile flow through a 
parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, the 
transformed conservation equations are solved analytically subject to physically appropriate 
boundary conditions by using two term perturbation technique. Exact solutions are obtained for the 
velocity, temperature and concentration fields. In particular skin friction coefficient, Nusselt 
number and Sherwood number are found to evolve into their steady state case in the large time 
limit. The results obtained here may be further used to verify the validity of obtained numerical 
solutions for more complicated transient free convection fluid flow problems. Parametric study of 
the solutions are conducted and discussed. 
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1. Introduction 

At the macroscopic level it is well accepted that the boundary condition for a viscous fluid at a 
solid wall is one of “no-slip”, i.e., the fluid velocity matches the velocity of the solid boundary. 
While the no-slip boundary condition has been proven experimentally to be accurate for a number 
of macroscopic flows, it remains on assumption that is not based on physical principles. In fact, 
nearly two hundred years ago Navier [19] proposed a general boundary condition that incorporates 
the possibility of fluid slip at a solid boundary. Navier’s proposed condition assumes that the 
velocity xv  at a solid surface is proportional to the shear stress at the surface  

dy
dvv x

x   

where  is the slip strength or slip coefficient. If γ = 0 then the general assumed no-slip boundary 
condition is obtained. If  is finite, fluid slip occurs at the wall but its effect depends upon the 
length scale of the flow. The above relation states that the velocity of the fluid at the plates is 
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linearly proportional to the shear stress at the plate. Yu and Ameel [30] investigated on slip-flow 
heat transfer in rectangular micro-channels. 

The fluid slippage phenomenon at the solid boundaries appear in many applications such as in 
microchannels or nanochannels and in applications where a thin film of light oil is attached to the 
moving plates or when the surface is coated with special coatings such as thick monolayer of 
hydrophobic octadecyltrichlorosilane. Derek et al. [4] presented apparent fluid slip at hydrophobic 
micro-channel walls. Also, wall slip can occur in the working fluid contains concentrated 
suspensions. Soltani and Yilmazer [23] discussed on slip velocity and slip layer thickness in flow 
of concentrated suspensions.  However, the literature lacks studies that take into account the 
possibility of fluid slippage at the wall under vibrating conditions. Recently, several researchers 
have suggested that the no-slip boundary condition may not be suitable for hydrophilic flows over 
hydrophobic boundaries at both the micro and nano scale. Watanebe et al. [29] investigated on slip 
of Newtonian fluids at solid boundary. Ruckenstein and Rajora [21] investigated on the no-slip 
boundary conditions of hydrodynamics. Coutte flow with slip and jump boundary conditions under 
steady state conditions and only for gases have been investigated by Marques et al. [14]. The 
closed form solution for steady periodic and transient velocity field under slip condition have been 
studied by Khaled and Vafai [11]. The effect of slip condition on MHD steady flow in a channel 
with permeable boundaries has been discussed by Makinde and Osalusi [13].  Manjula et al. [15] 
presented the influence of thermal radiation and chemical reaction on MHD flow, heat and mass 
transfer over a stretching surface. 

Studies related to the oscillatory fluid flow are increasingly important in recent times due to its 
numerous applications in many real life problems. Some of these include, Makinde [12] studied 
the combined effects of radiative heat transfer and magnetohydrodynamics on oscillatory flow in a 
channel filled with porous medium. Venkateswarlu and Padma [25] considered the unsteady MHD 
free convective heat and mass transfer in a boundary layer flow past a vertical permeable plate 
with thermal radiation and chemical reaction. Mahmoud and Ali [17] investigated the effect of 
Navier slip imposed on the lower wall on the unsteady hydromagnetic oscillatory flow of an 
incompressible viscous fluid in a planer channel filled with porous medium. In addition, Abdul-
Hakeem and Sathiyanathan [1] presented analytical solution for two-dimensional oscillatory flow 
of an incompressible viscous fluid, through a highly porous medium bounded by an infinite 
vertical plate. Venkateswarlu et al. [26] presented the radiation effects on MHD boundary layer 
flow of liquid metal over a porous stretching surface in porous medium with heat generation. Jha 
and Ajibade [8-10] reported some interesting results on the free convective oscillatory flows 
induced by time dependent boundary conditions in vertical porous plates. While Umavathi et al. 
[24] studied the unsteady oscillatory flow and heat transfer in a horizontal composite porous 
medium channel. Venkateswarlu et al. [27-28] presented the heat and mass transfer effects on 
MHD flows through porous medium over a vertical plate in presence of chemical reaction and 
thermal radiation. 
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All the studies mentioned above ignored the pulsatile nature of the pressure gradient. However, the 
study of pulsatile flow is of considerable importance in many physiological and engineering 
problems like the water pumps, fuel pump and pumping of blood through large arteries. Pulsatile 
flow has attracted several researches in the literature. For example, Sankar and Lee [22] analyzed 
the pulsatile flow of blood through mild stenosed narrow arteries by treating the blood in the core 
region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Massoudi and 
Phuoc [16] studied the unsteady pulsatile flow of blood in an artery taken the effects of body 
acceleration into consideration.  El-Shahed [6] presented the pulsatile flow of blood through a 
stenosed porous medium under the influence of body acceleration. Mistra and Pal [18] investigated 
on the laminar pulsatile flow of blood under the influence of externally imposed body 
accelerations. Eldabe et al. [7] studied the effect of couple stresses on the MHD of a non-
Newtonian unsteady flow between two parallel porous plates. Zuecco and Beg [31] investigated on 
network numerical simulation applied to pulsatile non-Newtonian flow through a channel with 
couple stress and wall mass flux effects. Rathod and Tanveer [20] presented the pulsatile flow of 
couple stress fluid through a porous medium with periodic body acceleration and magnetic field.  
Recently, Adesanya and Ayeni [2] presented the existence and uniqueness result for couple stress 
bio fluid flow model by using adomian decomposition method. Adesanya and Makinde [3] 
investigated analytically on MHD oscillatory slip flow and heat transfer in a channel filled with 
porous media.  

In view of the above studies, the pulsatile slip flow of viscous, incompressible, electrically 
conducting and hydromagmetic fluid through a parallel channel filled with porous medium is 
studied. It is assumed that the slip effect depends on shear stress at both walls as applied by 
Eegunjobi and Makinde [5]. Based on the oscillatory nature of the flow, the problem is formulated, 
non-dimensionalized and exact solution of the problem is obtained. By means of the presented 
solutions, the skin friction, heat transfer and mass transfer coefficients of physical importance can 
be rigorously investigated. The rest of the paper is organized as follows; section two presents the 
formation of the problem. Section three describes the method of solution and results are discussed 
in section four, and finally section five provides a conclusion of the paper. 
 
2.  Formation of The Problem 

We consider the unsteady laminar slip flow of an incompressible, viscous and electrically 
conducting fluid through a channel with non-uniform wall temperature bounded by two parallel 
plates separated by a distance a. The channel is assumed to be filled with a saturated porous 
medium. A uniform magnetic field of strength B0 is applied perpendicular to the plates. The above 
plate is heated at constant temperature and the thermal radiation effect is also taken in to account. 
It is assumed that there exist a homogeneous chemical reaction of first order with constant rate 
K r

* between the diffusing species and the fluid. Initially i.e. at time t  0, both the fluid and plate 
are at rest and at uniform temperature T0. Also species concentration within the fluid is maintained 
at uniform concentration C0. Geometry of the problem is presented in Fig. 1. We choose a 
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Cartesian coordinate system (x, y) where x–lies along the centre of the channel, y – is the distance 
measured in the normal section such that y = a is the channel’s width as shown in the Fig. 1. Under 
the assumptions made by Adesanya and Makinde [3], as well as of the usual Boussinesq’s 
approximation, the equations of conservation of mass, momentum, energy and concentration 
governing the free convective nonlinear boundary layer flow over a laminar porous plate in porous 
medium can be expressed as: 

 
Fig.1: Geometry of the problem 

Continuity equation: 
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Diffusion equation; 
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where u–fluid velocity in x–direction, v–fluid  velocity along y–direction, p–fluid pressure, g–
acceleration due to gravity, –fluid density, T–coefficient of thermal expansion, C–coefficient of 
concentration volume expansion, t–time, K–permeability of porous medium, B0–magnetic 
induction, T–fluid temperature, T0–temperature at the cold wall, KT–thermal diffusivity of the fluid, 
C–species concentration in the fluid, C0–concentration at the cold wall, e–fluid electrical 
conductivity, Cp–specific heat at constant pressure, Dm–chemical molecular diffusivity, Tm–mean 
fluid temperature, v–kinematic  viscosity of the fluid, 2–dimensional thermal radiation parameter 
and K r

* – chemical reaction respectively. 
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We should in prior warn the reader that our model is not the same as that Adesanya and Makinde 
[3] in which the Schmidt number, chemical reaction and Soret effects were not taken into account. 
We should in prior emphasize that our intention is not to reproduce the results of Adesanya and 
Makinde [3]. In fact, the model that we consider differs considerably from that of Adesanya and 
Makinde [3] in that we use a better approach in the formulation, introduce a Schmidt number, 
Soret effect and chemical reaction parameter. Analytical closed form solutions are presented for 
the momentum, the energy and the concentration equations using some proper change of non 
dimensional variables and parameters.  

Assuming that slipping occurs between the plate and fluid, the corresponding initial and boundary 
conditions of the system of partial differential equations for the fluid flow problem are given below  

       

1 0 0

2 1 1 1 1

, , at 0

, exp int , exp int ato o

duu T T C C y
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

  
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
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(5) 

where T1–fluid temperature at the heated plate, C1–species concentration at the heated plate, 1–
cold wall dimensional slip parameter, 2–heated wall dimensional slip parameter, n–frequency of 
oscillation and  << 1 is a very small positive constant.  

In order to write the governing equations and the boundary conditions in non-dimensional form, 
we introduce the following non-dimensional quantities 
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Equations (2), (3) and (4) reduce to the following non-dimensional form 
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is the chemical reaction parameter respectively. 

Corresponding initial and boundary conditions, presented by equation (5), in non-dimensional 
form, are given by 
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Following Adesanya and Makinde [3], for purely an oscillatory flow we take the pressure gradient 
of the form  

0 1 exp( )dP i t
d
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where 0– and 1– are constants and  is the frequency of oscillation. 

It is now important to calculate physical quantities of primary interest, which are the local wall 
shear stress or skin friction coefficient, the local surface heat flux and the local surface mass flux. 
Given the velocity, temperature and concentration fields in the boundary layer, the shear stress w, 
the heat flux qw wq and mass flux jw are obtained by 
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In non-dimensional form the skin-friction coefficient Cf, heat transfer coefficient Nu and mass 
transfer coefficient Sh are defined as 

 2/
wCf

h


 
     (15) 

 1

w

T o

hqNu
K T T




                                                       (16) 



Slip Velocity Distribution on MHD Oscillatory Heat and Mass Transfer Flow 97 

 1

w
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Using non-dimensional variables in equation (6) and equations (12) to (14) into equations (15) to 
(17), we obtain the physical parameters  
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3. Solution of the Problem 

Equations (7) to (9) are coupled non-linear partial differential equations and these cannot be solved 
in closed form. So, we reduce these non-linear partial differential equations into a set of ordinary 
differential equations, which can be solved analytically. This can be done by assuming the trial 
solutions for the velocity, temperature and concentration of the fluid as  
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Substituting equations (21) to (23) into equations (7) to (9), then equating the harmonic and non–
harmonic terms and neglecting the higher order terms of 0(2), we obtain 
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where the prime denotes the ordinary differentiation with respect to . 
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Corresponding initial and boundary conditions, presented by equation (10), can be written as 
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The analytical solutions of equations (24) to (29) with the boundary conditions in equation (30), 
are given by 
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By substituting equations (31) to (36) into equations (21) to (23) we obtained solutions for the 
fluid velocity, temperature and concentration and are presented in the following form  
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3.1 Skin friction  

From the velocity field, the skin friction at the plate can be obtained, which in non-dimensional 
form is given by  
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3.2 Nusselt number 

From temperature field, we obtained heat transfer coefficient which is given in non-dimensional 
form as 
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3.3 Sherwood number 

From concentration field, we obtained mass transfer coefficient which is given in non-dimensional 
form as 
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4.  Results and Discussion 

In order to investigate the influence of various physical parameters such as mass diffusion 
parameter Sc, Soret effect Sr, chemical reaction parameter Kr, radiation parameter N, Prandtl 
number Pr,  pressure gradient ,  magnetic parameter M, Darcy parameter Da, thermal Grashof 
number Gr, solutal Grashof number Gm, cold wall slip parameter , heated wall slip parameter  
and time  on the flow-field, fluid velocity U, temperature  and concentration  have been studied 
analytically and computed results of the analytical solutions from equations (37) to (39) are 
displayed graphically from Figs. 2 to 23 for various values of these physical parameters. The 
numerical values of skin friction, Nusselt number and Sherwood number computed from analytical 
solutions, presented by equations (40) to (42) are presented in tabular form in tables 1 to 6 for 
various values of different physical parameters. In the present study following default parameter 
values are adopted for computations: Sc = 0.60, Sr = 1.0, Kr = 0.5, N = 2.0, Pr = 0.71,  = 1, M = 
1.0, Da = 0.5,  = 1.0, Gr = 5.0, Gm = 2.0,  = 0.2,  = 0.4,  = 0.1 and  = 0.01. Therefore all the 
graphs and tables are corresponding to these values unless specifically indicated on the appropriate 
graph or table. 

Figs. 2 to 4, shows the plot of fluid velocity U, temperature  and concentration  of the flow field 
against different values of Prandtl number Pr taking other parameters are constant. The Prandtl 
number defines the ratio of momentum diffusivity to thermal diffusivity. It is evident from Figs. 2 
to 4, velocity U and temperature  increases on increasing Prandtl number Pr whereas 
concentration   decreases on increasing Pr throughout the boundary layer region.  

It is observed that from Figs.5 to 7, both the velocity U and temperature   increases on increasing 
the radiation parameter N whereas concentration   decreases on increasing radiation parameter N  
throughout the boundary layer region. It is noted from Figs. 8 to 10 that the fluid velocity U, 
temperature  and concentration  attain their steady state for large time . 
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Fig.2: Influence of Prandtl number on velocity 
profiles. 

Fig.3: Influence of Prandtl number on temperature 
profiles. 

 

Fig.4: Influence of Prandtl number on concentration 
profiles. 

Fig.5: Influence of radiation parameter on velocity 
profiles. 
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Fig.6: Influence of radiation parameter on temperature 
profiles. 

Fig.7: Influence of radiation parameter on 
concentration profiles. 



Slip Velocity Distribution on MHD Oscillatory Heat and Mass Transfer Flow 101 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

= 0.1, 0.2, 0.3, 0.4= 0.1, 0.2, 0.3, 0.4= 0.1, 0.2, 0.3, 0.4= 0.1, 0.2, 0.3, 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

= 0.1, 0.2, 0.3, 0.4= 0.1, 0.2, 0.3, 0.4= 0.1, 0.2, 0.3, 0.4= 0.1, 0.2, 0.3, 0.4

Fig.8: Influence of time on velocity profiles. Fig.9: Influence of time on temperature profiles. 
 

C
on

ce
nt

ra
tio

n 
- 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

S
c

= 0.22, 0.30, 0.60, 0.78S
c

= 0.22, 0.30, 0.60, 0.78S
c

= 0.22, 0.30, 0.60, 0.78S
c

= 0.22, 0.30, 0.60, 0.78
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Fig.12: Influence of Schmidt number on 
concentration profiles. 

Fig.13: Influence of Soret number on velocity 
profiles. 
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Fig.14: Influence of Soret number on concentration 
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Fig.15: Influence of chemical reaction parameter on 
velocity profiles. 

 

Fig.16: Influence of chemical reaction parameter on 
concentration profiles. 

Fig.17: Influence of Grashof number on velocity 
profiles. 

 

Fig.18: Influence of solutal Grashof number on 
velocity profiles. 

Fig.19: Influence of magnetic parameter on velocity 
profiles. 

 



Slip Velocity Distribution on MHD Oscillatory Heat and Mass Transfer Flow 103 

Fig.20: Influence of Darcy parameter on velocity 
profiles. 

Fig.21: Influence of pressure gradient on velocity 
profiles. 
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Fig.22: Influence of heated wall slip parameter on 
velocity profiles. 

Fig.23: Influence of cold wall slip parameter on 
velocity profiles. 

The nature of fluid velocity U and concentration  in presence of foreign species such as Hydrogen 
(Sc = 0.22), Helium (Sc = 0.30), Water vapour (Sc = 0.60), Ammonia (Sc = 0.78) is shown in Figs, 
11 and 12. Physically, Schmidt number Sc signifies the relative strength of viscosity to chemical 
molecular diffusivity. It is observed that U and  decreases on increasing Sc throughout the 
boundary layer region. The flow field suffers a decrease in velocity U and concentration  in 
presence of heavier diffusing species. 

Figs. 13 and 14 depict effects of Soret number Sr on the velocity and species concentration 
distribution of the flow field. It is noticed that, velocity U and species concentration  is found to 
decreases on increasing Soret number Sr throughout the boundary layer region.  

Figs. 15 and 16 demonstrate the effects of chemical reaction parameter Kr on the velocity and 
species concentration. It is observed that, both velocity U and species concentration  decreases on 
increasing the chemical reaction parameter Kr. This implies that, chemical reaction tends to reduce 
the velocity and species concentration. 
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The effect of Grashof number Gr for heat transfer on the velocity U of the flow field is presented in 
Fig. 17. Physically, Grashof number for heat transfer Gr signifies the relative strength of thermal 
buoyancy force to viscous hydrodynamic force in the boundary layer. A study of the curves shows 
that Grashof number Gr for heat transfer accelerates the velocity U of the flow field at all points.  
This is due to the reason that there is an enhancement in thermal buoyancy force. The effect of 
Grashof number Gm for mass transfer on the velocity U of the flow field is presented in Fig. 18. 
Physically, Grashof number Gm for mass transfer signifies the relative strength of species 
buoyancy force to viscous hydrodynamic force in the boundary layer. A study of the curves shows 
that the Grashof number Gm for mass transfer accelerates the velocity U of the flow field at all 
points. This is due to the reason that there is an enhancement in concentration buoyancy force. 

Fig. 19 depicts the influence of magnetic field M on the velocity U of the flow field. It is noticed 
from Fig. 19 that, U decreases on increasing the magnetic parameter M throughout the boundary 
layer region. This is due to the fact that application of a magnetic field to an electrically 
conducting fluid gives rise a mechanical force, called Lorentz force, which has a tendency to resist 
fluid motion in the flow field. Fig. 20 demonstrates the influence of Darcy parameter Da on fluid 
velocity U. It is evident from Fig. 20, fluid velocity U decreases on increasing Da throughout the 
boundary layer region. It is observed from Fig. 21 that, fluid velocity U increases on increasing 
pressure gradient .  
 
Table 1:  Skin friction coefficient values when N =2, Pr = 0.71, Sc = 0.6,  = 1,  = 1, Sr = 1, Kr = 0.5,  = 

0.2,  = 0.4,  = 0.1,  = 0.01.  
 

Skin friction Cf Gr Gm M Da 

Cold wall Heated wall 
1.0 2.0 1.0 0.5 0.2916 4.6044 
2.0 2.0 1.0 0.5 0.3944 5.7470 
3.0 2.0 1.0 0.5 0.4971 6.8897 
4.0 2.0 1.0 0.5 0.5999 8.0323 
5.0 1.0 1.0 0.5 0.6033 8.2235 
5.0 2.0 1.0 0.5 0.7026 9.1750 
5.0 3.0 1.0 0.5 0.8019 10.1265 
5.0 4.0 1.0 0.5 0.9013 11.0780 
5.0 2.0 11.0 0.5 0.6168 3.9783 
5.0 2.0 12.0 0.5 0.5508 3.4509 
5.0 2.0 13.0 0.5 0.4987 3.0442 
5.0 2.0 14.0 0.5 0.4565 2.7212 
5.0 2.0 1.0 0.5 0.7026 9.1750 
5.0 2.0 1.0 1.0 0.4455 7.0742 
5.0 2.0 1.0 1.5 0.3821 6.5826 
5.0 2.0 1.0 2.0 0.3531 6.3634 

The nature of fluid velocity U on the heated wall slip parameter  and cold wall slip parameter   is 
shown in Figs 22 and 23. It is observed that, U decreases in a region near to the plate and increases 
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in the region away from the plate on increasing heated wall slip parameter  whereas U increases 
in a region near to the plate and it decreases in the region away from the plate on increasing cold 
wall slip parameter . An increase in the heated wall slip parameter  decreases the fluid velocity 
minimally at the cold wall and increasing the heated wall slip parameter causes a flow reversal 
towards the heated wall. It is observed that  = 0 corresponds to the pulsatile case with no slip 
condition at the heated wall in Fig 22. 
 
Table 2:  Skin friction coefficient values when Gm =2, Gr = 5, M = 1,  = 1,  = 1, Da = 0.5, Kr = 0.5,  = 

0.2,  = 0.4,  = 0.1,  = 0.01. 
 

Skin friction Cf Pr N Sc Sr 
Cold wall Heated wall 

0.44 2.0 0.60 1.0 0.6999 9.0021 
0.71 2.0 0.60 1.0 0.7026 9.1750 
1.00 2.0 0.60 1.0 0.7055 9.3857 
1.40 2.0 0.60 1.0 0.7094 9.7301 
0.71 1.0 0.60 1.0 0.6990 8.9517 
0.71 2.0 0.60 1.0 0.7026 9.1750 
0.71 3.0 0.60 1.0 0.7062 9.4370 
0.71 4.0 0.60 1.0 0.7096 9.7493 
0.71 2.0 0.22 1.0 0.7046 9.2786 
0.71 2.0 0.30 1.0 0.7042 9.2564 
0.71 2.0 0.60 1.0 0.7026 9.1750 
0.71 2.0 0.78 1.0 0.7017 9.1272 
0.71 2.0 0.60 1.0 0.7026 9.1750 
0.71 2.0 0.60 2.0 0.7003 9.0484 
0.71 2.0 0.60 3.0 0.6981 8.9217 
0.71 2.0 0.60 4.0 0.6958 8.7951 

 
Table 3: Skin friction coefficient values when Gm =2, Gr = 5, M = 1,  = 1,  = 1, Da = 0.5, Kr = 0.5,  = 0.2, 

 = 0.4,  = 0.1,  = 0.01. 
 

Skin friction Cf Kr
 

    

Cold wall Heated wall 
0.5 1.0 0.4 0.2 1.0 0.7026 9.1750 
1.0 1.0 0.4 0.2 1.0 0.7018 9.1420 
1.5 1.0 0.4 0.2 1.0 0.7010 9.1106 
2.0 1.0 0.4 0.2 1.0 0.7002 9.0808 
0.5 0.5 0.4 0.2 1.0 0.7075 8.3957 
0.5 1.0 0.4 0.2 1.0 0.7026 9.1750 
0.5 1.5 0.4 0.2 1.0 0.6978 9.9543 
0.5 2.0 0.4 0.2 1.0 0.6929 10.7337 
0.5 1.0 0.0 0.2 1.0 0.9937 2.6223 
0.5 1.0 0.1 0.2 1.0 0.8462 3.1923 
0.5 1.0 0.2 0.2 1.0 0.6167 4.0789 
0.5 1.0 0.3 0.2 1.0 0.2107 5.6472 
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0.5 1.0 0.4 0.0 1.0 1.0475 9.5138 
0.5 1.0 0.4 0.1 1.0 0.8411 9.3110 
0.5 1.0 0.4 0.2 1.0 0.7026 9.1750 
0.5 1.0 0.4 0.3 1.0 0.6033 9.0774 
0.5 1.0 0.4 0.2 0.1 0.7027 9.1757 
0.5 1.0 0.4 0.2 0.2 0.7027 9.1757 
0.5 1.0 0.4 0.2 0.3 0.7027 9.1757 
0.5 1.0 0.4 0.2 0.4 0.7027 9.1757 

 
Table 4: Nusselt number values when  = 0.1,  = 0.01. 
 

Nusselt number Nu   
Pr

 
 

N 
 
 

Cold wall Heated wall 
0.44 2.0 1.0 –1.1748 –0.6947 
0.71 2.0 1.0 –1.2955 –0.4795 
1.00 2.0 1.0 –1.4460 –0.2255 
1.40 2.0 1.0 –1.6989 –0.1739 
0.71 1.0 1.0 –1.1402 –0.7588 

0.71 2.0 1.0 –1.2955 –0.4795 
0.71 3.0 1.0 –1.4832 –0.1648 
0.71 4.0 1.0 –1.7132 –0.1957 
0.71 2.0 0.1 –1.2956 –0.4795 
0.71 2.0 0.2 –1.2956 –0.4795 
0.71 2.0 0.3 –1.2956 –0.4795 
0.71 2.0 0.4 –1.2956 –0.4795 

 
Table 5: Sherwood number values when Sr = 0.6, Kr = 0.5,  = 1,  = 0.1,  = 0.01. 

  

Sherwood number Sh  
Pr 

 
N 

 
Sc

 
Cold wall Heated wall 

0.44 2.0 0.60 0.8656 1.2943 
0.71 2.0 0.60 0.7956 1.4208 
1.00 2.0 0.60 0.7082 1.5699 
1.40 2.0 0.60 0.5614 1.8042 
0.71 1.0 0.60 0.8857 1.2567 
0.71 2.0 0.60 0.7956 1.4208 
0.71 3.0 0.60 0.6866 1.6056 
0.71 4.0 0.60 0.5530 1.8170 
0.71 2.0 0.22 0.9296 1.1625 
0.71 2.0 0.30 0.9009 1.2174 
0.71 2.0 0.60 0.7956 1.4208 
0.71 2.0 0.78 0.7340 1.5409 



Slip Velocity Distribution on MHD Oscillatory Heat and Mass Transfer Flow 107 

Table 6: Sherwood number values when Pr = 0.71, Sc = 0.6, N = 2,  = 0.1,  = 0.01.  
 

Sherwood number Sh Sr
 

Kr
 

 

Cold wall Heated wall 
1.0 0.5 1.0 0.7956 1.4208 
2.0 0.5 1.0 0.6299 1.7326 
3.0 0.5 1.0 0.4643 2.0444 
4.0 0.5 1.0 0.2987 2.3562 
1.0 0.5 1.0 0.7956 1.4208 
1.0 1.0 1.0 0.7554 1.5100 
1.0 1.5 1.0 0.7178 1.5961 
1.0 2.0 1.0 0.6827 1.6793 
1.0 0.5 0.1 0.7956 1.4208 
1.0 0.5 0.2 0.7956 1.4208 
1.0 0.5 0.3 0.7956 1.4208 
1.0 0.5 0.4 0.7956 1.4208 

The numerical values of skin friction coefficient Cf, obtained from the exact analytical solution, 
presented by equation (40), are presented in tabular form in tables 1 to 3. It is clear that, the skin 
friction Cf increases on increasing thermal Grashof number Gr, solutal Grashof number Gm, Prandtl 
number Pr and radiation parameter N whereas it decreases on increasing the Darcy parameter Da, 
Magnetic parameter M, Schmidt number Sc, Soret number Sr, chemical reaction parameter Kr and 
cold wall slip parameter  at both cold and heated walls. Skin friction coefficient Cf decreases at 
the cold wall and increases at the heated wall on increasing the pressure gradient  and heated wall 
slip parameter .  It is also noted that the skin friction coefficient attain their steady state for large 
time .   

The numerical values of heat transfer coefficient Nu , obtained from the exact analytical solution, 
presented by equation (41), are presented in tabular form in table 4. It is clear that, the Nusselt 
number Nu decreases at the cold wall and increases at the heated wall on increasing the Prandtl 
number Pr and radiation parameter N. It is clear that the heat transfer coefficient attains their 
steady state for large time . Also the value of Nu is least for mercury and highest for water at 4C. 

The numerical values of mass transfer coefficient Sh , obtained from the exact analytical solution, 
presented by equation (42), are presented in tabular form in tables 5 to 6. It is clear that, Sherwood 
number Sh decreases at the cold wall and increases at the heated wall on increasing the Prandtl 
number Pr, radiation parameter N, Schmidt number Sc, Soret number Sr and chemical reaction 
parameter Kr. It is clear that the mass transfer coefficient attains their steady state for large time . 
 
5.  Conclusions 

The influence of Schmidt number, Soret number, chemical reaction parameter, Prandtl number, 
thermal radiation parameter, pressure gradient, thermal Grashof number, solutal Grashof number, 
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Magnetic parameter and Darcy parameter on unsteady hydromagnetic flow with heat and mass 
transfer of a viscous, incompressible, electrically conducting fluid past a parallel  plate channel 
embedded in a fluid saturated porous medium is carried out. From the present investigation the 
following conclusions can be drawn: 

 P
randtl number, radiation parameter, thermal Grashof number, Solutal Grashof number and 
pressure gradient are  tends to accelerate fluid velocity whereas Schmidt number, Soret 
number, chemical reaction parameter, magnetic parameter and Darcy parameter have reverse 
effect on it throughout the boundary layer region.  

 V
elocity decreases in a region near to the plate and increases in a region away from the plate on 
increasing the heated wall slip parameter. Cold wall slip parameter tends to accelerate the 
fluid velocity in a region close to the plate whereas it has a reverse effect in a region away 
from the plate.  

 T
hermal radiation parameter and Prandtl number are tends to accelerate fluid temperature 
throughout the boundary layer region. 

 C
hemical reaction parameter, Soret number, Schmidt number, thermal radiation parameter and 
Prandtl number are tend to retard the species concentration throughout the boundary layer 
region.  

 T
hermal Grashof number,  Solutal  Grashof number, Prandtl number and thermal radiation 
parameter are tends to accelerate the skin friction coefficient whereas Darcy  parameter, 
magnetic parameter, Schmidt number, Soret number, chemical reaction parameter and  cold 
wall slip parameter  have a reverse effect on the skin friction coefficient.  Pressure gradient 
and heated wall slip parameter are tends to decelerate the skin friction coefficient at the cold 
wall whereas it is observed that reverse effect at the heated wall. 

 H
eat transfer coefficient decreases at the cold wall and increases at the heated wall on 
increasing the thermal radiation parameter and Prandtl number. 

 M
ass transfer coefficient decreases at the cold wall and increases at the heated wall on 
increasing the chemical reaction parameter, Soret number, Schmidt number, radiation 
parameter and Prandtl number. 
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 V
elocity, temperature, concentration, skin friction coefficient, Nusselt number and Sherwood 
number attain their steady state with the progress of time. 
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NOMENCLATURE 
 
 
B0 uniform magnetic field 
C species concentration 
Cf skin-friction coefficient 
C1 species concentration at the heated wall  
C0 species concentration at the cold wall 
Cp specific heat at constant pressure 
Dm chemical molecular diffusivity 
Gm Solutal Grashof number 
Gr thermal Grashof number 
g acceleration due to gravity 
jw  mass flux 
Da  Darcy parameter 
K  permeability of porous medium 

K r
*   dimensional chemical reaction  

Kr chemical reaction parameter 
KT thermal conductivity of the fluid 
M magnetic parameter 
N radiation parameter 
Nu Nusselt number 
n frequency of oscillation 
Pr Prandtl number 
qw heat flux  
Sc Schmidt number 
Sh Sherwood number 
Sr  Soret number 
T fluid temperature 

Tm mean temperature of the fluid 
T1 fluid temperature at the heated wall 
T0 fluid temperature at the cold wall 
t dimensional time 
U  A scaled  velocity 
u fluid velocity in  x direction 
v fluid velocity in y direction 

 
Greek Symbols 

 dimensional thermal radiation parameter  
c coefficient expansion for species concentration  
T coefficient of thermal expansion 
v kinematic coefficient of viscosity 
 A scaled frequency  
 A scaled concentration 
1 dimensional cold wall slip parameter 
2 dimensional heated wall slip parameter 
 fluid density 
e electrical conductivity 
 non dimensional time 
w shear stress 
 A scaled coordinate 
 A scaled temperature 
  non-dimensional cold wall slip parameter 
 non-dimensional heated wall slip parameter 

 


