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ABSTRACT 

The Tower of Hanoi is a popular mathematical puzzle, which appeared in 1885. During the past 

years, the problem has seen many variations. This paper reviews the Tower of Hanoi and its 

different variants. Some 3-peg variants are given in §2, §3 treats some 4-peg variants, §4 deals with 

the multi-peg generalization, and §5 gives some open problems. 
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1.  Introduction 

The Tower of Hanoi is a popular mathematical puzzle, introduced by the famous French number 

theorist, Francois Edouard Anatole Lucas [9] in 1885.  

The problem, in its general form, is as follows : Given are three pegs, S, P and D, and n (≥ 1) discs 

of different radii, labeled, D1, D2, …, Dn in increasing order. Initially, the n discs rest on the source 

peg S, in a tower in small-on-large ordering, called the standard position, as shown in the figure 

below. A legal move is the transfer of exactly one (the topmost) disc on any peg to another under 

the “divine” rule that no disc can ever be placed on top of a smaller one. The objective is to 

transfer this tower of n discs from the peg, S, to a standard tower on the destination peg, D, in 

minimum number of legal moves, using all the pegs available. 

 

 

 

                                

 

 

 

To solve the classical Tower of Hanoi problem, the scheme to be followed is  

Step 1 : Move the topmost n – 1 discs from the source peg S to the auxiliary peg, P,  
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Step 2 : Shift the largest disc from the peg S to destination peg D, 

Step 3 : Transfer the tower of n – 1 discs from P to D. 

Denoting by M(n, 3) the minimum number of moves required to solve the Tower of Hanoi with n 

discs, M(n,  3) satisfies the recurrence relation : 

M(n, 3) = 2M(n – 1, 3) + 1, n ≥ 1; M(0, 3) = 0, 

whose solution is  

M(n, 3) = 2
n
 – 1, n ≥ 1. 

It has been shown by Wood [24] and Hinz [7] that the scheme followed is optimal, which is almost 

trivial from the scheme outlined above 

In this paper, we review some of the variants of the Tower of Hanoi. Section 2 gives some 3-peg 

variants, some 4-peg variants are given in Section 3, Section 4 deals with the multi-peg 

generalization, and some open problems are given in the cocluding Section 5. 

 

2.  3-peg Variants 

In this section, we consider five 3-peg variants of the Tower of Hanoi problem, treated in the 

following subsections. 

2.1  The Three-in-a-Row Puzzle 

The three-in-a-row puzzle, introduced by Scorer, Grundy and Smith [19], is as follows : The three 

pegs, S, P and D, are arranged in a row. Initially, a tower of n (≥ 1) discs of different radii, labeled, 

D1, D2, …, Dn, in increasing order of their radii, rest on the source peg, S, in standard position, in 

small-on-large ordering. The objective is to transfer this tower from the peg, S, to the destination 

peg, D, in standard position, in minimum number of moves under the additional condition that any 

(topmost) disc on a peg can be moved to an adjacent peg only. 

Then, there are two possibilities, as shown in the figures below. 

Let MR(n) and MRR(n) denote respectively the minimum number of moves required to shift the 

tower of n (≥ 1) discs from the source peg, S, to the destination peg, D, corresponding to the cases 

(1) and (2) respectively in the figure. 

 

 

 

 

 

 
Case (1) : Disc movements are allowed between S, D, and D, P 
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Case (2) : Disc movements are allowed between S, P, and P, D 

Lemma 2.1.1 : MR(n) = 3 MR(n – 1) + 1, n ≥ 1; MR(0) = 0. 

Lemma 2.1.2 : MRR(n) = 2 MR(n) for all n ≥ 1. 

The explicit form of MR(n) is given below. 

Theorem 2.1.1 : ,1 3  )n(MR )(  
n

2
1   MRR(n) = 3

n
 – 1, n ≥ 1.                          

2.2  The Cyclic Tower of Hanoi 

The cyclic Tower of Hanoi Problem, posed by Atkinson [1], is as follows : The three pegs, S, P 

and D, are arranged in a circle. Initially, a tower of n (≥ 1) discs of different radii, designated as 

D1, D2, …, Dn, in increasing order of their radii, rest on the source peg, S, in standard position, in 

small-on-large ordering. The objective is to transfer this tower of n discs from the peg, S, to the 

destination peg, D, in standard position, in minimum number of moves under the additional 

condition that, any (topmost) disc on a peg can be moved in the clockwise direction only. 

Here also there are two possibilities, as shown in the figure below. 

 

 

 

 

 

 

 

 

 

 

Let MC(n) and MA(n) denote respectively the minimum number of moves required to shift the 

tower of n (≥ 1) discs from the source peg, S, to the destination peg, D, corresponding to the Cases 

(1) and (2) respectively of the above figure. Then, we have the following results.  
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Case (1) : Transfer in the clockwise  

                 direction S  D  P 

 

Case (2) : Transfer in the anti-clockwise  

                 direction S  P  D 
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Lemma 2.2.1 : MC(n) = min{2MA(n – 1) + 1, 4 MC(n – 1) + 1}; n ≥ 1, MC(0) = 0.                           

Lemma 2.2.2 : MA(0) = 0, and for n ≥ 1, 

MA(n) = min{2 MA(n – 1) + MC(n – 1) + 2, 4 MA(n – 1) + 2, 5 MC(n – 1) + 2}. 

However, we have the following result : 

Lemma 2.2.3 : For any n ≥ 1, 

(1) MC(n) = 2MA(n – 1) + 1, MC(0) = 0; 

(2) MA(n) = 2MA(n – 1) + MC(n – 1) + 2 = MC(n) + MC(n – 1) + 1, MA(0) = 0. 

Explicit forms for MC(n) and MA(n), due to Atkinson [1], are given below. 

Theorem 2.2.1 : For n ≥ 1, 

(1) ,1)31()31(  )n(MC ][ 1n1n

32

1         (2) .1)31()31(  )n(MA ][ 2n2n

34

1    

2.3  The Tower of Hanoi with Parallel Moves 

This variant of the Tower of Hanoi, posed and solved by Wu and Chen [25], is as follows : Given 

are the three pegs, S, P and D, and n (≥ 1) discs of different sizes, D1, D2, …, Dn (with Dn being the 

largest, Dn – 1 the second largest, and so on, with D1 being the smallest). Initially, the n discs rest on 

the source peg, S, in a tower in standard position, in small-on-large ordering. The problem is to 

shift this tower of n discs from the peg S to the destination peg, D, in standard position, in 

minimum number of moves, under the additional condition that each top disc may be 

simultaneously moved from its peg to another under the restriction that no more than one disc can 

be placed on the same peg. 

 

In this case, four types of moves, namely, the single move, exchange, the consecutive move and the 

circular move, are allowed.  

Figure : (a) single move, (b) exchange, (c) consecutive move, (d) circular move 
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Let MP(n) denote the minimum number of moves required to transfer the tower of n discs in 

standard position, from S to D, in the Tower of Hanoi with parallel moves. Then, MP(n) satisfies 

the following recursion formula, due to Wu and Chen [25], who have also proved the optimality of 

the scheme followed. 

Lemma 2.3.1 : MP(n) = 2 MP(n – 2) + 1; n ≥ 4, MP(1) =  1, MP(2) = 3, MP(3) = 5. 

The explicit form of MP(n) is given below. 

Theorem 2.3.1 : For n ≥  4, 
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Table 2.1 : Values of MP(n) for n  =   1(1)10 
 

n 1 2 3 4 5 6 7 8 9 10 

MP(n) 1 3 5 7 11 15 23 31 47 63 

2.4  The Tower of Hanoi with Cyclic Parallel moves 

The combination of the cyclic Tower of Hanoi, and the Tower of Hanoi with parallel moves, is the 

Tower of Hanoi with cyclic parallel moves, posed and solved by Wu and Chen [26], and may 

formally be stated as follows : Given are the three pegs, S, P and D, and n (≥ 1) discs of different 

sizes, D1, D2, …, Dn (with Dn being the largest, Dn – 1 the second largest, and so on, D1 being the 

smallest). Initially, the n discs rest on the source peg, S, in a tower in standard position. The 

problem is to shift this tower of n discs from the peg S to the destination peg, D, in standard 

position, in minimum number of moves, under the additional condition that every topmost disc can 

be moved from its original peg to another peg in the clockwise direction S  D  P  S at a 

time. Thus, in this case the three types of moves allowed are single move, consecutive move and 

circular move.  

Here, we have one of the two cases, shown in the figure below. 

 

 

 

 

 

 

 

 

 
Figure : The Tower of Hanoi with Cyclic Parallel Moves 

Case (1) : Transfer in the clockwise  

                 direction S  D  P 

 

Case (2) : Transfer in the anti-clockwise  
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Let MPC(n) and MPA(n) denote respectively the minimum number of disc moves required to 

transfer the tower of n discs from S to D, corresponding to the cases depicted in Cases (1) and (2) 

respectively. Then, MPC(n) and MPA(n) satisfy the following recurrence relations, established by 

Wu and Chen [26]. 

Lemma 2.4.1 : For n ≥ 3, 

(1) MPC(n) = 2 MPA(n – 1) – 3 (with MPC(1) = 1, MPC(2) = 4), 

(2) MPA(n) = 2 MPA(n – 1) + MPC(n – 1) – 6 (with MPA(1) = 2, MPA(2) = 5). 

The explicit forms of MPC(n) and MPA(n), due to Wu and Chen [26], are given in the following 

Theorem 2.4.1 : For n ≥ 3, 

(1) ,)31()31(  )n(MPC 3  ][ 1n1n

2
1    (2) .3  ][ nn

4
1 )31()31(  )n(MPA   

2.5  Bottleneck Tower of Hanoi 

Poole [16] has considered a variation of the Tower of Hanoi, known as the bottleneck Tower of 

Hanoi. Actually, the idea of the bottleneck Tower of Hanoi was first introduced by Wood [24], and 

the problem treated by Poole [16]
  
is only a slight modification of that problem. 

Given any collection C of any number of discs, Di, Dj, …, Dm, the narrowness of C, denoted by 

N(C), is the label-index of the smallest disc in C, that is, 

N(C) = min{i : DiC},                                                

with 

N(Ø) =  (Ø being the empty set).                                                    

The bottleneck Tower of Hanoi is as follows : Given are the three pegs, S, P and D, and n (≥ 1) 

discs of different sizes, D1, D2, …, Dn (with Dn being the largest, Dn – 1 the second largest, and so 

on, with D1 being the smallest). Initially, the n discs rest on the source peg, S, in a tower in 

standard position. The problem is to shift this tower of n discs from the peg S to the destination 

peg, D, in standard position, in minimum number of moves, under the additional condition that a 

disc Di may not be placed on a tower of discs T if 

i > N(T) + b – 1, 

where b (≥ 1) is a pre-assigned integer, called the bottleneck size. 

Any arrangement of the n (≥ 1) discs on the three pegs that can be obtained without violating the 

condition of the bottleneck Tower of Hanoi, is called a legal position.  

Now, given n (≥ 1) number of discs, the three pegs, S, P and D, and the bottleneck size b (≥ 1), let 

g3(n, b) denote the minimum number of moves required to transfer the tower of n discs from its 

starting position (not necessarily standard) to a legal (but not necessarily standard) position on 
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another peg, and let M3(n, b) denote the minimum number of moves required to solve the 

bottleneck Tower of Hanoi problem. Then, g3(n, b) and M3(n, b) satisfy the following recurrence 

relations, due to Poole [16]. 

Lemma 2.5.1 : For any n (≥ 1) and b (≥ 1), 

(1) g3(n, b) = 2g3(n – b, b) + b, n ≥ b; g3(n, b) = n for all 0 ≤ n ≤ b,                                                                               

(2) M3(n, b) = 2g3(n – 1, b) + 1, n ≥ 1; M3(0, b) = 0 for all b ≥ 1.                                                                         

The solution of the bottleneck Tower of Hanoi, giving explicit forms for g3(n, b) and M3(n, b), is 

given in the following theorem and corollary, due to Poole [16]. 

Theorem 2.5.1 : Given n (≥ 1) and b (≥ 1), let n = bq + r, q{1, 2, …}, 0 ≤ r < b.  

Then, 

(1) g3(n, b) = (b + r)2
q
 – b, 

(2) 



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 0  r if

0  r if
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             ),1  2)(1  b2(
 )b,n(M

1q
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Corollary 2.5.1 : For n ≥ 1, 










 

    ddo is n if   ,12.3

  even is n if    ),12(2
)2 ,n(g

2
1n

2
n

3  

2.6  The Little Tower of Antwerpen 

The problem, due to Minsker [14], is as follows : Two identical towers, one consisting of n black 

discs (of different radii) and the other consisting of n (≥ 1) red discs, rest on two pegs P1 and P2 

respectively (in small-on-large ordering). The situation is shown schematically below where Bi =   

Ri for all 1 ≤ i ≤ n. 

 

 

 

 

 

The objective is to interchange the two towers on P1 and P2, using the peg P3, in minimum number 

of moves, obeying the rules of the classical Tower of Hanoi. 

Denoting by LAM(n) the minimum number of moves required, we have 
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2.7 The Tower of Antwerpen 

In the Tower of Antwerpen, introduced by Wood [23], three identical towers of n (≥ 1) discs (of 

different sizes) of three different colors, black, red and white, rest on the three pegs P1, P2 and P3 

respectively, where Bi  = Ri = Wi for all 1 ≤ i ≤ n.  

The objective is to transfer the towers of black, red and white discs (on the pegs P1, P2 and P3 

respectively) to the pegs P2, P3 and P1 respectively, in minimum number of moves, without 

violating the conditions of the classical Tower of Hanoi. 

Denoting by AM(n) the minimum number of moves required, the expression for AM(n), due to 

Minsker [15], is as follows : 

AM(n) = 3.2
n+2

 – 8n – 10, n ≥ 2; AM(1) = 5. 

 

3.  4-peg Variants 

In this section, we consider three 4-peg variants of the Tower of Hanoi.  

3.1 The Reve’s Puzzle 

The Reve’s puzzle is the 4-peg version of the Tower of Hanoi, and was considered by Lucas [10] 

and Dudeney [2]. Later, the problem was revived by Roth [18]. 

The problem is as follows : There are four pegs, S, P1, P2, and D. Initially, the n  (  ≥    1) discs rest 

on the source peg, S, in a tower in small-on-large ordering. The problem is to shift the tower from 

S to the destination peg D, in standard position, in minimum number of moves, under the 

conditions of the Tower of Hanoi. 

3.2  The Star Puzzle 

The star puzzle, introduced by Stockmeyer [21] is a variant of the Tower of Hanoi, where there is a 

fourth peg such that all disc movements are either to or from the fourth peg.  

More precisely, the star puzzle may be stated as follows : The three pegs, S, P and D, are arranged 

in an equilateral triangle, and the fourth peg is at the center 0. Each disc movement must be either 

to or from 0, that is, direct moves of discs between any two of the pegs S, P and D are not allowed. 

Initially, the n discs, D1, D2, …, Dn, of different sizes, are placed on the source peg, S, in a tower in 

standard position. The problem is to shift this tower of n (≥ 1) discs from the source peg, S, to the 

destination peg, D, in standard position, in minimum number of moves, under the conditions of the 

Tower of Hanoi.  

The situation is depicted below. 
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Figure : The Star Puzzle. 

Let MS(n) denote the minimum number of moves required. Then, MS(n) satisfies the following 

dynamic programming equation due to Stockmeyer [21].   

Lemma 3.2.1 : For n ≥ 2,  

 
1nk1              

, 13)kn(MS2   min  )n(MS k




         (3.2.1) 

MS(0)   =   0, MS(1)   =   2.                                          

Theorem 3.2.1 : Let  
1mma  be the sequence of integers in increasing order : 

am  = 2
i  

3
j
, i ≥ 0, j ≥ 0, 

(so that, {am} is the sequence {1, 2, 3, 2
2
, 2.3, 2

3
, 3

2
, 3.2

2
, 2

4
, 2.3

2
, 3.2

3
, …}). Then, k

*
 = k

*
(n), 

minimizing the right-hand side of (3.2.1), and MS(n) are given by 

k
*
 = k

*
(n) =    ;1   )na(log3   MS(n)  = .a  2

n

1m
m


                                           

The table below reproduces the values of MS(n) and k
*
 for some small values of n. 

 

Table 3.1 : Values of MS(n) and k* = k*(n) for n = 1(1)12   

 

n 1 2 3 4 5 6 7 8 9 10 11 12 

MS(n) 2 6 12 20 32 48 66 90 122 158 206 260 

k* 1 1 2 2 2 2 3 3 3 3 3 4 

3.3  2-Color Puzzles 

Stockmeyer and Lunnon [22] have introduced two new variations of the 4-peg Tower of Hanoi, 

each with two towers of n (   ≥   1) discs, where the two sets of discs are identical in size and differ 

only in color. The first puzzle is known as the 2-color Reve’s puzzle, while the second one is 

known as the turtle. The two puzzles are given below.  
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3.3.1  The 2-Color Reve’s Puzzle 

The puzzle is as follows : There are four pegs, SB, SR, P1 and P2. Initially, n (≥ 1) black discs, B1, 

B2, …, Bn, are placed on the peg, SB, in a tower in standard position. The second tower of n red 

discs, R1, R2, …, Rn, rest on the peg SB, in standard position. Thus, schematically, we have the 

following situation at the start : 

 

 

 

 

 

Figure : The 2-Color Reve’s Puzzle 

The problem is to interchange the towers on SB and SR, using the auxiliary pegs, P1 and P2, in 

minimum number of moves, under the conditions of the Tower of Hanoi. Thus, a disc can be 

placed on an empty peg, or on top of a larger disc of any color. 

Denoting by MCR(n) the minimum number of moves required to solve the above puzzle, the 

explicit form of MCR(n) is given in the following theorem. 

Theorem 3.3.1.1 : MCR(n) = 2
n  + 1

 – 1 for all n ≥ 1. 

3.3.2 The Turtle 

The turtle, as it is sometimes called, is as follows : There are four pegs, SB, SR, P1 and P2. Initially, 

n (≥ 1) black discs, B1, B2, …, Bn, are placed on the peg, SB, in a tower in standard position. The 

second tower of n red discs, R1, R2, …, Rn, rest on the peg SB, in standard position. The problem is 

to shift the tower of n black discs from the peg SB to the peg SR, and the tower of n red discs from 

the peg SR to the peg SB, using the auxiliary pegs, P1 and P2, in minimum number of moves, under 

the additional condition that the auxiliary peg P1 can hold only the black discs, while the other 

auxiliary peg P2 can hold only the red discs. 

Let MT(n) be the minimum number of moves required to solve the turtle. Then, we have the 

following result : 

Theorem 3.3.2.1 : MT(n) = 3(2
n
 – 1) for all n ≥ 1. 

 

4.  Multi-Peg Generalization 

The multi-peg generalization of the Tower of Hanoi, involving n (≥ 1) discs and p (≥ 4) pegs, was 

posed by Stewart [20]. Two solutions, giving the minimum number of moves required, were given, 

one by Stewart himself, and the second one by Frame [3].  
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The problem is as follows : Given are p (≥ 4) pegs, S, P1, …, Pp –  2 , D, and n (≥ 1) discs of 

different radii. Initially, the n discs rest on the source peg, S, in a tower in standard position. The 

problem is to shift the tower from the peg S to the destination peg, D, in standard position, in 

minimum number of moves, under the conditions of the Tower of Hanoi. 

To move the tower from the peg S to the peg D, the scheme followed is as follows : 

Step 1 : First, move the topmost k (consecutive) discs from the peg S to some auxiliary peg, say, 

P1, using all the p pegs available, in (minimum)   M(k,  p) number of moves,  

Step 2 : Next, shift the remaining n – k (consecutive) discs from the peg S to the peg D, using the 

p – 1 pegs, which involves (minimum) M(n – k, p – 1) number of moves,  

Step 3 : Finally, move the k discs from the peg P1 on top of the n – k discs on the peg D. 

Thus, letting M(n, p) be the minimum number of moves required to solve the problem, the above 

scheme leads to the following proposition. 

Proposition 4.1 : For all n ≥ p ≥ 4, 

 
1nk0                

, )1p,kn(M)p,k(M2  min  )p,n(M




                                   

M(0, p) = 0 for all p ≥ 3; M(n, p) = 2n – 1 if 1 ≤ n ≤ p – 1, p ≥ 3.                                                        

We define the optimal partition numbers, kmin(n,  p) and kmax(n,  p), as follows : 

 , )1  p ,k  n(M  )p ,k(M2  )p ,n(M  ,1  n  k  0  :  k  min  )p ,n(kmin    

 , )1  p ,k  n(M  )p ,k(M2  )p ,n(M  ,1  n  k  0  :  k  max  )p ,n(kmax                                             

kmin(1, p) = 0 = kmax(1, p) for all p ≥ 4,                                                          

kmin(n, p) = 0, kmax(n, p) = 1 for 2 ≤ n ≤ p – 2, p ≥ 4,                                                                 

kmin(p – 1, p) = 1 = kmax(p – 1, p) for all p ≥ 4.                                                          

The solution of the multi-peg Tower of Hanoi is given in the theorem below. 

Theorem 4.1 : For the p-peg Tower of Hanoi problem with p   ≥   4, let 
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Then, 
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M(n, p), given in the above theorem, is called the presumed minimum solution. Note that, the 

Reve’s puzzle is a particular case of the multi-peg generalization. Another variant is given in the 

following subsection. 

4.1  The 2-Color 5-Peg Puzzle 

The puzzle, due to Stockmeyer and Lunnon [22], is as follows : There are five pegs, SB, SR, P1, P2 

and P3. Initially, n (≥ 1) black discs, B1, B2, …, Bn, are placed on the peg, SB, in a tower in 

standard position. The second tower of n red discs,  R1, R2, …, Rn (with Ri of the same size as that 

of Bi for all 1 ≤ i ≤ n) rest on the peg SB, in standard position. 

The problem is to shift the tower of n black discs from the peg SB to the peg SR, and the tower of n 

red discs from the peg SR to the peg SB, using the auxiliary pegs P1, P2 and P3, in minimum number 

of moves, under the conditions of the Tower of Hanoi, together with the additional condition that 

the black discs can use the pegs SB, P1, P3 and SR only, while the red discs can use the pegs SR, P2, 

P3 and SB only for disc movements. 

Let MRR(n) be the minimum number of moves required to solve the above puzzle. The explicit 

form of MRR(n) is given in the theorem below. 

Theorem 4.1.1 : MRR(n) = M(n, 4) + 2
n
 for all n ≥ 1. 

Consider the unrestricted problem where a disc of either color can be placed on any peg. Denoting 

by MRU(n) the minimum number of moves required to solve this problem, we have the following 

theorem : 

Theorem 4.1.2 : MRU(n) = M(n, 4) + 2  M(n – 1, 4) + 2 for all n ≥ 1. 

The explicit form of MRU(n) is given in the following theorem, where k is the value for which 

M(n, 4) is attained. 
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The values of MRR(n) and MRU(n) for some small values of n are given below. 

 

Table 4.1 : Values of MRR(n) and MRU(n) for n   =   1(1)10 

 

n 1 2 3 4 5 6 7 8 9 10 

MRR(n) 3 7 13 25 45 81 153 289 553 1073 

MRU(n) 3 7 13 21 33 45 61 85 109 133 

We conclude this paper with some open problem related the Tower of Hanoi. These are given in 

the next section. 

 

5.  Some Open Problems 

In this section, some open problems related to the Tower of Hanoi are considered. These are given 

in the following four subsections. 

5.1  Problems Remaining Unresolved for the p-Peg Tower of Hanoi 

First, we give two problems, related to the p-peg Tower of Hanoi, that are open. The first one is the 

so-called Frame’s conjecture. The second problem is related to the computational aspects of the 

Tower of Hanoi problem. 

5.1.1  Frame’s Conjecture 

In the dynamic programming formulation of the p-peg (p ≥ 3) Tower of Hanoi, in moving a tower 

of n (≥ 1) discs from the source peg, S, to the destination peg, D, the tower of the smallest n – 1 

discs is dismantled into p – 2 number of subtowers of consecutive discs, which are then moved to 

the p – 2 auxiliary pegs. This procedure rests on the assumption that, at least one of the shortest 

routes leads to a position in which all the other pegs have towers of consecutive discs on them. 

Donald Knuth christened this as “Frame’s conjecture” (Lunnon [11]). This is the reason that, some 

authors prefer to call the minimum number of moves given by the dynamic programming equation 

the presumed minimum solution (pms) (Hinz [6]). 

For the 4-peg Tower of Hanoi, Majumdar [13] has shown that, the scheme leading to the dynamic 

programming equation is optimal and unique for n ≥ 6, and further that, for n = 4, 5, the scheme is 

at least as good as any other scheme generating the minimum number of moves. For n = 4, there is 

an alternative scheme which is not pms, and for n = 5, there are two alternative schemes, in 

addition to the pms.  

For the p-peg Tower of Hanoi with p ≥ 5, it remains to resolve Frame’s conjecture.   
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We conjecture that, for “large” values of n, the pms is the only optimal solution. The conjecture is 

based on the fact that, for p = 4, the pms is the only optimal solution for n ≥ 6. 

5.1.2  Recursion versus Iteration 

From the theoretical point of view, the p-peg (p ≥ 4) Tower of Hanoi is solved if one knows the 

expressions for M(n, p) as well as kmin(n, p) and kmax(n, p) (given in Theorem 4.1 in § 4). However, 

in computer science and programming, one is interested in generating the moves of the individual 

discs, and to devise an optimal algorithm that generates the minimum number of moves (Rohl and 

Gedeon [17]). 

For the 3-peg Tower of Hanoi, a recursive algorithm is given in Majumdar [13]. An iterative 

algorithm, which is more efficient than the recursive one, both in time and memory requirements, 

has been offered by Hayes [5], and has been reproduced in Algorithm 1.2 in Majumdar [13]. 

For the generalized p-peg Tower of Hanoi problem with n (≥ 1) discs, Majumdar [13]
 
gives both 

recursive and iterative algorithms. An iterative algorithm for the 4-peg Tower of Hanoi (Reve’s 

puzzle), based on the divide-and-conquer approach, has been offered by van de Liefvoort [8], 

where the tower of n (≥ 1) discs on the source peg is divided into subtowers, each of which, 

viewed as a single entity, is then moved in an iterative algorithm of the 3-peg Tower of Hanoi. The 

divide-and-conquer approach can be extended to the p-peg case with p ≥ 5, where the tower of n  

(≥ 1) discs on the source peg is divided into slices, each viewed as a single entity, can then be 

moved in an algorithm of the (p – 1)-peg problem. Besides this, there are iterative algorithms due 

to Hinz [6], Lu [12] and Gedeon [4]. 

For the p-peg problem with p ≥ 5, no iterative algorithm has yet been devised. 

5.2  The Bottleneck Reve’s Puzzle 

The generalization of the 3-peg bottleneck Tower of Hanoi to four pegs may be called the 

bottleneck Reve’s puzzle. 

Initially, the n (≥ 1) discs, D1, D2, …, Dn of varying sizes, rest on the source peg, S, in  standard 

position. The problem is to shift this tower from the peg S to the destination peg, D, in standard 

position, in minimum number of moves, under the additional condition that a disc Di may not be 

placed on a tower of discs T if 

i > N(T) + b – 1. 

Given n (≥ 1) and b (≥ 1), let g4(n, b) be the minimum number of moves required to shift the tower 

of n discs from its starting position to a legal position (not necessarily, standard) on another peg 

(using all the four pegs); also, let M4(n, b) be the minimum number of moves required to solve the 

bottleneck Reve’s puzzle. Then, the dynamic programming equations satisfied by g4(n, b) and 

M4(n, b) are given in Lemma 5.2.1 and Lemma 5.2.2 respectively. 

Lemma 5.2.1 : For n (≥ 1) and b (≥ 1), 
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Lemma 5.2.2 : For n (≥ 1) and b (≥ 1), 

 
1  n    1                 

,1  n  ,1   )b ,1    n(g  )b ,(g 2 min   )b ,n(M
344








                                    

M4(0, b) =  0 for all b ≥ 1.                                                         

For n (≥ 1) and b (≥ 1) fixed, let 

  ,b  n  k  0  ;b  )b ,k  b  n(g  )b ,k(g 2  )b ,k ,n(G
34

                   

  .1  n    0  ;1  )b ,1    n(g  )b ,(g 2  )b , ,n(F
34

                 

Furthermore, let 
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Lemma 5.2.3 : For any b (≥ 1) fixed, 

(1)  G(3b, k, b) is uniquely minimized at k = b with g4(3b, b) = 5b,  

(2)  )b , ,1  b2(F   is uniquely minimized at b  with M4(2b + 1, b) = 4b + 1. 

The solution of the bottleneck Reve’s puzzle is open. However, we make below the conjecture 

about the solution of the puzzle. 

Conjecture : For any s (≥ 1) and b (≥ 1) fixed, 
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Note that b = 1 corresponds to the solution of the Reve’s puzzle (in §3.1). 

5.3  The Four-in-a-Row Puzzle 

The four-in-a-row puzzle, introduced by Scorer, Grundy and Smith [19], is one with four pegs, and 

is the generalization of the three-in-a-row puzzle.   

The puzzle is as follows : The four pegs, designated as S, P1, P2 and D, are arranged in a row. 

Initially, a tower of n (≥ 1) discs of different radii, labeled,   D1, D2, …, Dn, in increasing order of 

their radii rest on the source peg, S, in standard position. Disc movements are allowed in either 

direction between the adjacent pegs only. The objective is to transfer this tower of n discs from the 

source peg, S, to the destination peg, D, in standard position, in minimum number of moves (under 

the conditions of the Tower of Hanoi). 

In this case, there are three possibilities, as shown in the figure below. 

Let MFR(n), MMFR(n) and MMMFR(n) be the minimum number of moves required to transfer 

the tower of n discs from the peg S to the peg D. 

 

 

 

 

 
Case (1) : Disc movements are allowed between S, D; D, P1, and P1, P2 
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Case (3) : Disc movements are allowed between S, P1; P1, P2, and P2, D 

Proposition 5.3.1 : MFR(n) satisfies the following recurrence relation : 

MFR(n) = min {MMMFR(k) + MMFR(k) + 
1

2
 (2

n–k
 – 1)}, n  3, 

                 1  k  n – 1 

MFR(1) = 1, MFR(2) = 4. 

Proposition 5.3.2 : MMFR(n) satisfies the following recurrence relation : 

MFR(n) = min {MMMFR(k) + MMFR(k) +(3
n–k

 – 1)}, n  3 

              1  k  n – 1 

MMFR(1) = 2, MMFR(2) = 6. 

It may be mentioned here that, it remains to prove that the schemes followed to find the recurrence 

relations satisfied by MFR(n) and MMFR(n) are indeed optimal. It also remains to find explicit 

forms of MFR(n) and MMFR(n). 

The following table gives the expressions for MFR(n), MMFR(n) and MMMFR(n) for n   =    

 

1(1)6, where the last row is due to Stockmeyer [21]. 

 

n 1 2 3 4 5 6 

MFR(n) 1 4 9 18 29 44 

MMFR(n) 2 6 12 22 36 54 

MMMFR(n) 3 10 19 34 57 88 

5.4  The Four-Peg Cyclic Puzzle 

The four-peg cyclic puzzle, due to Scorer, Grundy and Smith [19], is the four-peg generalization of 

the cyclic Tower of Hanoi.  

In the four-peg cyclic puzzle, the four pegs, S, P1, P2 and D, are arranged in a circle. Initially, a 

tower of n (≥ 1) discs of different radii, labeled, D1, D2, …, Dn, in increasing order of their radii 

rest on the source peg, S, in standard position.  

The objective is to transfer this tower of n discs from the source peg, S, to the destination peg, D, 

in standard position, in minimum number of moves (under the additional conditions of the Tower 

of Hanoi). 
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The puzzle itself has three versions, as shown in the figure below. 

 

 

 

 

 

 

 

Figure : The Four-Peg Cyclic Puzzle 

Let MC(n), MCC(n) and MCCC(n) be the minimum number of moves required to transfer the 

tower of n discs from the source peg, S, to the destination peg, D, corresponding to the three cases 

of the above figure. It still remains open to find the recurrence relations satisfied by MC(n), 

MCC(n), MCCC(n). 
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