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ABSTRACT 

In this article we adopted the Mathematical model of solution of an improper integral which is 

created from the solution of the Boltzmann Transport equation (BTE) for photons. For the dose 

calculation of radiotherapy for cancer treatment, we need to solve the Boltzmann Transport 

equation. This improper integral is the important part of the BTE. Also the calculating time of the 

dose calculation is mostly dependent on the calculating time of this improper integral. For reducing 

the calculating time we need the minimum integrating area which is explained in this paper. 
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1. Introduction  

It is most important to calculate the expected dose distribution of high energy photon radiotherapy 

for cancer treatment, before starting the treatment of the patient. If the dose of radiotherapy in the 

tumour tissue is not very low then we can expect curative effect. But if the dose is so high then the 

many healthy tissue surrounding the tumour will be destroyed or they will not be able to protect or 

avoid the undesirable side effect from the high dose. Therefore, one of the main parts for a 

treatment plan is the perfect dose calculation before beginning the treatment for effective the real 

treatment.  

The Monte Carlo (MC) algorithm [2] has been used the exact dose calculation for photon and 

electron radiation by well known physical principles of interaction of radiation with human tissue 

by the transport of energy into the patient’s body. If we work carefully then its leads to the exact 

results of the dose distribution in arbitrary geometries and nowadays highly developed MC codes 

for dose calculations are available. But in this process the computational time is very high. 

Therefore this process is becoming unattractive day by day in clinical use.  

The alternative approach to circumvent the drawback of the MC codes called kernel models [1] 

offer a reliable and fast alternative for most types of radiation treatment. The pencil beam models 

are probably most in use and these models are based on the Fermi-Eyges theory of radiative trans-
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fer [10] and [5]. Pure electron radiation has been introduced by Hogstramet Mills and Almond [9] 

and later generalized to photon radiation by Gustafsson, Lind and Brahme [7] & Ulmer and Harder 

[14] too. Although the result was good but this models fail in complicated setting like air cavities 

or other inhomogeneities.  

The third access for dose calculation is the deterministic Boltzmann equation of radiative transfer 

based on the physical interactions of radiation in tissue which is attracted in the last few years.  

A mathematical model can be developed that allows in principle an exact dose calculation like as 

MC models. The resent studies for pure electron radiation were mostly done by Börgers and E.W. 

Larsen [3]. Electron and combined photon and electrion radiation were studied by Tervo et. al. [2]. 

Tervo and Kolmonen [13] in the context of inverse therapy planning and Zhengming et. al. [15] 

restricted their model to one dimensional slab geometry.  

In the mathematical model [11] for the solution of the Boltzmann transport equation of photons we 

get an improper integral. In this paper we represent the mathematical model for the solution of this 

improper integral.  

 

2. The model Boltzmann equation for photon transport [8]  

The photons move with high velocities so all the process can be regarded as time independent and 

the all calculations are done relativistic using the relativistic formulae for energy and fully 

relativistic scattering cross section. For convenience all energies are scaled by the rest energy of 

the electron 511.02 mc MeV, m being the rest mass of the election c is the velocity of light.  

Let    ,,r  dtddAd    cos   be the number of photons that move in time dt through area 

dA  into the element of solid angle d  around   with an energy in the interval  .,   d  

  is the angle between direction 
 

and outer normal of .dA                

 T  cos,sinsin,cossin where   is the zenith angle and   is the polar angle in 

Cartesian coordinate system.  

The Boltzmann transport equation for photons is  

        


2 ,,.,,,~,,.
0 s ce ddrrr


   

       ,,,  rr tot

ce  (1) 

where e  is the electrons density of the medium and  ,
~

c  is the scattering cross section of the 

photons, differential in angle and energy for comptons scattering of photons and    tot

c,  is the 

total compoton scattering cross section of photons.  

2.1 Solution of the improper intergral in the interval  ,0  

When 1i  then  11  the solution of  1  is  

              
,,, ,

0

1

, dtetgr
tot
ct e dssrii 







  

  (2) 
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where we use the notation  

              .,,.,,~ 1

,

1

, 2  


 

 ddrrg i

s coe

i

 
 (3) 

In the formula of 
 ,i

  for ,1i  we see that  1

,





ig


 contains the integral  

       .,,.,,~ 1

,
2 







ddri

s co
  (4) 

We get from  4   

        .,,.,.,,~
,,, ccc  (5) 

With  

 
 

 
 
















































 cos11

cos1
cos1

cos11

1

2
.,

22

2

3
2

,

e
c

r
 (6) 

and  

 
 

.
cos11

.,,
,



























c  (7) 

In the expression above, ..cos    

We know from [6] that     
 

 








 

,

,

,














E
h

EG
dhG

o
 (8) 

Where the sum is taken over all those   ,0E  such that   0, 
 Eh . In case there exist no 

E  in  ,0  such that   0, 
 Eh  then.  

     .0, 

o
dhG  

 

Here  

 
 

.
cos11

.,,













h  

Now we will find the value of incoming energy    for given   and  .   such that for this 

value the function h  will be zero. Let  E  be that value. Therefore  

  0.,, 
 Eh  (9) 

Also we need  

 
  

.
cos11

1
.,,

2









 






h
 (10) 

Then we proceed to the calculation of those   ,0E  such that   0.,, 
 Eh  
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 ( for given   ,0   and given   1,1.cos   .  

Therefore, we fix   ,0  and  1,1cos  C  and we define     Cxhxf ,,:   

 Cx

x




11
  for   ,0x . We can get the value of 


E  by solving the equation   .0xf   

1. Case C=1.  

  .0 


 xxxf  (11) 

Let us call  E
~

 

2. Case .1C  

Then we get the following:  

 
 Cx

x
xf




11
  for   ,0x ,and   00  f

 
(12) 

 
C

xfx



1

1lim

   (13) 

and  
  

0
11

1
2







Cx
xf    (14) 

(a) When 
c


1

1
 then  

  ,0!x  such that   0xf  and 
 11 


c

x







 (see Figure 1). Let us call 

 
.

11 


c
E









 

(b) When 
c


1

1
  then 

there is no   ,0x  such that   0xf  (see Figure 2). 
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      
      
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
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
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




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














































)17(.

,
1

1
1

1
 and ,1,othewise;0

1

1
,0,1cos. ;

)]1(1[

,,,,

)(,1.;,,1,,

2

1

1























C
C

C

C
andCif

c

ErcE

ifr
i

C

i

c

Also we need:  

1. When 1.cos  C  then  

    .11,,
~

.,,
~
























E
h

E
h

 (15) 

2. When  1,1c  and 
c


1

1
 then  

 

 
 

  2
2

11

1
11

1

1
.,,

~






















c

c
c

E
h



















 (16) 

Consequently, for given   2.,,0 s   and  r , we get:  

        

o

i

c dr   ,,.,,~ 1

,  

         
 

o c

i

c dr   .,,,., ,

1

,  

 

 

 

 

 

Where 
 

.
11

~




C
E









 

Note that equation (17) define for fixed   a function on 2S  the unit sphere. When the energy   

belongs to 








2

1
,0  then 



1
1C  is not possible and the support of the function (17) is the whole 

sphere 2S  but when the energy   is larger than 
2

1
then the support of (17) is only part of 2S , as 

shown in Figure 3.  

 

Fig. 3 
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Therefore we get from the above equation (17) 

              .,,.,,,~ 11

, 2  


 

 ddrrg i

s coe

i
 

              
ddrr i

s o ce ,,.,,~ 1

,2  

  
      

  
.

11

,,,
2

1

,










 








d
C

rCE
r

D

i

c

e  (18) 

Where 2SD   is defined by .
1

1
,0 and 1cos.:2





















C
CSD    

2.2 Change to spherical coordinates  

We change the equation (18) to spherical coordinate in here. We take 
2s  as a unit sphere then,  for 

point   2,, szyx  , we can put, x  sin  y,cos  sin  sin  and  cosz  where 

1 ,   is the zenith angle with  0  and   is the polar angle with  20  .  

Now,  

 T
T

zyx
T 


 sin,sincos,coscos,, 




















   (19) 

 T
T

zyx
T 0,cossin,sinsin,, 


 




















   (20) 























0

sin   

cossin

sincos   

sinsin

coscos

321











eee

TT  

            =   sincos,sinsin,cossin 42            (21) 

Therefore,   

 sinTT             (22) 

The given conditions are .
1

1
,0and 1cos. 












C
C    

Now we get from the above line  

CC 













1

1
0

1

1
,0    

 

1
11

1
 CC         (23) 

Therefore,  

.1cossince,1cos
1

1  


         (24) 

Since C is a function of .
1

1
,0 and 1cos. 










 

c
c   and E  is a function of C so 

we write  C  and   E  instead of C and E  accordingly in the following  1iH  .   
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Let   
      
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)(,,)(),(,
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2
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1 suppD and   

Where supp stands for “Support”.  

The explanation of support: ofsupport  Then the function. a be:Let 2 Sf
            

 

this function say supp f  is defined by supp }0)(:{supp 2   fSf . 

From the energy condition we get  
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If we look at (26) when 








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1
,0  then the inequality is true for every  , except  =0. In this 

case, D will be the total S
2
 and, for D,

2

1
  will be 2SD


  (like an umbrella, see Figure 3).  

Therefore, by considering the above condition we get from the equation (18) by changing to 

spherical coordinates when 1i ,  
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Where 
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If we define the function     22,0,0: s   given by     cos,sinsin,cossin,   

then )()(),( 1
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For easy calculation we have used for the integrating area the minimum rectangle containing *

1D  

for 
2

1
0    and the minimum rectangle containing   )( 1 DD  for 

2

1
 . 

For Mi ,.....,3,2  we get  
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for  .,0   Here also  .1* DD    

 

3  Conclusion 

We have used the Compton scattering cross section in our Boltzmann model for solving the system 

of photon equation. The differential scattering cross section are differential in energy and in solid 

angle. The Compton scattering cross section can be decomposed into a product of a cross section, 
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that is only differential in solid angle or energy and a Dirac delta function. Total cross section is 

calculated by integrating the double differential cross section with respect to energy and solid 

angle. Because the Delta functions one integral is always trivial. 

To represent the cross-section we have used the quantities with a prime for incoming particles and 

the quantities without prime for outgoing particles. We have used the following symbols; 

(a) for incoming energy we have used ;   

(b) for outgoing energy we have used ;   

(c) for incoming direction of photon we have used  ; 

(d) for outgoing direction of photon we have used   ; 

The mathematical model for the solution of an improper integral is described in this paper. This 

integration is needed for the solution of the Boltzmann transport equation. For reducing the 

calculating time, we have used the possible minimum rectangle for the integration area.  
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