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ABSTRACT

Let U be a non-zero square closed Lie ideal of a 2-torsion free prime ring R and f a generalized
derivation of R with the associated derivation d of R. If f acts as a homomorphism and as an anti-
homomorphism on U, then we prove that d =0 or U < Z(R), the centre of R.
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1. Introduction

Let us consider R to be an associative ring with centre Z(R) throughout the article.

A ring R is said to be 2-torsion free if 2Xx =0with xe R, then Xx=0. A ring R is called a prime
ring if forany x,yeR, xRy =0 implies x=0 or y=0.

Inaring R, the symbol [X, y] is known as the commutator of x and y, which is defined by [X,y] =
Xy — yx , where X,y € R. Two useful basic commutator identities are:

[xy,z]= Xy, 2] +[x, z]y and [X, yz] = Y[X, 2] +[x, Y]z .

An additive subgroup U of R is said to be a Lie ideal of R if [u,r]eU forall ueU and reR. A
Lie ideal U of R is called a square closed Lie ideal if u? €U forall ueU .

An additive mapping d:R— R is said to be a derivation if d(xy) =d(x)y +yd(x) for all
X, ¥ € R. An additive mapping f : R — R is called a generalized derivation if there is a derivation
d:R— R suchthat f(xy) = f(x)y +yd(x) holds forall x,yeR.

Let S be a non-empty subset of R and f a generalized derivation of R. If f(xy) = f(x)f(y) [resp.
f(xy) =f(y)f(x)] for all x,yeS, then f is said to act as a homomorphism [resp. as an anti-
homomorphism] on S.

The notion of generalized derivation was introduced by Bresar [4] and several characterizations of
generalized derivation were obtained by B. Hvala [6] and T. K. Lee [7]. In [2], Bell and Kappe
prove that if a derivation acts as a homomorphism and as an anti-homomorphism on a non-zero
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ideal I of a prime ring R, then d =0. Asma, Rehman and Shakir [1] extend this result to a square
closed Lie ideal, whereas Rehman [8] proves the same result for generalized derivations.

In this article, we extend the main result of [8] to square closed Lie ideals by using the similar
arguments to get the following result.

Theorem 1.1 Let U =0 be a square closed Lie ideal of a 2-torsion free prime ring R, and f a
generalized derivation of R with the associated derivation d of R.

(i) If facts as a homomorphism on U, then d =0 or U = Z(R) .

(i) If f acts as an anti-homomorphism on U, then d =0 or U < Z(R) .

2. Main Results

We begin with the following two lemmas (established earlier) which are needed to accomplish the
desired proof of our Theorem 1.1.

Lemma 2.1 ([3], Lemma 4) Let U & Z(R) be a Lie ideal of a 2-torsion free prime ring R and
a,beR suchthat aUb=0.Then a=0 or b=0.

Lemma 2.2 ([3], Lemma 5) Let U =0 be a Lie ideal of a 2-torsion free prime ring Rand d =0 a
derivation of R such that d(U)=0.Then U c Z(R) .

The following useful result plays an important role to reach the goal.

Lemma 2.3 If U =0 is a Lie ideal of a 2-torsion free prime ring R such that [U,U]=0, then
UcZ(R).

Proof. Forall ueU and xR, we have
[u,[u,x]]=0 1
Replacing x by xy with y e R, and using (1), we obtain

0= [u,xu, yl+[u.x]y]
= X[u, [u, yIT+[u, x]u, y1+[u, x][u, y]+[u,[u, x]]y
= 2Lu, X][u, y].
Since R is 2-torsion free, we get
[u,x][u, y]=0 2)

forall ueU and x,yeR.
Putting yz for y in (2) with z € R, and using (2), we obtain

[u,x]y[u,zZ]=0forall ueU and x,y,zeR.
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Thus, we have [u, x]R[u,z]=0.
So, [u,x]=0 or [u,z]=0 forall ueU and x,zeR (by the primeness of R).
In both the cases, we see that U = Z(R) . ©
We are now in a position to prove our main result in the following way.
Proof of Theorem 1.1 Let us assume that U < Z(R) .
Since U is a square closed Lie ideal, we have
u+w = U+Vv)u+v)—u’—v?eU forall uveU.
Also, we get uv—wu €U forall u,veU .
So, 2uveU forall u,veU.
Therefore, 4(uw) =2(2uv)weU forall u,v,weU .
(i) If f acts as a homomorphism on U, then we obtain

f (4uvw) = f (2(2uv)w) =4 f (uv)w+4uvd(w)

=4(f (u) f (v)w-+uvd(w)) (3)
forall u,vyweU .
On the other hand,
f (duww) = f (2u(2vw)) =41 (u) f (vw)
=4(f ) f (v)w+ f (u)vd(w)) 4)

forall u,vyweU .
Comparing (3) and (4), and using the 2-torsion freeness of R, we get
f (u)vd (W) = uvd (w) ,
which yields
(f(u)—u)vd(w) =0 (5)
forall u,vyweU .
Thus, we have (f(u)—-u)Ud(w)=0 forall u,weU .
In view of Lemma 2.1, we obtain that
f(u)—u=0 forall ueU or d(w)=0 forall weU .
If d(w)=0 forall weU , then by Lemma 2.2, we have d =0 or U c Z(R) .
Since U ¢ Z(R) , we get d =0.
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On the other hand, if f(u)—u=0 forall ueU , then we have

f(uy=u (6)
forall ueU.
Replacing u by 2uv in (6) for v eU , and using the 2-torsion freeness of R, we get

uv = f(uv) = f (U)v+ud(v) =uv+ud(v) forall u,veU .

Thus, we have ud(v) =0 forall u,veU .
Therefore, Ud(v) =0 forall veU .
Since [U,R]<cU , we obtain [U,R]d(v) =0 forall veU .
This yields, URd(v) =0 forall veU .
Because U =0 and R is prime, we have d(v) =0 forall veU .
Thus, by Lemma 2.1, we get d =0 or U < Z(R) . The fact U & Z(R) forces d =0.
(ii) Let us suppose that f acts as an anti-homomorphism on U. Then we have

fuv+ud(v) = f(v) )= f(v) (7
forall u,veU .
Putting 2uv in place of u in (7), and using (7), we obtain

uvd (V) = f (v)ud(v) (8)
forall u,veU .
Substituting 2wu for u in (8), we get

wuvd (v) = T (v)wud(v) 9)
forall u,vyweU .
Multiplying (8) by w on the left, we have

wuvd (v) = wf (V)ud (v) (10)
forall u,vyweU .
Comparing (9) and (10), we obtain

[w, f (V)Jud(v) =0 (11)
forall u,vyweU .
In view of Lemma 2.1, we get

[w, f(v)]=0 forall vyweU or d(v)=0 forall veU.

If d(v)=0 for all veU, then by Lemma 2.2, we find d =0 or U <Z(R), and hence d =0,
since U 2z Z(R).
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On the other hand, if

[w, f(V)]=0 (12)

for all v,weU , then upon replacing v by 2vw in (12), and using (12), we have

viw,d(w)]+[w,v]d(w) =0 (13)

forall v,weU .

Again, substituting 2uv for v in (13) for v eU , and using 2-torsion freeness of R, we get

0

uviw, d (wW)] +[w, uv]d (w)

uviw, d (w)] +ufw, v]d (w) +[w, u]vd (w)

u(vw, d (W)]+[w,v]d (w)) +[w,ulvd (w) .

[w,u]vd (w) , by using (13).

Thus, we obtain

[w,uud (w) =0 (14)

forall uweU .

Applying Lemma 2.1 in (14), we find that

d(w)=0 forall weU or [w,u]=0 forall uyweU .

If [w,u]=0 for all u,weU , the in view of Lemma 2.3, it follows that U < Z(R) , which is a
contradiction to the fact that U « Z(R) . So, we have d(w) =0 forall weU .

By using Lemma 2.2, we have d =0 or U c Z(R) .

Since U ¢ Z(R) , we conclude that d =0. o
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