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ABSTRACT 

Generalized Bernoulli sub-ODE and exp(-Φ(ξ))-expansion methods are powerful tools for 

obtaining exact solutions of nonlinear partial differential equations. In this paper, these methods are 

applied to solve the modified Liouville equation. With the aid of mathematical software Maple13, 

some exact traveling wave solutions are established. When the parameters are taken as special 

values, the solitary wave solutions are originated from these traveling wave solutions. Further, 

three-dimensional plots of some of the solutions are given to visualize the dynamics of the 

equation. The results reveal that these two methods are very suitable and useful for solving 

modified Liouville equation. 
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Introduction 

Nonlinear phenomena are general problems in every field of engineering technology, science 

research, natural world and human society activities. So the investigation of exact solutions of 

nonlinear equations plays an important role not only in theoretic research but in application and 

they describe many different physical systems, ranging from gravitation to fluid dynamics. The 

interest of finding travelling wave solution of NPDEs is increasing and has now become a hot 

topic to researchers. In recent years, many researchers who are interested in the nonlinear physical 

phenomena have investigated exact solutions of NPDEs. With the development of soliton theory 

and the application of computer symbolic system such as Maple and Mathematica, many powerful 

methods for obtaining exact solutions of nonlinear evolution equations are presented, such as the 

tanh-method [1], the variational iteration method [2], the exp-function method [3], (G'/G)-

expansion method [4], modified simple equation method [5] and so on.  

Based on the previous works, we have studied the generalized sub-ODE [6] method and exp(-

Φ(ξ))-expansion method [7] to construct exact traveling wave solutions for NPDEs through the 

modified Liouville equation [8-10].  

https://www.google.com.bd/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.buet.ac.bd%2F&ei=lu5hVL7BHsqjugS5zICIAQ&usg=AFQjCNFkUc1GlKcSVYQubHM6nKF8TFZDaw
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The rest of the paper is organized as follows. In Section 2, we describe the Bernoulli sub-ODE 

method and the exp(-Φ(ξ))-expansion method. In Section 3, we apply these methods to find exact 

traveling wave solutions of the modified Liouville equation. In Section 4, we sketch some graphs 

for various traveling wave solutions. In the last Section, some conclusions are presented. 

 

2. Materials and Methods 

In this section, we will discuss the generalized sub-ODE method and exp(-Φ(ξ))-expansion 

method. 

2.1 The generalized sub-ODE method  

Suppose that a nonlinear partial differential equation, say in two independent variables x and t, is 

given by 

,0),,,,,,( xxxtttxt uuuuuuP    (2.1) 

where ),( txuu  is an unknown function, P is a polynomial in ),( txuu  and its various partial 

derivatives, in which the highest order derivatives and nonlinear terms are involved. In the 

following the main steps of the sub-ODE method are given: 

Step 1. The traveling wave variable )(),(  utxu  where tcx , permits us reducing Eq. (2.1) to 

an ODE for )( uu  in the form 

,0),,,,,,( 2  uucucuucuP                                                        (2.2) 

Step 2. Suppose that the solution of Eq. (2.2) can be expressed by a polynomial in G as follows: 

                           
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m HHu ,                                                            (2.3) 

where 1,  mm ,……. are constants to be determined later and 0m . The positive integer m can 

be determined by considering the homogeneous balance between the highest order derivatives and 

nonlinear terms appearing in Eq.(2.2), and   HH  satisfies the following equation: 

                            
2HHH  ,                                              (2.4) 

When 0 , Eq. (2.4) is the type of Bernoulli equation, and we can obtain the solution as 
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Step 3. Substituting Eq. (2.3) into Eq. (2.2) and using Eq. (2.4), collecting all terms with the same 

power of H together, the left-hand side of Eq. (2.3) is converted into another polynomial in H. 

Equating each coefficient of this polynomial to zero, yields a set of algebraic equations for 

.,,....., 1  mm  
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Step 4. Solving the system of algebraic equations in Step 3, and by using the solutions of eq. (2.4), 

we can construct the traveling wave solutions of the nonlinear evolution equation (2.1).  

2.2. The exp(-Φ(ξ))-expansion method 

We now present the exp(-Φ(ξ))-expansion method for solving the nonlinear evolution  equation of 

the form of Eq. (2.1). 

Step 1: Suppose the solution of Eq. (2.3) can be expressed in the following form 

                     

i
m

i
iu )))((exp()(

0
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

,           (2.7) 

where i
 
are constants, the positive integer m can be determined by considering the homogeneous 

balance between the highest order derivatives and the nonlinear terms appearing in Eq. (2.2), and 

   satisfies the equation: 

                     
 ))(exp())(exp()(

                                                   (2.8) 

Eq. (2.8) gives the following solutions: 
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Step 3: We substitute Eq. (2.7) into Eq.(2.2) and use Eq.(2.1) and then we account the function 

exp(-Φ(ξ)). As a result of this substitution, we get a polynomial of exp(-Φ(ξ)). We equate all the 

coefficients of same power of exp(-Φ(ξ)) to zero. This procedure yields a system of algebraic 

equations whichever can be solved to find   ,...,.....,., 1mm . Substituting the 

values   ,...,.....,., 1mm into eq. (2.7) along with general solutions of eq. (2.8) completes the 

determination of the solution of eq. (2.1). 

 

3. Application of the methods for modified Liouville equation 

In this section, we will study the generalized Bernoulli sub-ODE method and exp(-Φ(ξ))-

expansion method to find the exact solutions of modified Liouville equation. Let us consider the 

modified Liouville equation 

w

xxtt ebwaw  2 ,           (3.1) 

that arises in hydrodynamics, where w(x, t) is the stream function and a, b, β are nonzero constants.                                                                                           

We first use the Painleve transformation   wetxu , , so that 

uw ln
1


 .                       (3.2)  

Now the traveling wave transformation equations )(),(  utxu , tcx 
 
and  Eq. (3.2) reduces 

Eq. (3.1) into the following ODE:
 

032  kuuuu ,                    (3.3) 

where
22 ca

b
k




  and ac  . 

Balancing the order of uu  and 3u in Eq. (3.3), we have 2m .  
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3.1 Exact Solutions for modified Liouville equation via Bernoulli sub-ODE method 

Through the generalized Bernoulli sub-ODE method, for m= 2, Eq. (2.4) can be rewritten as 

follows: 

0,)( 201

2

2  HHu                            (3.4) 

where 012 ,,  are constants to be determined later. 

Substituting Eq. (3.4) into Eq. (3.3) and collecting all the terms with the same power of H together, 

equating each coefficient to zero, yields a set of simultaneous algebraic equations as follows: 
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Solving the algebraic equations above, yields: 
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Substituting Eq. (3.5) into Eq. (3.4) along with Eq. (2.6) and Eq. (2.7), we obtain 
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And finally using Eq. (3.2) the traveling wave solution of Eq. (3.1) becomes 
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where   
22 ca

b
k




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3.2 Exact Solutions for modified Liouville equation via exp(-Φ(ξ))-expansion method 

Through the exp(-Φ(ξ))-expansion method, for m=2, Eq. (2.7) becomes 
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where 012 ,,  are constants to be determined later. 

Substituting eq.(3.10) into Eq.(3.3) and collecting all the terms with the same power of 
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Solving the algebraic equations above, yields: 
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Substituting Eq. (3.11) into Eq.(3.10), we get 
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And finally the exact solution of Eq. (3.1) is 
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where tcx  , 
22 ca

b
k




  and ac  . 

Verification: All the obtained results has been checked with Maple by putting them back into the 

original equation and found correct. 
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4. Graphs and discussion 

The graphical demonstrations of the solutions of modified Liouville equation obtained by 

generalized Bernoulli sub-ODE method are shown in Fig. 1 -Fig. 2 and Fig. 3 -Fig. 4 give the 

profiles of the solutions obtained by exp(-Φ(ξ))-expansion method. From our work we see that the 

exp(-Φ(ξ))-expansion method is more useful than the generalized Bernoulli sub-ODE method 

because it yields many new solutions i.e. many new graphs for different cases. 

 

Fig. 1: Compacton profile of w1(x, t) for a = 2, b = 2, 

β = 1, λ = 1, c = 1 within the interval –2  x, t  2. 

 

Fig. 2: Singular soliton profile of w2(x, t) for a = 2, b = 2, 

β = 1, λ = 1, c = 1 within the interval –2  x, t  2. 

 

 

Fig. 3: Soliton profile of w4(x, t) for a = 2, b = 2, β = 

1, λ = 3, μ = 1, E = 0, c = 1 within the interval –3  x, 

t  3. 

 

Fig. 4: Periodic profile of w6(x, t) for a = 2, b = 2, β 

= 1, λ = 1, μ = 1, E = 0, c = 1 within the interval –3  

x, t  3. 

 

5. Conclusions 

In this article, generalized sub-ODE method and exp(-Φ(ξ))-expansion method have been 

successfully implemented to find exact traveling wave solutions of modified Liouville equation. 

These are standard and computerization methods whose allows us to solve complicated nonlinear 

evolution equations in diverse areas of science. We also obtain some new form traveling wave 

solutions including hyperbolic function solutions, trigonometric function solutions and rational 

solutions. Moreover, these methods are capable of greatly minimizing the size of computational 

work compared to other existing techniques. 
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