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ABSTRACT 

We propose Chebyshev-Legendre spectral collocation method for solving second order linear and 

nonlinear eigenvalue problems exploiting Legendre derivative matrix. The Sturm-Liouville (SLP) 

problems are formulated utilizing Chebyshev-Gauss-Lobatto (CGL) nodes instead of Legendre 

Gauss-Lobatto (LGL) nodes and Legendre polynomials are taken as basis function. We discuss, in 

details, the formulations of the present method for the Sturm-Liouville problems (SLP) with 

Dirichlet and mixed type boundary conditions. The accuracy of this method is demonstrated by 

computing eigenvalues of three regular and two singular SLP's. Nonlinear Bratu type problem is 

also tested in this article. The numerical results are in good agreement with the other available 

relevant studies. 
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1. Introduction 

Spectral methods namely spectral Galerkin, spectral collocation, spectral Tao methods etc. are 

extensively used in the field of applied sciences and engineering due to the better performance and 

exponentially rapid convergent rate in preference to algebraic convergence rates for finite 

difference and finite element methods.  Many researchers contributed to their works to the study of 

spectral Chebyshev collocation method for computing eigenvalues of second order Sturm-

Liouville problems. Not much works are found for the solution of SLP's applying spectral 

collocation method using Legendre derivative matrix in the recent years. In this paper, we present 

spectral collocation method that offers accurate solutions which are put up with in terms of 

truncated series of smooth polynomial functions.  

For the solutions of SLP’s some studies are carried out by various numerical schemes. Min and 

Gottlieb [4] applied domain decomposition techniques for spectral methods. To obtain the 

accuracy, the authors classified each subdomain by the finite degrees of Chebyshev and Legendre 

polynomials exploiting Legendre-Galerkin, Legendre-collocation, Legendre-collocation penalty, 
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Chebyshev-collocation, and Chebyshev-collocation penalty methods and compared the results 

among these methods. The differential Transform method is applied to compute eigenvalues and 

eigenfuctions of second order regular SLP’s by Chen and Ho [2].The Weighted residual method 

using Chebyshev collocation points are investigated for approximate eigenvalues of second order 

SLP’s by Ibrahim Celik [8]. Calculation of eigenvales of Helmholtz equation using boundary 

method are presented by Reutskiy [9]. The polynomial-based Differential Quadrature (PDQ) and 

the Fourier expansion-based differential quadrature (FDQ) methods are found in the work Ugur 

Yucel [10] to compute eigenvalues of the second order Sturm–Liouville problems. Chanane [6] 

used Shanon sampling theory to compute the eigenvalues of regular SLP’s. The non linear Bratu 

problems are solved using various methods by different authors namely weighted residual [3], 

Domain Decomposition [4], B-Spline [13], Laplace transformation Decomposition [5], 

Decomposition [11], non-polynomial Spline [13], parametric Spline [15] and modified Adomian 

Decomposition [16] methods etc.  

A class of singular SLP’s are studied by Baily et al [1] applying the improved version of the 

algorithm of various proposed SLEIGN 2. 

Application spectral methods in details for the solution of BVP's and SLP's are available in [7, 14, 

18, 19, 20, 21]. 

In this article we prefer Chebyshev Gauss-Lobatto points to compensate for Legendre Gauss-

Lobatto points .Since Legendre Gauss-Lobatto points are not explicitly defined and their 

estimation suffer round off errors for large n. Furthermore, discretizations with Chebyshev grid 

points with fairly fewer nodes reduce CPU time with a minimum effort. Since Chebyshev 

polynomials are mutually orthogonal with respect to a singular weight function )(xw = ,)1( 2/12  x  

which leads to complexities in the study of the Chebyshev spectral method. On the other hand, 

Legendre polynomials are mutually orthogonal in the standard 2L  inner product, with respect 

weight function 1)( xw , this criteria makes the Legendre spectral methods  more attractive and 

much convenient for their analysis than that of the Chebyshev spectral method. 

 We organize this article as follows. In section 2, Chebyshev polynomials and Legendre 

polynomials together with their properties are introduced. In section 3 we discuss in brief about 

the spectral collocation methods. Section 4 is devoted for deriving the Spectral Legendre 

Operational Derivative matrix in precisely. Formulation of spectral collocation method and the 

techniques of imposing boundary conditions associated with SLP’s are demonstrated in section 5. 

Convergence criteria are conferred in section 6. Section 7 includes some numerical results which 

verify of the accuracy of the current method. Finally conclusion is given.  

 

2. Legendre and Chebyshev polynomials  

The Legendre polynomials of degree n  defined on [-1, 1] is given as [17]:   
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where, 
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The Rodrigues’ Formula of degree n is defined as: 
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The n -th order Legendre differential equation is given by,  
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provided nL is bounded on   [-1,1]   i.e,  .xLn 1)(    

Properties of Legendre polynomials 
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The Legendre polynomials are orthogonal with respect to the 
2L (-1,1) inner product. Also these 

polynomials are complete in the sense that for any 
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where, the sum converges to  1,12 L  norm. Legendre polynomial which are orthogonal in the 

interval [-1,1] satisfy the following recurrence relation.  
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Chebyshev polynomials [18] of degree n over an interval [a, b] is defined by 
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The collocation points kx in [a, b] is defined as  
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)(xTn is bounded on [-1,1]. Chebyshev Gauss-Lobatto nodes are the zeroes of the orthogonal 

polynomial .)()1( 2 xTx n
  These nodes are placed symmetrically around 0x and denser near 

the end points .1x  

 

3. Legendre- Chebyshev collocation method  

The second order Sturm-Liouville eigenvalue problem is defined as:   
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(6a)  

)(xp , )(xq , 0)( x  are piecewise continuous functions and nLu  is a self adjoint operator for 

the left hand side of equation(6a). Hence eigenvalues of a self-adjoint equation are all real.     

Consider again the following homogeneous Sturm-Liouville boundary value problem (6a) 

specified as 
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For every 0 , the problem (6b) is called singular. 

Let kx  be the set of Gauss-Lobatto nodes with two end points 0x  and nx , where 

nk ,,.........2,1,0  and let np   be the set of all real  algebraic polynomials of degree n . The 

spectral collocation method for equation (6a) is to find the nn pu   such that the residual 

)()()( xxLuxR nn   equal to zero at the interior collocation points. The difference between its 

solution of any problem and its spectral approximations is of order 
pn

1
 ,where p is the regularity 

index. 

 

4. Legendre Pseudospectral differentiation matrices : 

The present method is known as nodal method based on interpolation formulas that utilize 

Lagrange polynomials. Here unknowns are the actual sampled values of the function and so no 

transformation is needed.   
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Using equ.(3) , we have              
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Lagrange polynomial for the nodes { nxxxx ,......,,, 210 } be defined as  
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We  can define 
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Again differentiating  equ.(10)  
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For any continuous function u , we  define Legendre interpolate of u  by uI L
n , can be expressed  

as the unique polynomial in np
 
such that, 
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From equ.(13)
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Equation (16) is obtained using  equ. (9) and L’ Hospital Rule. 
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Equation (17) is obtained using properties of Legendre polynomials illustrated in section 2. It can 

be shown that the )1()1(  nn Legendre Pseudospectral derivative matrix D , which computes 

the derivative exactly at the Legendre Gauss-Lobatto nodes, gives the derivative of the interpolate 

of u . Using Equ.(15),(16) and (17) ,the Legendre Pseudospectral derivative can be written 

together as, 
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5. Formulation of second order SLP’s  

Equation (9a) are to be put in the form as follows: 
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General boundary conditions (mixed type) are written as:  
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Substituting equation (22) into equation (21a),  
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Now let,   
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    Using equation (24), equation (23) becomes 
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Also from equation (22)       

 
1

1

1
0

1

2

1

1
0

)(

c

uD

u
c

d
u

n

k
kk

n










1

1

1
0

1

2

1111

1

2
0

1

21

1

1

1

11

1

1

)()()(

c

uD

cbda

uDauDc

c

d

n

k
kk

n

k
kk

n

k
kkn 




































 

On simplification  
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 Let the constants 1   and 2  be nonzero.  

 Using (25b) and (26b) the equation (19) reduces to  
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The spectral collocation solution for the eigenvalues for the SLP (19) with the general boundary 

conditions (20a) and (20b) takes the matrix equation form as given by 
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Kronecker delta. Solving eqnuation (28) the required eigenvalues are obtained. 

SLP’s with Dirichlet boundary conditions: 

The Dirichlet boundary conditions are:   

0)( au ;    0)( bu              (29)       

The spectral differentiation matrix for the SLP (19) incorporating the boundary conditions (29)     

   




1

1
,,

1

,

2 0)()())(()(
n

k
kkiiikiiki uxxqDxpD                           (30) 

Dirichlet boundary conditions (29) satisfies the following linear system
 

        uBuA ~~                  (31) 

where, 

 Tnuuuu 1,21 .........,,~
  

kia ,  kiikiiki xqDxpD ,,

1

,

2 )())(()(              (31a) 
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kib ,  kiix ,)(                          (31b) 

Solving equ. (31) required eigenvalues are obtained. 

 

6.  Convergence analysis 

The Legendre polynomials, )(xLk , ..............2,1,0k  form eigenfunctions of singular Sturm-

Liouville problems given as     

    0)(1)()1( 2 


 xLkkxLx kk .          (32) 

If   xLk  be a set of orthogonal polynomials with respect to weight function  xw , then 

lkfordxxwxLxL lk 


,0)()()(
1

1

                                     (33) 

We consider )(x  be the functions in the Hilbert space )1,1(2 wL  such that  

      .)()(
1

1

2




dxxwx              (34) 

For any continuous functions )(x  and )(x in )1,1(2 wL , we have 

dxxwxx


1

1

)()()(,              (35) 

Suppose, )(xu  be the eigenfunction of the Sturm-Liouville problem in the Hilbert space then the 

series expansion in the case of Legendre polynomials is 

)(~)(
0

xLuxu k
k

k




            (36) 

Approximate solution in terms of truncated Legendre series is 

)(~)(
0

xLuxu k

n

k
k



                            (37) 

where the coefficients,  
2

1

1

)(

)()()(
~

xL

dxxwxLxu

u

k

k

k


  ,                         (38) 

since 1)( xw , for Legendre polynomials, we have,  

 dxLL kLk
w






1

1

22

)1,1(2              (39) 

If nP  be the orthogonal projection operator onto the Legendre polynomial space n , then   

,),(),~( wwn vuvuP  nv                           (40) 

The completeness of  )(xLk  implies that, 
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  0 uPu n   as  n .   u  1,12 wL  .              (41) 

Hence, following the above convergence result, if   Cu , the produced error approaches to 

zero as n  and with exponential rate   ,0,    nm eO  for the m-th eigenvalue [18,19]. 

 

7.  Numerical Experiments 

In this section we present five numerical examples of second order Sturm-Liouville problems, 

using   the method, outlined in the previous section. The convergence of the our existing method is 

measured by the absolute error  

 .collexact

k    and the relative error : 

 

.
exact

.collexact

k






                                  (42) 

Example 1. Let us consider one dimensional Helmholtz equation [9] 

  












0)1()0(

2

2

2

yy

y
dx

yd


                            (43a)  

We transfer the equation (43a) by changing the variables 
2

1

2

1
 tx , the Sturm-Liouville 

problem transforms to  

 












0)1()1(

)1,1(,4
2

2

yy

ty
dt

yd


           (43b)  

 

Table 1: Comparison of absolute errors between the new boundary method ( -procedure) [9] and 

present method for example 1 

 

x Exact 

eigenvalues 

Relative errors of the present 

method for n=20 

Relative errors of the 

present method for n=30 

Relative errors  

[9] ,  = 10–6 

1  3.251e-14 3.251e-014 1.7e-012 

2 2 3.209e-13 3.223e-013 1.6e-012 

3 3 2.344e-13 2.344e-013 1.5e-012 

4 4 3.906e-14 8.371e-015 9.7e-013 

5 5 2.790e-13 7.924e-014 9.0e-013 

6 6 2.353e-10 4.278e-014 5.8e-013 

7 7 5.236e-08 1.594e-014 9.2e-013 

8 8 3.706e-06 8.371e-015 1.8e-013 

9 9 1.450e-04 1.240e-014 5.3 e-013 

10 10 2.168e-03 1.671e-012 1.2 e-012 
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The Differential eigenvalue problems, in matrix form, can be written together with boundary 

conditions as 

  0)(
1

1
,,

2  



k

n

k
kiki yD                   (44) 

Table1, lists first ten eigenvalues for n = 20. Smallest eigenvalue attains the accuracy upto 
1410

 

and error increases rapidly for higher eigenvalues than the lower values which is better than 

boundary method. As we increase the grid points or nodes from n=20 to n=30,the error decreases 

very fast for all the eigenvalues and accuracy is obtained upto 
1510

 .We observe that increasing of 

nodes reveal the stable behaviour of all the eigenvalues for n=30.  

From table 1, it is observed that our present approach attains more accurate results than the new 

boundary approach for one dimensional Helmholtz equation. 

Example 2. Consider the SLP studied by Celik [8] as below

  













0)()0(

0)(
2

2





yy

ye
dx

yd x

                                      (45a) 

changing the variables 
2

1

2
 tx


, the Sturm-Lioville  problem (45a) transforms to  

 
 














0)1()1(

1,1,
4 )1

2
2

2

2

yy

tyey
dx

yd t






           (45b)  

The Differential eigenvalue problems in matrix form can be written together with boundary 

conditions as 

 
 

 



















1

1
,

1
2

,

2)(
n

k
kkik

kt

ki yyeD 



         (46) 

Absolute errors obtained by using PDQ, FDQ, Chebyshev collocation and our present method are 

depicted in Table 2 for n=40. Yucel [10] showed that FDQ approach gives better convergence 

than that of DQ. We achieve almost the same accuracy in our existing method is. Thus our present 

approach is in good agreement with the other three other methods and much accurate. 

Example 3.  This SLP is taken from the article worked out by  Chen and Ho [2] 




















0)1()1(

0)0()0(

2

2

yy

yy

y
dx

yd


        (47a) 
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Table 2. Comparison of absolute errors between the Chebyshev’s collocation and present method for 

example 2 

 

k Exact 

eigenvalues 

Chebyshev           

coll. [8] 

N=40 

Spectral  

collocation 
present 

N=40 

Absolute error                            

Chebyshev 

Coll. [8] 

N=40 

Absolute 

error                                    

PDQ [10] 

N=40 

Absolute 

error                            

FDQ [10] 

N=40 

Absolute 

error Spect. 

Collocation 

(present) 

1 4.8966694 4.8966694 4.896694 0.00000 0.0000 0.0000 0.000000 

2 10.045190 0.045190 10.045190 0.00000 0.0000 0.0000 0.000000 

3 16.019267 6.019267 16.019267 0.00000 0.0000 0.0000 0.000000 

4 23.266271 3.266271 23.266271 0.00000 0.0000 0.0000 0.000000 

5 32.263707 2.263707 32.263707 0.00000 0.0000 0.0000 0.000000 

6 43.220020 3.220020 88.132119 0.00000 0.0000 0.0000 0.000000 

7 56.181594 6.181594 56.181594 0.00000 0.0000 0.0000 0.000000 

8 71.152998 1.152998 71.152998 0.00000 0.0000 0.0000 0.000000 

9 88.132119 8.132119 88.132119 0.00000 0.0000 0.0000 0.000000 

10 107.11668 07.11668 107.11668 0.00000 0.0000 0.0000 0.000000 

11 128.10502 128.10502 128.10502 0.00000 0.0000 0.0000 0.000000 

12 151.09604 51.09604 151.09604 0.00000 0.0000 0.0000 0.000000 

13 176.08900 76.08900 176.08900 0.00000 0.0000 0.0000 0.000000 

14 203.08337 03.08337 203.08337 0.00000 0.0000 0.0000 0.000000 

15 232.07881 32.07881 232.07881 0.00000 0.000 0.0000 0.000000 

16 263.07507 63.07507 263.07507 0.00000 0.010 0.0000 0.00000 

17 296.07196 296.07198 296.07196 0.00002 0.020 0.0000 0.00000 

18 331.06934 31.06940 331.06935 0.00005 0.0500 0.0000 0.00001 

19 368.06713 68.06769 368.06702 0.00052 0.5600 0.0000 0.000011 

20 407.06524 07.04923 407.06672 0.01502 16.01 0.030 0.00148 
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Figure 1: Convergence of eigenvalues  
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Change the boundary points from 0 to 1 into -1 to 1, leads the SLP as follows:

 




















0)1()1(

0)1()1(

4
2

2

yy

yy

y
dx

yd


        (47b)  

Here 
n

k is k-th estimated eigenvalue corresponding to n and the differences between the k-th and 

(k-1)-th eigenvalues are given by  1- k

i

k

i , where   is very small and 0 .    

        

Table 3.  Absolute  errors between the successive eigenvalues for example 3 

 

 

i 

Exact eigevalues 

Chen and Ho 

[2] 

Absolute 

error present 

56 - ii   

Absolute 

error present 

1112 - ii   

1 1.71 2.96 e-004 1.50e-012 

2 13.49 5.19e-002 5.97e-008 

3 43.36 5.29e-001 7.16e-004 

It is observed from Table 3 that the differences between successive eigenvalues converge to zero 

as the node number inceased and is given as follows: 

000001.0- 11

1

12

1  ,   000001.0- 11

2

12

2   and 000001.0- 11

3

12

3 
 

Chen and Ho [2] computed absolute differences between the successive eigenvalues and found 

that these differences tend to zero as he increased the order of derivatives. We also calculate the 

absolute differences and relative errors of the first three eigenvalues for n=5, 6 and n=11, 12. It is 

clear that absolute differences diminish by zero as the node numbers are increased.  

Example 4. Consider the singular Sturm-Liouville boundary value problem illustrated in the 

article of Singh and Kumar [16]  

 













0)1()0(

10,
12

2

2

yy

xxy
xdx

yd


             

(48)

 
The exact eigenvalues are computed solving the equation of the Bessel function given as. We 

compare nine approximate eigenvalues for n=20 nodes with those tabulated using Adomian 

Decomposition method [16].  
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Table 4: Comparison of eigenvalues obtained by present method and ADM for example 4. 
 

k Exact eigenvalues k Present (spectral Coll.) k Spectral Coll.  ADM [16] k 

1 1.9158529 1.9158529851 1.9158529 

2 3.5077933 3.5077933349 3.5077933 

3 5.0867340 5.0867340674 5.0867340 

4 6.6618459 6.6618459681 6.6618459 

5 8.2353150 8.2353150254 8.2353150 

6 ………… 9.8079292552 9.8079292 

7 ………… 11.3800421902 11.380042 

8 ………. 12.9518360438 12.9518360 

9 ………… 14.5235414260 14.5235964 

From Table 4, it is noticed that the first eight numerically attained eigenvalues by our present 

method are correct upto figures eight significant which is yields reasonable accuracy.  

Example 5: The Boyd equation considered by Baily et al [1], Singh and Kumar [16] 













0)1()0(

)(
1

)(
2

2

yy

xy
x

xy
dx

yd


                                                                          (49a) 

 

Table 5: Comparison of solutions obtained by present method for Boyd equation with other methods 

for example 5. 
 

 

k 

Our method 

n=20 

Adomian          

Decomposition 

1 7.3739850 7.3739850 

2 36.3360196 36.3360196 

3 85.2925821 85.2925820 

4 154.0986237 154.0986237 

5 242.7055594 242.7055594 

From Table 5, we observe that eigenvalues work out by our present approach agrees well with the 

Adomian Decomposition method. 

Example 6. Consider one dimensional Bratu nonlinear problem studied by some authors [3, 5, 11, 

12, 13, 15, 21] for 0 : 

      
 













0)1()0(

2

2

yy

e
dx

yd xy
             (50a) 

The exact  solutions of (50a) is found as   


































4
cosh

2

1

2
coshln2


xxy               (50b) 
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Solving the equation   4θcohλ2 , the values   are computed. 
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Fig. 2: Comparison of our results obtained using spectral collocation method with the nonpolyspline, 

parametric spline and Laplace transformation decomposition methods for n = 10  and  = 1. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-11

-10

-9

-8

-7

-6

-5

-4

n

lo
g
1
0
(r

e
l.
 e

rr
o
r)

 

 

spect.legn

nonpoly spln.

 parametric spln.

B-Spln.

 Decomp.

 

Fig. 3: Comparison of our result obtained using spectral collocation method with the nonpoly-spline, 

parametric spline and B-spline methods for n = 10  and  = 2. 
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Table 6: Comparison of solutions obtained by present method for Bratu equation with other methods for  = 

1 for example 6.. 

x Exact 

eigenvalues 
Present 

method 

N=10 

Parametric 

spline [15] 

N=10 

Non polyn.                                    

Spline [13] 

N=10 

Laplace 

[5] 

 

Decomp. 

[11] 

B-spline 

[12] 

0.1 0.0498467900  1.24e-009 5.87e-010 5.77e-010 1.98e-06   2.68 e-03 2.98 e-06 

0.2 0.0891899350  3.64e-010 2.58e-010 2.47e-010 3.94e-06   2.02 e-03 5.46 e-06 

0.3 0.1176090956  3.99e-011 5.59e-011 4.56 e-011 5.85e-06   1.52 e-04 7.33e- 06 

0.4 0.1347902526  1.29e - 09 8.77e-011 9.64e-011 7.70e-06   2.20 e-03 8.50 e-06 

0.5 0.1405392142  2.04e-010 1.38e-010 1.66e-010 9.47e-06   3.01e-03 8.89 e-06 

0.6 0.1347902526  1.29e-009 8.77e-010 9.64e-011 1.11 e-05   2.20e-03 8.50 e-06 

0.7 0.1176090956  1.60e-010 5.59 e-010 4.56e-011 1.26 e-05   1.52 e-04 7.33e-06 

0.8 0.0891899350  3.64e-010   2.58 e-010 2.47e-010 1.35 e-05   2.02 e-03 5.46 e-06 

0.9 0.0498467900  1.24e-009   5.87 e-010   5.77 e-010 1.20e-05   2.68 e-03 2.98 e-06 

 

 

Table 7 : Comparison of solutions obtained by the present method for Bratu equation with other 

methods with   = 2 for example 6 

 

x Exact 

eigenvalues 

Our method                 

n=10 

Parametric          

Spline [15] 

B-spline       

[12] 
Nonpoly. 

Spline 

[13],  N=10 

Laplace 

[5] 

Decompo-

sition [11] 

0.1 0.1144107440 1.44e-09 1.25e-08 2.98 e-06 9.71e-09 1.98e-06 2.68 e-03 

0.2 0.2064191156 1.98e-09 1.95e-08 5.46 e-06 1.41e-08 3.94e-06 2.02 e-03 

0.3 0.2738793116 1.18e-09 2.73e-08 7.33e-06 1.98 e-08 5.85e-06 1.52 e-04 

0.4 0.3150893646 9.84e-011 3.31e-08 8.50 e-06 2.42e-08 7.70e-06 2.20 e-03 

0.5 0.3289524214 6.03e-010 3.53 e-08 8.89 e-06 2.60e-08 9.47e-06 3.01e-03 

0.6 0.3150893646 9.84e-011 3.31e-08 8.50 e-06 2.42e-08 1.11e-05 2.20e-03 

0.7 0.2738793116 1.18e-09 2.73e-08 7.33e-06 1.98e-08 1.26e-05 1.52e-04 

0.8 0.2064191156 1.98e-09 1.95 e-08 5.46 e-06 1.41e-08 1.35e-05 2.02 e-03 

0.9 0.1144107440 1.44e-09 1.25 e-08 2.98 e-06 9.71 e-09 1.20e-05 2.68e-03 

The maximum absolute errors in solutions of Bratu nonlinear problem are compared with methods 

in [5, 11, 12, 13, 15] for n = 10 and tabulated in Tables 6 and 7. Table 6 shows that the absolute 

errors of the solutions for λ=1 are quite accurate and are in good agreement with the other 

methods. It is also noticed that for the case of  λ=2 in Table 7, the absolute errors in present 

method are reduced and are fast convergent than all other methods. Therefore, as the value of  λ 

increases the solutions are more accurate and reliable and our method is more efficient . The 

absolute errors of our method are depicted in Fig. 1 and 2, and are compared to the other methods. 

 

8. Conclusion   

In this study, the Spectral Collocation method is applied for solving linear and nonlinear second 

order eigenvalue problems, respectively. Besides, the present method is computationally efficient 

and much competent with the other published works earlier. Furthermore, this method with the aid 

of MATLAB code is well suited for both regular as well as singular Sturm-Liouville problems. 

Finally, the computational stable convergence for some eigenvalue problems is achieved. 
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