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ABSTRACT 

General relativity is the most beautiful physical theory ever invented. It describes one of 

the most pervasive features of the world we experience - gravitation. The gravitational 

field acts on nearby matter defines by the curvature of space-time. The black holes of 

nature are the most perfect macroscopic objects there are in the universe that constructed 

our concept of space-time. In this paper we use Einstein’s general relativity to model the 

motions of massive particles around the two black holes: static and rotating. These 

equations of motion around black holes will be studied with special focus towards the 

variation of symmetry by the change of gravitational effect. 
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1. Introduction 

Black holes are a class of gravitational objects predicted by Einstein’s theory of general relativity 

given by him in 1915. And since then general theory of relativity provides only a single unique 

family of solutions for their descriptions. In 1916 K. Schwarzschild gave the first solution for the 

Einstein equation of general relativity. His solution described the space-time around a static 

massive black hole and was called the Schwarzschild-metric. Later, in 1963, R. Kerr discovered 

another solution: the Kerr-metric. The Kerr-metric gives the space-time outside a massive rotating 

black hole. The solution of the field equations has a mathematical sophistication: the so-called 

metric that describe curved space-time around non-spinning and spinning centers of gravitational 

attraction. The every possible question about trajectories of massive particles around a 

gravitational field is described by the geodesic equation 
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Where   is the proper time along the trajectory measured from some point on it. x

 ( = 0, 1, 2, 3) 

is a general coordinate system and one of these is a time-like coordinate. 
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A tremendous amount of algebra is involved in doing calculation in general relativity. It is almost a 

requirement that some computer algebra program be used to do the calculations. Some 

Mathematica codes had been developed by Baumann [2], Hartle [3] and Zimmerman [6]. 

Throughout this paper all of the orbits produced will be shown visually by Mathematica 9. 

 

2. Schwarzschild Solution 

One of the simplest solutions to the Einstein equations corresponds to a metric that describes the 

empty space-time outside a static spherical body of mass m is Schwarzschild solution. Which 

interpreted as the field of a highly collapsed spherically symmetric black hole [1]. The metric is 

given in the form: 
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In metric (2) Schwarzschild radius rs = 2m is called an event horizon or just a horizon [4] which 

acts like a “one-way membrane”. The overall technique here is to compute the geodesic equation 

from the Christoffel symbols (with Mathematica doing all the algebraic legwork). From this, 

differential equations will be derived that can be solved with the appropriate initial 

conditions




d

dx
. Different techniques are mentioned to solve this system of 2

nd
 order differential 

equations, Runge-Kutta mentioned in Thomas [8], Shooting method in Plebanski [5]. Using the 

Christoffel symbols we can compute geodesic equations for Schwarzschild solution: 
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Now we supply initial conditions for geodesics equations and solve for the coordinates 

parameterized in . We provide initial displacement    0,
2

,5.6,00 
x  and initial velocities in all 

three spatial coordinates  
 088.0,0,0

0






d

dx .  By using the general tensor form 1
 uug for 

massive particles we compute the initial condition for
d

dt
[7]. Mathematica cannot generate a 

general analytic solution, so we resort to numerical solution using NDSolve by taking m = 1. We 

have the following plots using proper time   up to 2000: 

 

 



Numerical Relativity: Solving Geodesics Equation 81 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

In the above plots a different set of initial conditions help us to understand what is occurring at the 

horizon. The sphere has a radius equal to the horizon mr 2 . In Schwarzschild coordinates there is 

a singularity at the horizon and hence, numerical equation solving cannot cross the horizon. We 

see clear evidence of precession, as expected in the Schwarzschild metric close to the horizon.  

Also the modest time dilation for this orbit, while the proper time   goes to 2000, the coordinate 

time t extends up to 2400. This is a sign that the equations are properly solved and numerical errors 

are not significantly disrupting the orbit. One final point is to find out the inherent spherical 

symmetry in the Schwarzschild geometry. The following plot is made with initial velocities in all 

three spatial coordinates 
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 08359.0,035.0,8.0

0






d

dx
 and initial displacement    2.0,

4
,10,00 

x , while the proper 

time   goes to 5000: 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear from the above plot that the orbit is still in a plane, although it is now tipped with respect 

to the z-axis. This is not expected in the general Kerr geometry that has a preferred rotational axis. 

 

3. Kerr Solution 

Stars that have exhausted their thermonuclear fuel are no longer able to maintain their equilibrium 

with their inward gravitational force. The star will undergo a gravitational collapse. If the star is 

massive enough, its final state will be as a black hole. And because the star rotates before the 

collapse, the collapse will result in a spinning or rotating black hole. The space-time around the 

final state of a very massive star is described by the Kerr-metric [4]. The Kerr metric using Boyer-

Lindquist coordinates given in the form: 


















































 2

2

2

1

2222

1

22

1

2
2

1

2 sin
sin2sin42

1 





d
dr

dar
rma

dtd
amr

dt
mr

ds

 

where     
)2(

)cos(

22

2

222

1

amrr

ar



 

 

This section is about the paths of free test particles outside a Kerr black hole. As these are freely 

falling particles, they are described by geodesics. 
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We will look at more complicated orbits in three dimensions for a Kerr black hole near the 1
m

a
 

limit. The sphere and red circles here no longer correspond to the Schwarzschild radius, but instead 

the outer horizon 22 amm   from Hartle [3]. Providing same initial displacement and 

initial velocities as in section-2 we have the following plot: 
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Now in the following plot we examine the case for 0a  i.e. with no angular momentum Kerr 

solution reduces to Schwarzschild solution (same as section-2).  

 

 

 

 

 

 

 

 

 

Now we set initial conditions to provide velocities in all three coordinates so as to allow for a more 

complicated orbit. The initial conditions taken same as in section-2 for compares the cases in the 

following plot: 

 

 

  

 

 

 

 

 

 

 

Here we finally see orbits completely like anything at all familiar. By orbiting in a plane other than 

the equatorial plane, the rotational effects of the black hole pull the orbit into a shape that has no 

obvious symmetry properties, unlike the Schwarzschild case, where the coordinate system could 

always be re-oriented to lie in a plane.  Despite these oddities, the time dilation is not too extreme  

(= 1.08), so this orbit is indeed the free-fall orbit in the Kerr geometry. Again in the following plot 

we compare the case when 0a in Kerr solution which leads us to Schwarzschild solution: 
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4. Conclusion 

General Relativity flows from Einstein’s field equations, which relate the mass and pressure in a 

region of space-time to the “warping” of space-time across the region of a black hole. The field 

equations reveal how this warping is experienced by any particle, whether the black hole is 

moving, accelerating, rotating, stretching, twisting, or tumbling. We have examined a wide variety 

of particle orbits both in the Kerr and Schwarzschild geometry. The Kerr geometry is described by 

a far more complicated metric than the Schwarzschild geometry to the Einstein’s equations. The 

initial experimental goal was achieved, that is highly asymmetric orbits arises from Kerr geometry, 

which normally have relatively simple paths in Schwarzschild geometry.  A fascinating follow-on 

to this paper would be that of determining changes of rotational effect from the Kerr geometry to 

Schwarzschild geometry. That is, the Kerr solution with zero angular momentum tends to the 

Schwarzschild solution representing the exterior field of a spherically symmetric source. 

 

REFERENCES 

[1] Foster, J. & Nightingale, J.D. A Short Course in General Relativity, third edition, New York, Springer, 

2006. 

[2] Gred Baumann, Mathematica for Theoretical physics, third edition, Springer Science and Business 

Media, New York, 233 Springer Street, 2005. 

[3] James B Hartle, Gravity an Introduction to Einstein's General Relativity, Addison Wesley, San 

Francisco, 2003. 

[4] Jamal Nazrul Islam, Rotating Fields in General Relativity, Cambridge University Press, 1985. 

[5] Jery Plebanski, Andrzey Krasinski, An Introduction to General Relativity and Cosmology, Cambridge 

University Press, The Edinburgh Building, CB2 2RU, 2006. 

[6] Robert L. Zimmerman, Fredrick I. Olness, Mathematica for Physics, second edition, Addison Wesley, 

San Francisco, 2002. 

[7] Shohel Ahmed, The Rotating Fields in General Relativity, M.S. thesis under Department of 

Mathematics, University of Dhaka in 2014. 

[8] Thomas W. Baumgarte  & Stuart L. Shapiro, Numerical Relativity Solving Einstein’s Equations on the 

Computer, Cambridge University Press, The Edinburgh Building, CB2 8RU, 2010. 

  


