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ABSTRACT 
In this paper, the unsteady forced convection boundary-layer flow of a non-Newtonian fluid along a 
continuously moving stretching sheet with thermal radiation and heat generation or absorption in 
the presence of magnetic field has been studied. First, the governing equations have been non-
dimensionalized by usual transformations to obtain the similar solutions. Then, the obtained 
equations have been solved by an implicit finite difference method. The convergency of explicit 
and implicit finite difference method has also been discussed. The results are presented for the 
effect of various parameters such as magnetic parameter (M), radiation parameter (N), heat source 
parameter (Q), Prandtl number (Pr  and power-law fluid index (n). The effects of these 
parameters on skin-friction coefficient (Cf)  and the local Nusselt number (NuL

) which are of 
physical and engineering interest have also been studied and presented graphically. 
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1. Introduction 
 

Over recent years, applications of non-Newtonian fluids in many industrial processes have been an 
interesting topic to many researchers. Different models have been proposed to explain the behavior 
of non-Newtonian fluid. Schowalter [1] was the first one, who formulated the boundary layer flow 
of a Non-Newtonian fluid. The study of flow and heat transfer generated by stretching surface 
plays a significant role in many material processing applications such as hot rolling, extrusion, 
metal forming, wire and glass fiber drawing and continuous casting. Numerous investigations like 
Banks [2] and Chen [3] were done on the stretching sheet problem with linear stretching in 
different directions in the absence of the magnetic field.  
 

The study of effects of magnetic field on free convection flow is important in liquid-metals, 
electrolytes and ionized gases. Kishan and Sashidhar [4] analyzed the momentum and heat transfer 
in laminar boundary layer flow of non- Newtonian fluids past a semi-infinite flat plate with the 
thermal dispersion in the presence of a uniform magnetic field for both the cases of static plate and 
continuous moving plate. However, at present, the radiation effect on MHD flow and heat transfer 
problems has become more important industrially.  
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Effects of radiation on non-Newtonian fluids have been studied by many authors like Sahoo and 
Poncet [5] and Sajidand Hayat [6]. All the above mention studies consider the steady-state 
problem. But in certain practical problems, the motion of the stretched surface may start from the 
rest. In these problems, the transient or unsteady aspects become more interesting. The unsteady 
heat transfer problems over a stretching surface, which is started impulsively from restore is 
stretched with a velocity that depends on time, are considered. Elbashbeshy and Bazid [7] 
presented an exact similarity solution for unsteady momentum and heat transfer flow whose 
motion is caused solely by the linear stretching of a horizontal stretching surface. In the case of 
unsteady boundary-layer flow, Singh [8] investigated the thermal radiation and magnetic field 
effects on an unsteady stretching permeable sheet in the presence of free stream velocity. Later, 
Gamal and Abdel-Rahman [9] analyzed the effects of variable viscosity and thermal conductivity 
on unsteady MHD non-Newtonian flow over a stretching porous sheet. 
 

In this present study, we have studied the effects of forced convection on unsteady magneto- 
hydrodynamic (MHD) non-Newtonian fluid flow along a vertical, continuously moving stretching 
sheet with radiation and heat generation or absorption. Firstly, the governing nonlinear partial 
differential equations are transformed into a system of dimensionless nonlinear partial differential 
equations using appropriate transformations. Then the resulting non-linear equations are solved 
numerically using both an explicit and an implicit finite difference technique. A comparison is also 
presented between these two schemes based on the convergence. Later, a parametric study has 
been carried out to explore the effect of some physically important parameters such as magnetic 
parameter (M), radiation parameter (N), heat source parameter (Q), Prandtl number (Pr  and 
power-law fluid index (n) on momentum and thermal boundary layers. The effects of these 
parameters on skin-friction coefficient (Cf) and the local Nusselt number (NuL

) have also been 
discussed. 
 
2. Mathematical Analysis 
 

Consider the unsteady MHD forced convection laminar boundary layer flow of a viscous, 
incompressible non-Newtonian fluid past a continuously moving stretched surface in the vertical 
direction under the influence of thermal radiation and heat generation or absorption. 
 

The frame of reference is chosen such that stretching surface coincides with the plane Y where the 
flow is assumed only for Y > 0. Introducing the Cartesian co-ordinate system, the X-axis is taken 
along the stretching surface in the vertically upward direction and the Y-axis is taken as normal to 
the surface. Two equal and opposite forces are introduced along the X-axis so that the surface is 
stretched, keeping the origin fixed. 
 

An external magnetic field is applied in the Y-direction. Since we have taken the fluid to be the 
electrically conducting, hence we can neglect the effect of the induced magnetic field in 
comparison to the applied magnetic field. Therefore, only the applied magnetic field 0B  plays a 
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role which gives rise to magnetic force 


 uBFx

2
0  in the X-direction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Physical model and co-ordinate system 
 
Since, we are considering forced convection, there is no influence of temperature field on velocity 
field i.e. there is no bouncy force. The Rosseland approximation (Rohsenow [10]) is used to 
describe the radioactive heat flux rq  in the energy equation. The radioactive heat flux in the X-
direction is considered negligible in comparison to the Y-direction. The physical configuration and 
coordinate system is shown in Figure 1. 
 

Under the above assumptions and the usual boundary layer approximation, the unsteady MHD 
forced convection non-Newtonian fluid flow with heat and the radiation effect are governed by the 
following equations: 
 
Continuity equation: 
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Energy equation: 
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The initial and boundary conditions are:
 Initial conditions:   0at        0   ,0  tTu  (4) 
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Where, u  and 0v  are the velocity components in the X and Y direction respectively, t  is for time, 
T represents temperature field, 0U  and T  are velocity and temperature of free stream, wT  is 
temperature at the surface,   is the fluid density, K  is the consistency coefficient,   is the 
electric conductivity, 0B  is the magnetic field, n  is the power-law fluid index, pC  is the specific 
heat at constant pressure,   is the thermal conductivity of the fluid, 0Q  is the volumetric rate of 
heat generation or absorption and rq  is the radioactive heat flux. 
 

By using the Rosseland approximation, the radioactive heat flux rq  is, 
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Where, s is the Stefan–Boltzmann constant and ek  is the mean absorption coefficient.  
If the temperature differences within the flow are sufficiently small, then Eq.(6) can be linearized 
by expanding 4T  in a Taylor series about T , which after neglecting higher order terms takes the 
form, 

434 34   TTTT  (7) 
 

Therefore, using (6) and (7), we have 
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Finally, using (8) in the energy equation (3), the governing boundary layer equations become, 
Continuity equation: 
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Momentum equation: 
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Energy equation: 
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(11) 

 

Subject to the initial condition (4) and boundary condition (5). Where,   is the thermal 
diffusivity. To make the governing equations dimensionless introducing the following 
dimensionless variables, 
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Where, L is the characteristic length.  
 

The nonlinear coupled partial differential equations in terms of dimensionless variables are, 
Continuity equation: 

0



Y
V  

(13) 

Momentum equation: 
MU

Y
U

Y
U

YY
UV

t
U n





























1

Re
1

 

 
(14) 

Energy equation: 
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With initial and boundary equations: 
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3. Numerical Computation 
 

For solving the governing equations (13)-(15) subject to the initial conditions (16) and boundary 
conditions (17) finite difference method is used. Both explicit and implicit difference scheme are 
used to approximate the solution of momentum equation (14) and only explicit difference scheme 
is used to approximate the solution of energy equation (15).  
 

For this, a rectangular region of the flow field is chosen, where the X-axis is taken along the 
stretching surface and the Y-axis is normal to the plate. Grids along Y-axis represent time steps. 
Here, we consider that the length of the sheet is Xmax (= 20), i.e. x varies from 0 to Xmax. There are 
Nx  and Nt  grid spacing in the X and Y directions, respectively. And the 
mesh size along X and Y-axis are x   and 000001.0kt   respectively.  From continuity 
equation (13) we can consider V as a constant velocity.  
 

For solving momentum equation in explicit difference technique, we will use a 2-point forward 
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difference approximation for time derivative and central difference approximation for spatial 
derivatives. While in implicit finite difference method, 2-point backward difference 
approximation is used to approximate time derivative and central difference approximations are 

used to approximate spatial derivatives. Here, 
1




n

Y
U is approximated by the 2-point central 

difference approximation at the previous time step to avoid nonlinearity. The obtained system of 
linear equations is solved using Gauss-Seidel iterative technique.  
 

For approximating the solution of the energy equation, 2-point forward difference approximation is 
used for time derivative and central difference approximation for spatial derivatives. 
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Fig. 2: Velocity error covergency profile in explicit and implicit method. 

 

The same values of all the parameters and constants have been used in both techniques. Here we have 
acquired a convergency of 410 . In implicit technique, the error converges exponentially to zero almost 
after time steps j = 1000 while in explicit method after numerous fluctuation the error converges to zero 
after time steps j = 22000 (Fig. 2). Therefore, velocity error converges to zero faster in implicit method 
than in explicit method. Now we will do our further analysis by using implicit technique. 
 
4. Results and Discussion 
 

The system of non-linear partial differential equations (13)-(15) are solved under initial and 
boundary conditions (16) and (17) by using implicit finite difference scheme along with Gauss-
Seidel iteration method. Numerical results are obtained for various values of magnetic parameter 
(M), radiation parameter (N), Prandtl number (Pr), heat source parameter (Q) and power-law fluid 
index (n) to study the effects of these parameters on momentum and thermal boundary layers as 
well as on skin friction coefficient (Cf) and the local Nusselt number (NuL

). The graphs are plotted 
for dimensionless velocity (U) and temperature (T) at dimensionless time 1t .  
 

Fig.3 represents the velocity distribution for different values of Prandtl 
number , radiation parameter 

 and heat source parameter 
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 for dilatants, Newtonian fluids and pseudo plastics. 
Here it is observed that, velocity profile doesn’t change with the change of parameters  and 
N but increases as the power-law fluid index ) increases.  
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Fig. 3: Velocity profile  for different values of Prandtl number (Pr) heat source parameter  

(Q) and radiation parameter (N) and power law fluid index (n) 
 

Velocity profiles decreases as magnetic parameter  increases for all values of power-law fluid 
index  (Fig. 4). It is seen that the presence of magnetic field causes higher restriction to the 
fluid, which has reduced the fluid velocity. There is a steep fall in velocity in pseudo plastics 

 compare to other two types.  
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Fig.4: Effect of magnetic parameter (M)  on velocity profile for different values on power law fluid index (n) 

 
 

Temperature profile decreases as radiation parameter  increases (Fig. 5).We observe that, 
temperature profile reduces rapidly almost at an average rate of 5% with every increase of  from 
0.1 up to 1. But as we increase  further, decreasing rate slows down. Due to radiation 
temperature rises quickly near the wall but then decreases immediately. Thus, temperature 
boundary layer can be controlled effectively using radiation parameter . Furthermore, heat 
transfer along the stretching sheet is faster when radiation is small.   
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Fig. 5: Temperature profile for different values of 
radiation parameter (N)  and power law fluid index (n) 

Fig. 6: Temperature profile  for different values of 
Prandtl number (Pr)  and power law fluid index (n) 
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Fig. 7: Temperature profile for different values of 
heat source  parameter (Q) and power law fluid index 
(n)   

Fig. 8: Temperature profile for different values of 
magnetic parameter (M) and power law fluid index 
(n)   

 

In forced convection, temperature profiles decrease with the increase of Prandtl number  
(Fig.6). If we increase  from 0.71, the stretching sheet gain temperature from the environment 
but the heat gaining rate decreases. Every time we increase , the temperature profile drops at 
an average rate 1.5%. When , heat gaining rate is almost zero that is thermal boundary 
layer doesn’t change appreciably. However, temperature rises at the beginning of the flow 
for . Temperature profiles increase very rapidly, overshoot and stabilize as heat source 
parameter  increases (Fig. 7). The dotted line represents the case without any heat generation 
or absorption. For  , temperature rises 2.5 times higher with every increase of . Due to 
heat generation initial wall temperature is very high. So that, the heat transfer rate is very low. In 
forced convection, temperature field remains unaffected by the change of magnetic parameter  
(Fig.8) and power-law fluid index  (Fig.5-8). 
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Fig. 9: Effect of (a) magnetic parameter (M) on skin friction coefficient (Cf) 

and (b) effect of heat source 
parameter (Q), (c) radiation parameter (N) (a) Prandtl number (Pr) on local Nusselt number (NuL) for 

different values of power-law fluid index (n). 
 

Skin friction coefficient 
 
decreases as both  and  increase (Fig.9 (a)). There is a cross 

flow near . Pseudo plastics have the least friction when magnetic parameter is high.  
Since in forced convection, the parameters  ,  and  showed no variation on velocity field 
(Fig.3), we get a constant skin friction which is   for all values of  ,  and 

. 
 

The local Nusselt number 
 
decreases as   (Fig. 9(b)),  (Fig. 9(c)) and  (Fig.9 (d)) 

increase and remains constant to the change of  . Since there was no variation in temperature 
field (Fig.8) due to ,  remains unchanged for the variation of . The value of  is 

. Negative value of  represents the heat absorption at the wall. 
 
5. Conclusion 
 

From the present study, the concluding remarks have been taken as follows: 
 

 Prandtl number , heat source parameter  and radiation parameter  have negligible 
effect on velocity profile because in forced convection, velocity field is independent of 
temperature field but it increases with the increase of power law fluid index . Velocity 
profile decreases as the magnetic parameter  increases for all values of . 

 

 Temperature profile increases as  increases, decreases with the increase of both  and 
 and remains constant to the change of  and   . 

 

 Skin friction coefficient (Cf) 
decreases as both  and  increase. (Cf) 

is same for all values 
of parameters  and . 

 

 The local Nusselt number (NuL) desreases as the parameters   and   increase.  
(NuL) is same for all values of  and . 
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NOMENCLATURE 
 

Symbol Description Symbol Description 
K - The consistency coefficient, qr - The radioactive heat flux 
U0 - Free stream velocity Cf - Skin friction coefficient 
g - The gravitational acceleration NuL - The local Nusselt number  
v0 - The velocity components in the y 

direction 
Cp - The specific heat at constant pressure. 

h - The convention heat transfer coefficient u, v - The velocity components in the X and 
Y respectively 

Q0 - The volumetric rate of heat generation/ 
absorption 

x, y - Distance along X-axis and Y-axis 
respectively 

B0 - The magnetic field T - The temperature of the field 
n - Power-law fluid index Y - Dimensionless length 
ke - The mean absorption coefficient T - Dimensionless temperature 
Q - The heat source parameter t - Dimensionless time 
M - The magnetic parameter L - The characteristic length 
N - The radiation parameter t - Time 
Re - The local Reymolds number ∆x or h - Mesh size along X-axis 
Pr - The generalized Prandtl number ∆t or k - Mesh size along Y-axis 
Nx, Nt - Maximum number of grid spacing in X-

axis and Y-axis respectively 
U, V - Dimensionless velocity components 

along X-axis and Y-axis respectively 
 
Greek symbols 
 - The density of the fluid  - The thermal diffusivity 
 - The electric conductivity 

 

- The shear stress 
 - The thermal conductivity of the fluid 

 

- Stephen-Boltzmann constant  
 
Subscripts 
w - At the wall ∞ -  In the free stream 
x, y - Component along X-axis and Y-axis 

respectively 
j - Grid point with x co-ordinates and y 

co-ordinates  
 
 


