SLIP VELOCITY DISTRIBUTION ON MHD OSCILLATORY HEAT AND MASS TRANSFER FLOW OF A VISCOUS FLUID IN A PARALLEL PLATE CHANNEL

Venkateswarlu Malapati\(^1\)\(^*\) and Venkata Lakshmi Dasari\(^2\)
\(^1\)Department of Mathematics, V. R. Siddhartha Engg College, Vijayawada, Krishna (Dist), A.P, India, Pin-520 007.
\(^2\)Department of Mathematics, Bapatla Women’s Engg College, Bapatla, Guntur (Dist), A.P, India, Pin-522 102.
\(^*\)Corresponding Author: mvsr2010@gmail.com

Received 24.07.2016 Accepted 01.10.2016

ABSTRACT

The present investigation deals with the effect of slip on the hydromagnetic pulsatile flow through a parallel plate channel filled with saturated porous medium. Based on the pulsatile flow nature, the transformed conservation equations are solved analytically subject to physically appropriate boundary conditions by using two term perturbation technique. Exact solutions are obtained for the velocity, temperature and concentration fields. In particular skin friction coefficient, Nusselt number and Sherwood number are found to evolve into their steady state case in the large time limit. The results obtained here may be further used to verify the validity of obtained numerical solutions for more complicated transient free convection fluid flow problems. Parametric study of the solutions are conducted and discussed.

Keywords: MHD fluid, Navier slip, porous medium, thermal radiation, heat transfer.

1. Introduction

At the macroscopic level it is well accepted that the boundary condition for a viscous fluid at a solid wall is one of “no-slip”, i.e., the fluid velocity matches the velocity of the solid boundary. While the no-slip boundary condition has been proven experimentally to be accurate for a number of macroscopic flows, it remains on assumption that is not based on physical principles. In fact, nearly two hundred years ago Navier [19] proposed a general boundary condition that incorporates the possibility of fluid slip at a solid boundary. Navier’s proposed condition assumes that the velocity \(v_x \) at a solid surface is proportional to the shear stress at the surface

\[
v_s = \gamma \frac{dv_x}{dy}
\]

where \(\gamma \) is the slip strength or slip coefficient. If \(\gamma = 0 \) then the general assumed no-slip boundary condition is obtained. If \(\gamma \) is finite, fluid slip occurs at the wall but its effect depends upon the length scale of the flow. The above relation states that the velocity of the fluid at the plates is

The fluid slippage phenomenon at the solid boundaries appear in many applications such as in microchannels or nanochannels and in applications where a thin film of light oil is attached to the moving plates or when the surface is coated with special coatings such as thick monolayer of hydrophobic octadecyltrichlorosilane. Derek et al. [4] presented apparent fluid slip at hydrophobic micro-channel walls. Also, wall slip can occur in the working fluid contains concentrated suspensions. Soltani and Yilmazer [23] discussed on slip velocity and slip layer thickness in flow of concentrated suspensions. However, the literature lacks studies that take into account the possibility of fluid slippage at the wall under vibrating conditions. Recently, several researchers have suggested that the no-slip boundary condition may not be suitable for hydrophilic flows over hydrophobic boundaries at both the micro and nano scale. Watanebe et al. [29] investigated on slip of Newtonian fluids at solid boundary. Ruckenstein and Rajora [21] investigated on the no-slip boundary conditions of hydrodynamics. Coutte flow with slip and jump boundary conditions under steady state conditions and only for gases have been investigated by Marques et al. [14]. The closed form solution for steady periodic and transient velocity field under slip condition have been studied by Khaled and Vafai [11]. The effect of slip condition on MHD steady flow in a channel with permeable boundaries has been discussed by Makinde and Osalusi [13]. Manjula et al. [15] presented the influence of thermal radiation and chemical reaction on MHD flow, heat and mass transfer over a stretching surface.

Studies related to the oscillatory fluid flow are increasingly important in recent times due to its numerous applications in many real life problems. Some of these include, Makinde [12] studied the combined effects of radiative heat transfer and magnetohydrodynamics on oscillatory flow in a channel filled with porous medium. Venkateswarlu and Padma [25] considered the unsteady MHD free convective heat and mass transfer in a boundary layer flow past a vertical permeable plate with thermal radiation and chemical reaction. Mahmoud and Ali [17] investigated the effect of Navier slip imposed on the lower wall on the unsteady hydromagnetic oscillatory flow of an incompressible viscous fluid in a planer channel filled with porous medium. In addition, Abdul-Hakeem and Sathiyanathan [1] presented analytical solution for two-dimensional oscillatory flow of an incompressible viscous fluid, through a highly porous medium bounded by an infinite vertical plate. Venkateswarlu et al. [26] presented the radiation effects on MHD boundary layer flow of liquid metal over a porous stretching surface in porous medium with heat generation. Jha and Ajibade [8-10] reported some interesting results on the free convective oscillatory flows induced by time dependent boundary conditions in vertical porous plates. While Umavathi et al. [24] studied the unsteady oscillatory flow and heat transfer in a horizontal composite porous medium channel. Venkateswarlu et al. [27-28] presented the heat and mass transfer effects on MHD flows through porous medium over a vertical plate in presence of chemical reaction and thermal radiation.
All the studies mentioned above ignored the pulsatile nature of the pressure gradient. However, the study of pulsatile flow is of considerable importance in many physiological and engineering problems like the water pumps, fuel pump and pumping of blood through large arteries. Pulsatile flow has attracted several researches in the literature. For example, Sankar and Lee [22] analyzed the pulsatile flow of blood through mild stenosed narrow arteries by treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Massoudi and Phuoc [16] studied the unsteady pulsatile flow of blood in an artery taken the effects of body acceleration into consideration. El-Shahed [6] presented the pulsatile flow of blood through a stenosed porous medium under the influence of body acceleration. Mistra and Pal [18] investigated on the laminar pulsatile flow of blood under the influence of externally imposed body accelerations. Eldabe et al. [7] studied the effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. Zuecco and Beg [31] investigated on network numerical simulation applied to pulsatile non-Newtonian flow through a channel with couple stress and wall mass flux effects. Rathod and Tanveer [20] presented the pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Recently, Adesanya and Ayeni [2] presented the existence and uniqueness result for couple stress bio fluid flow model by using adomian decomposition method. Adesanya and Makinde [3] investigated analytically on MHD oscillatory slip flow and heat transfer in a channel filled with porous media.

In view of the above studies, the pulsatile slip flow of viscous, incompressible, electrically conducting and hydromagnetic fluid through a parallel channel filled with porous medium is studied. It is assumed that the slip effect depends on shear stress at both walls as applied by Eegunjobi and Makinde [5]. Based on the oscillatory nature of the flow, the problem is formulated, non-dimensionalized and exact solution of the problem is obtained. By means of the presented solutions, the skin friction, heat transfer and mass transfer coefficients of physical importance can be rigorously investigated. The rest of the paper is organized as follows; section two presents the formation of the problem. Section three describes the method of solution and results are discussed in section four, and finally section five provides a conclusion of the paper.

2. Formation of The Problem

We consider the unsteady laminar slip flow of an incompressible, viscous and electrically conducting fluid through a channel with non-uniform wall temperature bounded by two parallel plates separated by a distance \(a \). The channel is assumed to be filled with a saturated porous medium. A uniform magnetic field of strength \(B_0 \) is applied perpendicular to the plates. The above plate is heated at constant temperature and the thermal radiation effect is also taken in to account. It is assumed that there exist a homogeneous chemical reaction of first order with constant rate \(K_r * \) between the diffusing species and the fluid. Initially i.e. at time \(t \leq 0 \), both the fluid and plate are at rest and at uniform temperature \(T_0 \). Also species concentration within the fluid is maintained at uniform concentration \(C_0 \). Geometry of the problem is presented in Fig. 1. We choose a
Cartesian coordinate system \((x, y)\) where \(x\)–lies along the centre of the channel, \(y\) – is the distance measured in the normal section such that \(y = a\) is the channel’s width as shown in the Fig. 1. Under the assumptions made by Adesanya and Makinde [3], as well as of the usual Boussinesq’s approximation, the equations of conservation of mass, momentum, energy and concentration governing the free convective nonlinear boundary layer flow over a laminar porous plate in porous medium can be expressed as:

\[
\begin{align*}
\text{Continuity equation:} & \quad \frac{\partial u}{\partial y} = 0 \tag{1} \\
\text{Momentum equation:} & \quad \frac{\partial u}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial x} + u \frac{\partial^2 u}{\partial y^2} + g \beta_T (T - T_o) + \frac{\partial C}{\partial y} = \frac{\partial C}{\partial y} - \frac{\sigma B_0^2}{\rho} u - \frac{v}{K} \tag{2} \\
\text{Energy equation:} & \quad \frac{\partial T}{\partial t} = \frac{K_e}{\rho c_p} \frac{\partial^2 T}{\partial y^2} + \frac{4 \alpha^2}{\rho c_p} (T - T_o) \tag{3} \\
\text{Diffusion equation:} & \quad \frac{\partial C}{\partial t} = D_n \frac{\partial^2 C}{\partial y^2} + \frac{D_a K_e}{T_o} \frac{\partial^2 T}{\partial y^2} - K_r^* (C - C_o) \tag{4}
\end{align*}
\]

where \(u\)–fluid velocity in \(x\)-direction, \(v\)–fluid velocity along \(y\)-direction, \(p\)–fluid pressure, \(g\)–acceleration due to gravity, \(\rho\)–fluid density, \(\beta_T\)–coefficient of thermal expansion, \(\beta_c\)–coefficient of concentration volume expansion, \(t\)–time, \(K\)–permeability of porous medium, \(B_{0r}\)–magnetic induction, \(T\)–fluid temperature, \(T_{0r}\)–temperature at the cold wall, \(K_T\)–thermal diffusivity of the fluid, \(C\)–species concentration in the fluid, \(C_{0r}\)–concentration at the cold wall, \(\alpha_e\)–fluid electrical conductivity, \(C_{0r}\)–specific heat at constant pressure, \(D_{n}\)–chemical molecular diffusivity, \(T_{0e}\)–mean fluid temperature, \(v\)–kinematic viscosity of the fluid, \(\alpha^2\)–dimensional thermal radiation parameter and \(K_r^*\)–chemical reaction respectively.
We should in prior warn the reader that our model is not the same as that Adesanya and Makinde [3] in which the Schmidt number, chemical reaction and Soret effects were not taken into account. We should in prior emphasize that our intention is not to reproduce the results of Adesanya and Makinde [3]. In fact, the model that we consider differs considerably from that of Adesanya and Makinde [3] in that we use a better approach in the formulation, introduce a Schmidt number, Soret effect and chemical reaction parameter. Analytical closed form solutions are presented for the momentum, the energy and the concentration equations using some proper change of non dimensional variables and parameters.

Assuming that slipping occurs between the plate and fluid, the corresponding initial and boundary conditions of the system of partial differential equations for the fluid flow problem are given below

\[
\begin{align*}
 u &= \phi_1 \frac{du}{dy}, \quad T = T_o, \quad C = C_0 \quad \text{at} \quad y = 0, \\
 u &= \phi_2 \frac{du}{dy} , T = T_i + \varepsilon (T_i - T_o) \exp(i \Omega t), \quad C = C_i + \varepsilon (C_i - C_o) \exp(i \Omega t) \quad \text{at} \quad y = a
\end{align*}
\]

where \(T_o \)--fluid temperature at the heated plate, \(C_1 \)--species concentration at the heated plate, \(\phi_1 \)--cold wall dimensional slip parameter, \(\phi_2 \)--heated wall dimensional slip parameter, \(n \)--frequency of oscillation and \(\varepsilon \ll 1 \) is a very small positive constant.

In order to write the governing equations and the boundary conditions in non-dimensional form, we introduce the following non-dimensional quantities

\[
\begin{align*}
 \psi &= \frac{x}{h}, \quad \eta = \frac{y}{h}, \quad U = \frac{h}{v} u, \quad P = \frac{h^2}{\rho v^2} p, \quad \gamma = \frac{h}{h}, \quad \sigma = \frac{h}{h}, \\
 \omega &= \frac{h^2}{v}, \quad \tau = \frac{v}{h}, \quad \Theta = \frac{T - T_o}{T_i - T_o}, \quad \Phi = \frac{C - C_o}{C_i - C_o}
\end{align*}
\]

Equations (2), (3) and (4) reduce to the following non-dimensional form

\[
\begin{align*}
 \frac{\partial U}{\partial \tau} &= -\frac{dP}{dy} + \frac{\partial^2 U}{\partial \eta^2} + G_r \Theta + G_s \Phi - \left[M + \frac{1}{Da} \right] U \\
 \frac{\partial \Theta}{\partial \tau} &= \frac{1}{P} \frac{\partial^2 \Theta}{\partial \eta^2} + N \Theta \\
 \frac{\partial \Phi}{\partial \tau} &= \frac{1}{S_r} \frac{\partial^2 \Phi}{\partial \eta^2} + S_r \frac{\partial^2 \Theta}{\partial \eta^2} - K \Phi
\end{align*}
\]

Here \(G_r = \frac{g \beta_r (T_i - T_o) h^2}{v^3} \) is the thermal buoyancy force, \(G_s = \frac{g \beta_s (C_i - C_o) h^3}{v^3} \) is the concentration buoyancy force, \(M = \frac{\sigma B_c h^2}{\rho v} \) is the magnetic parameter, \(Da = \frac{K}{h^2} \) is the permeability

\[
\begin{align*}
\end{align*}
\]
parameter, \(P_r = \frac{\rho c_p \nu}{K_r} \) is the Prandtl number, \(N_r = \frac{4\alpha^2 h^2}{\rho c_v \nu} \) is the thermal radiation parameter, \(S_{0} = \frac{D_m K_r (T_i - T_o)}{T_o \nu (C_1 - C_o)} \) is the Soret number, \(S_{c} = \frac{v}{D_m} \) is the Schmidt number and \(K_r = \frac{h^2}{\nu} K_r^* \) is the chemical reaction parameter respectively.

Corresponding initial and boundary conditions, presented by equation (5), in non-dimensional form, are given by

\[
\begin{align*}
U &= \gamma \frac{dU}{d\eta}, \quad \theta = 0, \quad \phi = 0 \quad \text{at} \quad \eta = 0 \\
U &= \sigma \frac{dU}{d\eta}, \theta = 1 + \varepsilon \exp\left(i\omega \tau\right), \phi = 1 + \varepsilon \exp\left(i\omega \tau\right) \quad \text{at} \quad \eta = 1
\end{align*}
\] (10)

Following Adesanya and Makinde [3], for purely an oscillatory flow we take the pressure gradient of the form

\[
\lambda = -\frac{dP}{d\eta} = \lambda_0 + \varepsilon \lambda_1 \exp(i\omega t)
\] (11)

where \(\lambda_0 \)– and \(\lambda_1 \)– are constants and \(\omega \) is the frequency of oscillation.

It is now important to calculate physical quantities of primary interest, which are the local wall shear stress or skin friction coefficient, the local surface heat flux and the local surface mass flux. Given the velocity, temperature and concentration fields in the boundary layer, the shear stress \(\tau_w \), the heat flux \(q_w \) and mass flux \(j_w \) are obtained by

\[
\tau_w = \mu \frac{\partial u}{\partial \eta}
\] (12)

\[
q_w = -K_r \frac{\partial T}{\partial \eta}
\] (13)

\[
j_w = -D_m \frac{\partial C}{\partial \eta}
\] (14)

In non-dimensional form the skin-friction coefficient \(C_f \), heat transfer coefficient \(Nu \) and mass transfer coefficient \(Sh \) are defined as

\[
C_f = \frac{\tau_w}{\rho (\nu/ \lambda) \eta^2}
\] (15)

\[
Nu = \frac{h q_w}{K_r (T_i - T_o)}
\] (16)
Slip Velocity Distribution on MHD Oscillatory Heat and Mass Transfer Flow

\[Sh = \frac{h_{ij}}{D_a (C_i - C_o)} \]

(17)

Using non-dimensional variables in equation (6) and equations (12) to (14) into equations (15) to (17), we obtain the physical parameters

\[Cf = \left[\frac{\partial U}{\partial \eta} \right] \]

(18)

\[Nu = - \left[\frac{\partial \theta}{\partial \eta} \right] \]

(19)

\[Sh = - \left[\frac{\partial \phi}{\partial \eta} \right] \]

(20)

3. Solution of the Problem

Equations (7) to (9) are coupled non-linear partial differential equations and these cannot be solved in closed form. So, we reduce these non-linear partial differential equations into a set of ordinary differential equations, which can be solved analytically. This can be done by assuming the trial solutions for the velocity, temperature and concentration of the fluid as

\[U(\eta, \tau) = U_o(\eta) + \varepsilon \exp(i\omega \tau) U_i(\eta) + o(\varepsilon^2) \]

(21)

\[\theta(\eta, \tau) = \theta_o(\eta) + \varepsilon \exp(i\omega \tau) \theta_i(\eta) + o(\varepsilon^2) \]

(22)

\[\phi(\eta, \tau) = \phi_o(\eta) + \varepsilon \exp(i\omega \tau) \phi_i(\eta) + o(\varepsilon^2) \]

(23)

Substituting equations (21) to (23) into equations (7) to (9), then equating the harmonic and non-harmonic terms and neglecting the higher order terms of \(0(\varepsilon^2) \), we obtain

\[U_o = \left[M + \frac{1}{Da} \right] U_o = -\left[G_o \theta_o + G_o \phi_o + \lambda_o \right] \]

(24)

\[U_i = \left[M + \frac{1}{Da} + i\omega \right] U_i = -\left[G_i \theta_i + G_i \phi_i + \lambda_i \right] \]

(25)

\[\theta_o^* + NP \theta_o = 0 \]

(26)

\[\theta_i^* + P_j (N - i\omega) \theta_i = 0 \]

(27)

\[\phi_o^* - S_i K_i \phi_o = -S_i S_i \theta_o^* \]

(28)

\[\phi_i^* - S_i K_i + i\omega \phi_i = -S_i S_i \theta_i^* \]

(29)

where the prime denotes the ordinary differentiation with respect to \(\eta \).
Corresponding initial and boundary conditions, presented by equation (10), can be written as

\[
U_0 = \gamma \frac{dU_x}{d\eta}, \quad U_i = \gamma \frac{dU_i}{d\eta}, \quad \theta_0 = 0, \theta_i = 0, \quad \phi_0 = 0, \quad \phi_i = 0 \quad \text{at} \quad \eta = 0
\]
\[
U_0 = \sigma \frac{dU_x}{d\eta}, \quad U_i = \sigma \frac{dU_i}{d\eta}, \quad \theta_0 = 1, \theta_i = 1, \quad \phi_0 = 1, \quad \phi_i = 1 \quad \text{at} \quad \eta = 1
\]

The analytical solutions of equations (24) to (29) with the boundary conditions in equation (30), are given by

\[
U_x = A_{22} \exp(-m_\eta) + A_{23} \exp(m_\eta) + A_s \frac{\sin(m_\eta)}{\sin(m_s)} - \frac{A_s \sinh(m_\eta)}{\sinh(m_s)}
\]

\[
U_i = A_m \exp(-m_\eta) + A_{32} \exp(m_\eta) + A_{33} \frac{\sin(m_\eta)}{\sin(m_s)} - \frac{A_{33} \sinh(m_\eta)}{\sinh(m_s)}
\]

\[
\theta_0 = \frac{\sin(m_\eta)}{\sin(m_s)}
\]

\[
\theta_i = \frac{\sin(m_\eta)}{\sin(m_s)}
\]

\[
\phi_0 = \frac{A_s \sinh(m_\eta)}{\sinh(m_s)} - \frac{A_s \sin(m_\eta)}{\sin(m_s)}
\]

\[
\phi_i = \frac{A_s \sinh(m_\eta)}{\sinh(m_s)} - \frac{A_s \sin(m_\eta)}{\sin(m_s)}
\]

By substituting equations (31) to (36) into equations (21) to (23) we obtained solutions for the fluid velocity, temperature and concentration and are presented in the following form

\[
U(\eta, \tau) = \left[A_{22} \exp(-m_\eta) + A_{23} \exp(m_\eta) + A_s \frac{\sin(m_\eta)}{\sin(m_s)} - \frac{A_s \sinh(m_\eta)}{\sinh(m_s)} \right] +
\]
\[
\varepsilon \exp(i \omega \tau) \left[A_m \exp(-m_\eta) + A_{32} \exp(m_\eta) + A_{33} \frac{\sin(m_\eta)}{\sin(m_s)} - \frac{A_{33} \sinh(m_\eta)}{\sinh(m_s)} \right]
\]

\[
\theta(\eta, \tau) = \frac{\sin(m_\eta)}{\sin(m_s)} + \varepsilon \exp(i \omega \tau) \left[\frac{\sin(m_\eta)}{\sin(m_s)} \right]
\]

\[
\phi(\eta, \tau) = \left[\frac{A_s \sinh(m_\eta)}{\sinh(m_s)} - \frac{A_s \sin(m_\eta)}{\sin(m_s)} \right] + \varepsilon \exp(i \omega \tau) \left[\frac{A_s \sinh(m_\eta)}{\sinh(m_s)} - \frac{A_s \sin(m_\eta)}{\sin(m_s)} \right]
\]

3.1 Skin friction

From the velocity field, the skin friction at the plate can be obtained, which in non-dimensional form is given by

\[
Cf = \left[A_{22} m_s \exp(m_\eta) - A_{23} m_s \exp(-m_\eta) + A_s m_s \cos(m_\eta) - \frac{A_s m_s \cosh(m_\eta)}{\sinh(m_s)} \right] +
\]
\[
\varepsilon \exp(i \omega \tau) \left[A_m m_s \exp(m_\eta) - A_m m_s \exp(-m_\eta) + A_{32} m_s \cos(m_\eta) - \frac{A_{32} m_s \cosh(m_\eta)}{\sinh(m_s)} \right]
\]
3.2 Nusselt number

From temperature field, we obtained heat transfer coefficient which is given in non-dimensional form as

$$Nu = m_0 \cos(m_\eta) \sin(m_\eta) - \varepsilon \exp(i\omega \tau) \left[\frac{m_0 \cos(m_\eta)}{\sin(m_\eta)} \right]$$ \hspace{1cm} (41)

3.3 Sherwood number

From concentration field, we obtained mass transfer coefficient which is given in non-dimensional form as

$$Sh = \left[\frac{A_0 m_0 \cos(m_\eta)}{\sin(m_\eta)} - \frac{A_0 m_0 \cosh(m_\eta)}{\sinh(m_\eta)} \right] + \varepsilon \exp(i\omega \tau) \left[\frac{A_0 m_0 \cos(m_\eta)}{\sin(m_\eta)} - \frac{A_0 m_0 \cosh(m_\eta)}{\sinh(m_\eta)} \right]$$ \hspace{1cm} (42)

4. Results and Discussion

In order to investigate the influence of various physical parameters such as mass diffusion parameter S_c, Soret effect S_r, chemical reaction parameter K_r, radiation parameter N, Prandtl number Pr, pressure gradient λ, magnetic parameter M, Darcy parameter Da, thermal Grashof number Gr_t, solutal Grashof number Gr_m, cold wall slip parameter γ, heated wall slip parameter σ and time τ on the flow-field, fluid velocity U, temperature θ and concentration ϕ have been studied analytically and computed results of the analytical solutions from equations (37) to (39) are displayed graphically from Figs. 2 to 23 for various values of these physical parameters. The numerical values of skin friction, Nusselt number and Sherwood number computed from analytical solutions, presented by equations (40) to (42) are presented in tabular form in tables 1 to 6 for various values of different physical parameters. In the present study following default parameter values are adopted for computations: $S_c = 0.60$, $S_r = 1.0$, $K_r = 0.5$, $N = 2.0$, $Pr = 0.71$, $\lambda = 1$, $M = 1.0$, $Da = 0.5$, $\tau = 1.0$, $Gr_t = 5.0$, $Gr_m = 2.0$, $\gamma = 0.2$, $\sigma = 0.4$, $\omega = 0.1$ and $\varepsilon = 0.01$. Therefore all the graphs and tables are corresponding to these values unless specifically indicated on the appropriate graph or table.

Figs. 2 to 4, shows the plot of fluid velocity U, temperature θ and concentration ϕ of the flow field against different values of Prandtl number Pr taking other parameters are constant. The Prandtl number defines the ratio of momentum diffusivity to thermal diffusivity. It is evident from Figs. 2 to 4, velocity U and temperature θ increases on increasing Prandtl number Pr, whereas concentration ϕ decreases on increasing Pr throughout the boundary layer region.

It is observed that from Figs. 5 to 7, both the velocity U and temperature θ increases on increasing the radiation parameter N whereas concentration ϕ decreases on increasing radiation parameter N throughout the boundary layer region. It is noted from Figs. 8 to 10 that the fluid velocity U, temperature θ and concentration ϕ attain their steady state for large time τ.
Fig. 2: Influence of Prandtl number on velocity profiles.

Fig. 3: Influence of Prandtl number on temperature profiles.

Fig. 4: Influence of Prandtl number on concentration profiles.

Fig. 5: Influence of radiation parameter on velocity profiles.

Fig. 6: Influence of radiation parameter on temperature profiles.

Fig. 7: Influence of radiation parameter on concentration profiles.
Fig. 8: Influence of time on velocity profiles.

Fig. 9: Influence of time on temperature profiles.

Fig. 10: Influence of time on concentration profiles.

Fig. 11: Influence of Schmidt number on velocity profiles.

Fig. 12: Influence of Schmidt number on concentration profiles.

Fig. 13: Influence of Soret number on velocity profiles.
Fig. 14: Influence of Soret number on concentration profiles.

Fig. 15: Influence of chemical reaction parameter on velocity profiles.

Fig. 16: Influence of chemical reaction parameter on concentration profiles.

Fig. 17: Influence of Grashof number on velocity profiles.

Fig. 18: Influence of solutal Grashof number on velocity profiles.

Fig. 19: Influence of magnetic parameter on velocity profiles.
The nature of fluid velocity U and concentration ϕ in presence of foreign species such as Hydrogen ($S_c = 0.22$), Helium ($S_c = 0.30$), Water vapour ($S_c = 0.60$), Ammonia ($S_c = 0.78$) is shown in Figs, 11 and 12. Physically, Schmidt number S_c signifies the relative strength of viscosity to chemical molecular diffusivity. It is observed that U and ϕ decreases on increasing S_c throughout the boundary layer region. The flow field suffers a decrease in velocity U and concentration ϕ in presence of heavier diffusing species.

Figs. 13 and 14 depict effects of Soret number S_r on the velocity and species concentration distribution of the flow field. It is noticed that, velocity U and species concentration ϕ is found to decreases on increasing Soret number S_r throughout the boundary layer region.

Figs. 15 and 16 demonstrate the effects of chemical reaction parameter K_r on the velocity and species concentration. It is observed that, both velocity U and species concentration ϕ decreases on increasing the chemical reaction parameter K_r. This implies that, chemical reaction tends to reduce the velocity and species concentration.
The effect of Grashof number G_r for heat transfer on the velocity U of the flow field is presented in Fig. 17. Physically, Grashof number G_r for heat transfer signifies the relative strength of thermal buoyancy force to viscous hydrodynamic force in the boundary layer. A study of the curves shows that Grashof number G_r for heat transfer accelerates the velocity U of the flow field at all points. This is due to the reason that there is an enhancement in thermal buoyancy force. The effect of Grashof number G_m for mass transfer on the velocity U of the flow field is presented in Fig. 18. Physically, Grashof number G_m for mass transfer signifies the relative strength of species buoyancy force to viscous hydrodynamic force in the boundary layer. A study of the curves shows that the Grashof number G_m for mass transfer accelerates the velocity U of the flow field at all points. This is due to the reason that there is an enhancement in concentration buoyancy force.

Fig. 19 depicts the influence of magnetic field M on the velocity U of the flow field. It is noticed from Fig. 19 that, U decreases on increasing the magnetic parameter M throughout the boundary layer region. This is due to the fact that application of a magnetic field to an electrically conducting fluid gives rise a mechanical force, called Lorentz force, which has a tendency to resist fluid motion in the flow field. Fig. 20 demonstrates the influence of Darcy parameter Da on fluid velocity U. It is evident from Fig. 20, fluid velocity U decreases on increasing Da throughout the boundary layer region. It is observed from Fig. 21 that, fluid velocity U increases on increasing pressure gradient λ.

<table>
<thead>
<tr>
<th>G_r</th>
<th>G_m</th>
<th>M</th>
<th>Da</th>
<th>Skin friction C_f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cold wall</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.2916</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.3944</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.4971</td>
</tr>
<tr>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5999</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.6033</td>
</tr>
<tr>
<td>5.0</td>
<td>3.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.7026</td>
</tr>
<tr>
<td>5.0</td>
<td>4.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.8019</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.9013</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0</td>
<td>12.0</td>
<td>0.5</td>
<td>0.5508</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0</td>
<td>13.0</td>
<td>0.5</td>
<td>0.4987</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0</td>
<td>14.0</td>
<td>0.5</td>
<td>0.4565</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.5</td>
<td>0.7026</td>
</tr>
<tr>
<td>5.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>0.3821</td>
</tr>
</tbody>
</table>

The nature of fluid velocity U on the heated wall slip parameter σ and cold wall slip parameter γ is shown in Figs 22 and 23. It is observed that, U decreases in a region near to the plate and increases
in the region away from the plate on increasing heated wall slip parameter σ whereas U increases in a region near to the plate and it decreases in the region away from the plate on increasing cold wall slip parameter γ. An increase in the heated wall slip parameter σ decreases the fluid velocity minimally at the cold wall and increasing the heated wall slip parameter causes a flow reversal towards the heated wall. It is observed that $\sigma = 0$ corresponds to the pulsatile case with no slip condition at the heated wall in Fig 22.

Table 2: Skin friction coefficient values when $G_m = 2, G_r = 5, M = 1, \lambda = 1, \tau = 1, Da = 0.5, K_r = 0.5, \gamma = 0.2, \sigma = 0.4, \omega = 0.1, \epsilon = 0.01$.

<table>
<thead>
<tr>
<th>P_r</th>
<th>N</th>
<th>S_r</th>
<th>S_r</th>
<th>Skin friction C_f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cold wall</td>
</tr>
<tr>
<td>0.44</td>
<td>2.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.6999</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.7026</td>
</tr>
<tr>
<td>1.00</td>
<td>2.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.7055</td>
</tr>
<tr>
<td>1.40</td>
<td>2.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.7094</td>
</tr>
<tr>
<td>0.71</td>
<td>1.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.6990</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.7026</td>
</tr>
<tr>
<td>0.71</td>
<td>3.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.7062</td>
</tr>
<tr>
<td>0.71</td>
<td>4.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.7096</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.22</td>
<td>1.0</td>
<td>0.7046</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.30</td>
<td>1.0</td>
<td>0.7042</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.7026</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.78</td>
<td>1.0</td>
<td>0.7017</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>1.0</td>
<td>0.7026</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>2.0</td>
<td>0.7003</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>3.0</td>
<td>0.6981</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>4.0</td>
<td>0.6958</td>
</tr>
</tbody>
</table>

Table 3: Skin friction coefficient values when $G_m = 2, G_r = 5, M = 1, \lambda = 1, \tau = 1, Da = 0.5, K_r = 0.5, \gamma = 0.2, \sigma = 0.4, \omega = 0.1, \epsilon = 0.01$.

<table>
<thead>
<tr>
<th>K_r</th>
<th>λ</th>
<th>σ</th>
<th>γ</th>
<th>τ</th>
<th>Skin friction C_f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cold wall</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.7026</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.7018</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.7010</td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.7002</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.7075</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.7026</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.6978</td>
</tr>
<tr>
<td>0.5</td>
<td>2.0</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.6929</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.0</td>
<td>0.2</td>
<td>1.0</td>
<td>0.9937</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.1</td>
<td>0.2</td>
<td>1.0</td>
<td>0.8462</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.2</td>
<td>0.2</td>
<td>1.0</td>
<td>0.6167</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.3</td>
<td>0.2</td>
<td>1.0</td>
<td>0.2107</td>
</tr>
</tbody>
</table>
Table 4: Nusselt number values when $\omega = 0.1$, $\epsilon = 0.01$.

<table>
<thead>
<tr>
<th>P_r</th>
<th>N</th>
<th>τ</th>
<th>Nusselt number Nu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cold wall</td>
</tr>
<tr>
<td>0.44</td>
<td>2.0</td>
<td>1.0</td>
<td>-1.1748</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>1.0</td>
<td>-1.2955</td>
</tr>
<tr>
<td>1.00</td>
<td>2.0</td>
<td>1.0</td>
<td>-1.4460</td>
</tr>
<tr>
<td>1.40</td>
<td>2.0</td>
<td>1.0</td>
<td>-1.6989</td>
</tr>
<tr>
<td>0.71</td>
<td>1.0</td>
<td>1.0</td>
<td>-1.1402</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>1.0</td>
<td>-1.2955</td>
</tr>
<tr>
<td>0.71</td>
<td>3.0</td>
<td>1.0</td>
<td>-1.4832</td>
</tr>
<tr>
<td>0.71</td>
<td>4.0</td>
<td>1.0</td>
<td>-1.7132</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.1</td>
<td>-1.2956</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.2</td>
<td>-1.2956</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.3</td>
<td>-1.2956</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.4</td>
<td>-1.2956</td>
</tr>
</tbody>
</table>

Table 5: Sherwood number values when $S_r = 0.6$, $K_r = 0.5$, $\tau = 1$, $\omega = 0.1$, $\epsilon = 0.01$.

<table>
<thead>
<tr>
<th>P_r</th>
<th>N</th>
<th>S_r</th>
<th>Sherwood number Sh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cold wall</td>
</tr>
<tr>
<td>0.44</td>
<td>2.0</td>
<td>0.60</td>
<td>0.8656</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>0.7956</td>
</tr>
<tr>
<td>1.00</td>
<td>2.0</td>
<td>0.60</td>
<td>0.7082</td>
</tr>
<tr>
<td>1.40</td>
<td>2.0</td>
<td>0.60</td>
<td>0.5614</td>
</tr>
<tr>
<td>0.71</td>
<td>1.0</td>
<td>0.60</td>
<td>0.8857</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>0.7956</td>
</tr>
<tr>
<td>0.71</td>
<td>3.0</td>
<td>0.60</td>
<td>0.6866</td>
</tr>
<tr>
<td>0.71</td>
<td>4.0</td>
<td>0.60</td>
<td>0.5530</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.22</td>
<td>0.9296</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.30</td>
<td>0.9009</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.60</td>
<td>0.7956</td>
</tr>
<tr>
<td>0.71</td>
<td>2.0</td>
<td>0.78</td>
<td>0.7340</td>
</tr>
</tbody>
</table>
Table 6: Sherwood number values when $P_r = 0.71$, $S_s = 0.6$, $N = 2$, $\omega = 0.1$, $\varepsilon = 0.01$.

<table>
<thead>
<tr>
<th>S_s</th>
<th>K_r</th>
<th>τ</th>
<th>Sherwood number Sh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cold wall</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.7956</td>
</tr>
<tr>
<td>2.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.6299</td>
</tr>
<tr>
<td>3.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.4643</td>
</tr>
<tr>
<td>4.0</td>
<td>0.5</td>
<td>1.0</td>
<td>0.2987</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.7956</td>
</tr>
<tr>
<td>1.0</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7178</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.6827</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.1</td>
<td>0.7956</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.2</td>
<td>0.7956</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.7956</td>
</tr>
<tr>
<td>1.0</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7956</td>
</tr>
</tbody>
</table>

The numerical values of skin friction coefficient C_f, obtained from the exact analytical solution, presented by equation (40), are presented in tabular form in tables 1 to 3. It is clear that, the skin friction coefficient C_f increases on increasing thermal Grashof number G_r, solutal Grashof number G_m, Prandtl number P_r and radiation parameter N whereas it decreases on increasing the Darcy parameter Da, Magnetic parameter M, Schmidt number S_s, Soret number S_r, chemical reaction parameter K_r and cold wall slip parameter γ at both cold and heated walls. Skin friction coefficient C_f decreases at the cold wall and increases at the heated wall on increasing the pressure gradient λ and heated wall slip parameter σ. It is also noted that the skin friction coefficient attain their steady state for large time τ.

The numerical values of heat transfer coefficient Nu, obtained from the exact analytical solution, presented by equation (41), are presented in tabular form in table 4. It is clear that, the Nusselt number Nu decreases at the cold wall and increases at the heated wall on increasing the Prandtl number P_r and radiation parameter N. It is clear that the heat transfer coefficient attains their steady state for large time τ. Also the value of Nu is least for mercury and highest for water at 4°C.

The numerical values of mass transfer coefficient Sh, obtained from the exact analytical solution, presented by equation (42), are presented in tabular form in tables 5 to 6. It is clear that, Sherwood number Sh decreases at the cold wall and increases at the heated wall on increasing the Prandtl number P_r, radiation parameter N, Schmidt number S_s, Soret number S_r and chemical reaction parameter K_r. It is clear that the mass transfer coefficient attains their steady state for large time τ.

5. Conclusions

The influence of Schmidt number, Soret number, chemical reaction parameter, Prandtl number, thermal radiation parameter, pressure gradient, thermal Grashof number, solutal Grashof number,
Magnetic parameter and Darcy parameter on unsteady hydromagnetic flow with heat and mass transfer of a viscous, incompressible, electrically conducting fluid past a parallel plate channel embedded in a fluid saturated porous medium is carried out. From the present investigation the following conclusions can be drawn:

- Prandtl number, radiation parameter, thermal Grashof number, Solutal Grashof number and pressure gradient are tend to accelerate fluid velocity whereas Schmidt number, Soret number, chemical reaction parameter, magnetic parameter and Darcy parameter have reverse effect on it throughout the boundary layer region.

- Velocity decreases in a region near to the plate and increases in a region away from the plate on increasing the heated wall slip parameter. Cold wall slip parameter tends to accelerate the fluid velocity in a region close to the plate whereas it has a reverse effect in a region away from the plate.

- Thermal radiation parameter and Prandtl number are tend to accelerate fluid temperature throughout the boundary layer region.

- Chemical reaction parameter, Soret number, Schmidt number, thermal radiation parameter and Prandtl number are tend to retard the species concentration throughout the boundary layer region.

- Thermal Grashof number, Solutal Grashof number, Prandtl number and thermal radiation parameter are tends to accelerate the skin friction coefficient whereas Darcy parameter, magnetic parameter, Schmidt number, Soret number, chemical reaction parameter and cold wall slip parameter have a reverse effect on the skin friction coefficient. Pressure gradient and heated wall slip parameter are tends to decelerate the skin friction coefficient at the cold wall whereas it is observed that reverse effect at the heated wall.

- Heat transfer coefficient decreases at the cold wall and increases at the heated wall on increasing the thermal radiation parameter and Prandtl number.

- Mass transfer coefficient decreases at the cold wall and increases at the heated wall on increasing the chemical reaction parameter, Soret number, Schmidt number, radiation parameter and Prandtl number.
• Velocity, temperature, concentration, skin friction coefficient, Nusselt number and Sherwood number attain their steady state with the progress of time.

ACKNOWLEDGEMENTS

First author is thankful to V. R. Siddhartha Engineering College, Kanuru, Vijayawada, Andhra Pradesh, India for providing necessary research facilities to publish this paper. Authors are thankful for the suggestions and comments of the referees, which have led to improvement of the paper.
REFERENCES

\[m_2 = \sqrt{N P_r}, m_3 = \sqrt{P_r (N - i \omega)}, m_4 = \sqrt{S_r K_r}, A_1 = S, S_r, A_2 = \frac{m_3^2 A_1}{m_i^2 + m_i^2}, A_3 = 1 + A_2, \]
\[m_4 = \sqrt{S_r (K_r + i \omega)}, A_4 = \frac{m_3^2 A_1}{m_i^2 + m_i^2}, A_5 = 1 + A_4, m_5 = \sqrt{M + \frac{1}{D_u}}, A_6 = \frac{G_r - G_u A_4}{m_i^2 + m_i^2}, \]
\[A_7 = \frac{G_u A_1}{m_i^2 - m_i^2}, A_8 = \frac{\lambda_m}{m_i}, A_9 = \frac{\gamma m_s A_6}{\sinh(m_i)}, A_{10} = \frac{\gamma m_s A_6}{\sinh(m_i)}, A_{11} = A_5 - (A_6 + A_{10}), \]
\[A_{12} = 1 - \sigma m_r \coth(m_i), A_{13} = 1 - \sigma m_r \cot(m_i), A_{14} = A_7 A_{12} - (A_6 + A_{13}), \]
\[A_{15} = 1 + \gamma m_s, A_{16} = 1 - \gamma m_s, A_{17} = 1 + \sigma m_r, A_{18} = 1 - \sigma m_r, A_{19} = A_{17} \exp(-m_i) - A_{14} A_{15}, \]
\[A_{20} = A_{14} A_{17} \exp(-m_i) - A_{13} A_{18} \exp(m_i), A_{21} = \frac{A_{19}}{A_{20}}, A_{22} = \frac{A_{18} - A_{16} A_{21}}{A_{16}}, \]
\[m_6 = \sqrt{M + \frac{1}{D_u} + \omega}, A_{23} = \frac{G_r - G_u A_4}{m_i^2 + m_i^2}, A_{24} = \frac{G_u A_3}{m_i^2 - m_i^2}, A_{25} = \frac{\lambda_m}{m_i^2}, A_{26} = 1 + \gamma m_s, \]
\[A_{27} = 1 - \gamma m_s, A_{28} = 1 + \sigma m_r, A_{29} = 1 - \sigma m_r, A_{30} = \frac{\gamma m_s A_{23}}{\sinh(m_i)}, A_{31} = \frac{\gamma m_s A_{23}}{\sinh(m_i)}, \]
\[A_{32} = A_{16} + \lambda_m A_{17}, A_{33} = 1 - \sigma m_r \coth(m_i), A_{34} = 1 - \sigma m_r \cot(m_i), \]
\[A_{35} = A_{15} A_{33} - (A_{25} + A_{26}, A_{36} = A_{15} A_{32} \exp(-m_i) - A_{26} A_{35} \exp(m_i), \]
\[A_{37} = A_{26} A_{32} \exp(-m_i) - A_{25} A_{36}, A_{38} = \frac{A_{37}}{A_{36}}, A_{39} = \frac{A_{38} - A_{32} A_{37}}{A_{36}}. \]
NOMENCLATURE

\(B_0 \) uniform magnetic field
\(C \) species concentration
\(C_f \) skin-friction coefficient
\(C_1 \) species concentration at the heated wall
\(C_0 \) species concentration at the cold wall
\(C_p \) specific heat at constant pressure
\(D_m \) chemical molecular diffusivity
\(G_m \) Solutal Grashof number
\(G_r \) thermal Grashof number
\(g \) acceleration due to gravity
\(j_w \) mass flux
\(Da \) Darcy parameter
\(K \) permeability of porous medium
\(K_r \) dimensional chemical reaction
\(K_r^* \) chemical reaction parameter
\(K_r \) thermal conductivity of the fluid
\(M \) magnetic parameter
\(N \) radiation parameter
\(Nu \) Nusselt number
\(n \) frequency of oscillation
\(P_r \) Prandtl number
\(q_w \) heat flux
\(S_c \) Schmidt number
\(Sh \) Sherwood number
\(S_r \) Soret number
\(T \) fluid temperature
\(T_m \) mean temperature of the fluid
\(T_1 \) fluid temperature at the heated wall
\(T_0 \) fluid temperature at the cold wall
\(t \) dimensional time
\(U \) A scaled velocity
\(u \) fluid velocity in \(x \) direction
\(v \) fluid velocity in \(y \) direction

Greek Symbols

\(\alpha \) dimensional thermal radiation parameter
\(\beta_c \) coefficient expansion for species concentration
\(\beta_T \) coefficient of thermal expansion
\(\nu \) kinematic coefficient of viscosity
\(\omega \) A scaled frequency
\(\phi \) A scaled concentration
\(\phi_1 \) dimensional cold wall slip parameter
\(\phi_2 \) dimensional heated wall slip parameter
\(\rho \) fluid density
\(\sigma_e \) electrical conductivity
\(\tau \) non dimensional time
\(\tau_w \) shear stress
\(\eta \) A scaled coordinate
\(\theta \) A scaled temperature
\(\gamma \) non-dimensional cold wall slip parameter
\(\sigma \) non-dimensional heated wall slip parameter