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ABSTRACT

This paper reports us the surface temperature distribution effects of free convective flow along a

vertical flat plate with temperature dependent thermal conductivity and viscous dissipation with

asymptotic solution. The governing equations with associated boundary conditions reduce to local

non-similarity boundary layer equations for this phenomenon are converted to dimensionless forms

using a suitable transformation. The transformed non-linear equations are then solved using the

implicit finite difference method together with Keller-box technique. Numerical results of the

velocity and temperature profiles, skin friction and surface temperature profiles for different values

of the thermal conductivity variation parameter, the Prandtl number and the viscous dissipation

parameters are presented graphically. Also we considered the asymptotic solution for the effect of

the thermal conductivity variation parameter, the Prandtl number and the viscous dissipation

parameters in skin friction and surface temperature profiles.  Detailed discussion is given for the

aforementioned parameters. A good similarity is found in small and large value solution with all

value solution for the thermal conductivity variation parameter, the Prandtl number and the viscous

dissipation parameter for skin friction and surface temperature. Divergence is found near one (1).

Keywords: Surface temperature, Small and large values x, Flat plate, Velocity, Prandtl number

1. Introduction

Electrically conducting fluid flow in presence of the effect of temperature dependent thermal

conductivity flow and heat conduction problems are important from the technical point of view

and such types of problems have received much attention by many researchers. In electronics in

particular and in physics broadly used both the terms.
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Miyamoto et al. (1980) studied the effect of axial heat conduction in a vertical flat plate on free

convection heat transfer. Pozzi and Lupo (1988) investigated the coupling of conduction with

laminar convection along a flat plate. Pop et al. (1995) investigated the conjugate mixed

convection on a vertical surface in porous medium. Gebhart (1962) investigated the effect of

dissipation on natural convection. Takhar and Soundalgekar (1980) studied the dissipation effects

on MHD free convection flow past a semi-infinite vertical plate. Khan (2002) investigated the

conjugate effect of conduction and convection with natural convection flow from a vertical flat

plate and in an inclined square cavity. Mamun (2005) studied the effects of conduction and

convection on magnetohydrodynamic flow with and without viscous dissipation from a vertical

flat plate. Hossain (1992) analyzed the viscous and Joule heating effects on MHD free convection

flow with variable plate temperature. Rahman et al. (2008) investigated the effects of temperature

dependent thermal conductivity on MHD free convection flow along a vertical flat plate with heat

conduction. Rahman and Alim (2009) analyzed numerical study of MHD free convective heat

transfer flow along a vertical flat plate with temperature dependent thermal conductivity. Nasrin

and Alim (2009) studied the combined effects of viscous dissipation and temperature dependent

thermal conductivity on MHD free convection flow with conduction and joule heating along a

vertical flat plate. Alim et al. (2008) analyzed the combined effect of viscous dissipation & joule

heating on the coupling of conduction & free convection along a vertical flat plate. Alim et al.

(2007) investigated Joule heating effect on the coupling of conduction with MHD free convection

flow from a vertical flat plate. Chowdhury and Islam (2000) analyzed MHD Free Convection Flow

of Visco-elastic Fluid past an Infinite Porous Plate. Alam et al. (2007) studied viscous dissipation

effects on MHD natural convection flow over a sphere in the presence of heat generation. Saha et

al. (2004) analyzed Natural Convection from a Plane Vertical Porous Surface in Non-Isothermal

Surroundings. Islam et al. (2014) investigated Effects of Conduction Variation on MHD Natural

Convection Flow Along a Vertical Flat Plate.

The present study is to incorporate the idea of the effects of free convective flow along a vertical

flat plate with temperature dependent thermal conductivity and viscous dissipation with asymptotic

solution.

2. Mathematical Formulation of the Problem

We consider a steady two-dimensional laminar natural convection flow of an electrically

conducting, viscous and incompressible fluid along a vertical flat plate of length l and thickness b

(Figure-1). It is assumed that the temperature at the outer surface of the plate is maintained at a

constant temperature Tb, where Tb > T, the ambient temperature of the fluid. In this work y -axis

i.e. normal direction to the surface and x -axis is taken along the flat plate. The coordinate system

and the configuration are shown in Figure-1.
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Fig. 1. Physical model and coordinate system

The governing equations of such laminar flow with viscous dissipation and also thermal conductivity

variation along a vertical flat plate under the Boussinesq approximations  = [1 – (Tb – T)], where

 and T are the density and temperature respectively outside the boundary layer. For the present

problem the continuity, momentum and energy equations take the following forms
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Here   is coefficient of volume expansion. The temperature dependent thermal conductivity,

which is used by Rahman (2008) as follows
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The non-dimensional governing equations and boundary conditions can be obtained from

equations (1) - (3) using the following dimensionless quantities
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Where l is the length of the plate, Gr is the Grashof number,  is the dimensionless temperature.

 Now from equations (1)-(3), we get using the following dimensionless equations
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conductivity variation parameter and N =
)(2

2

TTCl

Gr

bp


 is the dimensionless viscous dissipation

parameter. The corresponding boundary conditions (5) then take the following form
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is the conduction parameter. In the present investigation we have considered

P = 1.

To solve the equations (8) and (9) subject to the boundary conditions (10) the following

transformations are proposed by Merkin & Pop (1996)
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Here  is the similarity variable and  is the non-dimensional stream function which satisfies the

continuity equation and is related to the velocity components in the usual way as
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Moreover, h (x,) represents the non-dimensional temperature. The momentum and energy equations

are transformed for the new co-ordinate system. At first, the velocity and temperature components are

expressed in terms of the new variables for this transformation. Thus the following equations
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where prime denotes partial differentiation with respect to . The boundary conditions as

mentioned in equation (10) then take the following form
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Secondly, from the process of numerical computation, in practical point of view, it is important to

calculate the values of the surface shear stress in terms of the skin friction coefficient. This can be

written in the non-dimensional form as Molla et al. (2005)
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where
0[ ( ) ]w yu y      is the shearing stress. Using the new variables described in (6), the

local skin friction coefficient can be written as
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In practical point of view, it is important to calculate the values of the surface temperature. The

numerical values of the surface temperature are obtained from the relation. This can written in the

non-dimensional form as
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We have also discussed the velocity and the temperature profiles for different values of the thermal

conductivity variation parameter, Prandtl number and viscous dissipation parameter.
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3. Numerical Method of Solution

In this paper investigates the effect of surface temperature distribution for the temperature

dependent thermal conductivity and viscous dissipation on electrically conducting fluid in natural

convection flow along a vertical flat plate with asymptotic solution. Along with the boundary

conditions (14), the solution of the parabolic non-linear ordinary differential equations (12) and

(13) will be found by using the implicit finite difference method together with Keller-box

elimination technique or scheme (1978) which is well documented by Cebeci and Bradshaw

(1984) and widely used by Keller and Cebeci and Hossain (1992).

4. Asymptotic Solution

Now, we have given attention to the behavior of the solution of the equations (12) and (13) when x

is positively small (for x<<1) and large ( 1
x

as 0x ) for, Pr and N. Also we need the solution of

the equations (16) and (17) when x is small and large for, Pr and N.

As we see, for small x equations (12) and (13) become:
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Also to find the following for small x equations (16) and (17) become:
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For large x those equations (12) and (13) become
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Also to find the following for large x equations (16) and (17) become:
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For small x, solving equations (18), (19) and (21) together with the boundary condition (20) and

for large x , solving equations (22), (23) and (25) together with the boundary conditions (24) we

will discuss the following results.

5. Results and Discussion

The main objective of the present study is to analyze the effect of  the thermal conductivity

variation due to temperature on natural convective flow along a vertical flat plate in presence of

viscous dissipation and the asymptotic solution. In the simulation the values of the Prandtl number

Pr are considered to be 0.73, 1.00, 1.73, 2.97 and 4.24 that corresponds to hydrogen, steam, water,

methyl chloride and sulfur dioxide respectively.

The velocity and the temperature profiles obtained from the solutions of equations (12) and (13)

are depicted in Figures 2 to 4. Also the local skin friction and the surface temperature obtained

from the solutions of equations (16) and (17) are depicted in Figures 5, 7, 9. Numerical

computation are carried out for a range of thermal conductivity variation parameter  = 0.10, 0.20,

0.30 0.40, 0.50 and viscous dissipation parameter N = 0.01, 0.05, 0.10, 15, 0.20.

The effect of thermal conductivity variation parameter   on the velocity and temperature against η
within the boundary layer with Pr = 1.73 and N = 0.10 are shown in figure 2(a) and 2(b),

respectively. It is seen from figure 2(a) and 2(b) that the velocity and temperature increase within

the boundary layer with the increasing values of . It means that the velocity boundary layer and

the thermal boundary layer thickness expand for large values of .

figure 3(a) and 3(b) illustrate the velocity and temperature against η for different values of Prandtl

number Pr with  = 0.10 and N = 0.10. From fig. 3(a), it can be observed that the velocity

decreases as well as its position moves toward the interface with the increasing Pr. From figure

3(b), it is seen that the temperature profiles shift downward with the increasing values of Pr.

In figures 4(a) and 4(b) describe the velocity and temperature against η for different values of

viscous dissipation parameter N with  = 0.10 and Pr = 1.73. From figure 4(a), it can be observed

that the velocity increases as well as its position moves outward the interface with the increasing

values of N. From figure 4(b), it is seen that the temperature profiles also the same as increasing
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within the boundary layer. It means that the velocity boundary layer and the thermal boundary

layer thickness increase for large values of N from 0.01 to 0.20.

Figure 5(a) and figure 5(b) illustrate the effect of the thermal conductivity variation parameter on

the skin friction coefficient Cfx and surface temperature ( ,0)x  against x with Pr = 1.73 and N =

0.10. It is seen from figure 5(a) that the skin friction increases along the upward direction of the

plate for a particular value of . It is also seen that the local skin friction coefficient increases for

the increasing values of . From figure 5(b), it can be seen that the surface temperature increases

monotonically due to the increasing values of   along the positive x direction for a particular.

Figure 7(a) and figure 7(b) deal with the effect of Prandtl number Pr on the local skin friction

coefficient and surface temperature against x with   = 0.10 and N = 0.10. It can be observed from

figure 7(a) that the skin friction coefficient decreases for a particular value of Pr. It can also be

noted that the skin friction coefficient decreases for the increasing values of Pr. From figure 7(b),

it can be seen that the surface temperature decreases monotonically due to the increases along the

positive x direction for a particular value of Pr.

The variation of the local skin friction Cfx and surface temperature ( , 0)x  for different values of N

with   = 0.10 and Pr = 1.73 at different positions are illustrated in figures 9(a) and 9(b),

respectively. It can also be noted from figure 9(a) that the skin friction coefficient increases

monotonically for a particular value of N. Again figure 9(b) shows that the surface temperature

( ,0)x increases for increasing values of N.

Figure 6(a) and 6(b) illustrate the effect of the thermal conductivity variation parameter on the skin

friction coefficient Cfx and surface temperature ( ,0)x  for small and large x against x with Pr =

1.73 and N = 0.10for different values of . For small x (for x<<1) we see that from figure 6(a) the

skin friction for values of  almost same. Similarly, for large x ( 1
x

as 0x ), it is observed that the

values of  almost similar with all x. So the solutions for small and large values of x almost similar

with the solution of all values of x near the interface. For small x we see that from figure 6(b) the

surface temperature for values of  for all values of x almost same. Similarly for large x it is

observed that the values of   for all values of x almost same. There is a divergence near one (1).

Figure 8(a) and figure 8(b) deal with the effect of Prandtl number Pr on the local skin friction

coefficient and surface temperature for small and large x against x with   = 0.10 and N = 0.10for

different values of Pr. It can be observed from figure 8(a) that the skin friction coefficient for

small x (for x<<1) of a particular value of Pr almost same as for all values of x. Similarly, for large

x ( 1
x

as 0x ), it is observed that the values of skin friction almost similar. From figure 8(b), for

small x it can be seen that the surface temperature value of Pr for all values of x almost same.

Similarly for large x it is observed that the values of surface temperature for all values of x almost

same. There is a divergence near one (1).
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Figure 2(a) Velocity and (b) Temperature against η for different values of γ with Pr = 1.73 and N = 0.10.
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Figure 3(a) Velocity and (b) Temperature against η for different values of Pr with γ = 0.10 and N = 0.10.
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Figure 4(a) Velocity and (b) Temperature against η for different values of N with γ = 0.10 and Pr =1.73.
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Figure 5(a) Local skin friction coefficient and (b) Surface temperature distribution against x for different
values of   with Pr = 1.73 and N = 0.10.
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Figure 6(a) Local skin friction coefficient for small & large x and (b) Surface temperature distribution for
small & large x against x for different values of Pr with   = 0.10 and N = 0.10.

x

Sk
in

fri
ct

io
n

0 0.3 0.6 0.90

0.3

0.6

0.9

Pr= 0.73
Pr= 1.73
Pr= 2.97
Pr= 4.24(a)

x

Su
rfa

ce
te

m
pe

ra
tu

re

0 0.3 0.6 0.90

0.3

0.6

0.9

Pr= 0.73
Pr= 1.73
Pr= 2.97
Pr= 4.24(b)

Figure 7(a) Local skin friction coefficient and (b) Surface temperature distribution against x for different
values of  with Pr = 1.73 and N = 0.10.
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Figure 8(a) Local skin friction coefficient for small & large x and (b) Surface temperature distribution for
small & large x against x for different values of Pr with   = 0.10 and N = 0.10.
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Figure 9(a) Local skin friction coefficient and (b) Surface temperature distribution against x for different
values of N with   = 0.10 and Pr = 1.73.
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Figure 10(a) Local skin friction coefficient for small & large x and (b) Surface temperature distribution for
small & large x against x for different values of N with   = 0.10 and Pr = 1.73.
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The variation of the local skin friction coefficient Cfx and surface temperature ( , 0)x  for different

values of N for small and large x against x with   = 0.10 and Pr = 1.73 are illustrated in figures

10(a) and 10(b), respectively. It can also be noted from figure 10(a) that the skin friction

coefficient for small x (for x<<1) of a particular value of N almost same as for all values of x.

Again the solution for large x ( 1
x

as 0x ) it is observed that the values of skin friction almost

similar with all values of x. From figure 10(b), for small x it can be seen that the surface

temperature value of N for all values of x almost same. Similarly for large x it is observed that the

values of surface temperature for all values of x almost same. There is a divergence near one (1).

6. Comparison of the Results

Table 1 and Table 2 depict the comparisons of the present numerical results of the skin friction Cfx

and the surface temperature )0,(x  with those obtained by Pozzi and Lopo (1988) and Merkin and

Pop (1996) respectively. Here, the thermal conductivity variation parameter  and viscous

dissipation parameter N are ignored (i.e.  = 0 and N = 0) and the Prandtl number Pr = 0.733 with

5

1

x is chosen. It is clearly seen that there is an excellent agreement among the present results

with the solutions Pozzi and Lopo (1988) and Merkin and Pop (1996).

Table 1: Comparison of the present numerical results of skin friction Cfx with Prandtl number Pr = 0.733,
 = 0 and N = 0 against x.

Cfx

x1/5 =  Pozzi and Lupo (1988) Merkin and Pop (1996) Present work
0.4 0.172 0.172 0.170
0.6 0.337 0.337 0.340
0.7 0.430 0.430 0.423
0.8 0.530 0.530 0.528
0.9 0.635 0.635 0.633
1.0 0.741 0.745 0.748
1.1 0.829 0.859 0.857
1.2 0.817 0.972 0.972

Table 2: Comparison of the present numerical results of surface temperature ( , 0)x with Prandtl number Pr

= 0.733,  = 0 and N = 0 against x.

(x, 0)
x1/5 =  Pozzi and Lupo (1988) Merkin and Pop(1996) Present work

0.4 0.493 0.493 0.481
0.6 0.608 0.608 0.615
0.7 0.651 0.651 0.651
0.8 0.684 0.686 0.687
0.9 0.708 0.715 0.716
1.0 0.717 0.741 0.742
1.1 0.699 0.762 0.763
1.2 0.640 0.781 0.781

7. Conclusion

The effects of surface temperature distribution for the temperature dependent thermal conductivity

and viscous dissipation on free convective flow along a vertical flat plate with asymptotic solution
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have been studied in this paper. From the present investigation the following conclusions may be

drawn

 T

he velocity within the boundary layer increases for decreasing values of Pr and for increasing

values of  and N.

 T

he temperature within the boundary layer increases for increasing values of  and N and

decreases for increasing values of Pr.

 T

he local skin friction coefficient decreases for the increasing values of Pr and increases for

increasing values of  and N.

 A

n increase in the values of  and N leads to an increase in surface temperature. On the other

hand, this decreases for increasing values of Pr.

 I

n asymptotic solution of, Pr and N for skin friction coefficient and surface temperature

distribution for small and large values of x, there is a good similarity with for all x.
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Nomenclature

b Plate thickness
Cfx Local skin friction coefficient
Cp Specific heat at constant pressure
f Dimensionless stream function
g Acceleration due to gravity
Gr Grashof number
h Dimensionless temperature
l Length of the plate
N Viscous dissipation parameter
P Conjugate conduction parameter
Pr Prandtl number
T Temperature of the interface
Tb Temperature at outside surface of the plate
Tf Temperature of the fluid
T Temperature of the ambient fluid
ū Velocity component in x- direction

v Velocity component in y- direction
u Dimensionless velocity component in x- direction
v Dimensionless velocity component in y- direction
x Cartesian co-ordinates

y Cartesian co-ordinates

x Dimensionless Cartesian co-ordinates
y Dimensionless Cartesian co-ordinates

Greek Symbols
 Co-efficient of thermal expansion
 Thermal conductivity variation parameter
 Vector differential operator
 Similarity variable
 Thermal conductivity of the ambient fluid

s Thermal conductivity of the solid
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f Thermal conductivity of the fluid

 Viscosity of the fluid
e Magnetic permeability of the fluid
 Kinematic viscosity

 Density of the fluid inside the boundary layer
 Electrical conductivity of the fluid
w Shearing stress
Ψ Stream function


