GENERALIZED DERIVATIONS ACTING AS HOMOMORPHISMS AND ANTI-HOMOMORPHISMS ON LIE IDEALS OF PRIME RINGS

Akhil Chandra Paul¹ and Sujoy Chakraborty²

¹Department of Mathematics, Rajshahi University, Rajshahi, Bangladesh ²Department of Mathematics, Shahjalal University of Science and Technology, Sylhet, Bangladesh Corresponding author: sujoy chbty@yahoo.com

Received 02.12.2014

Accepted 18.08.2015

ABSTRACT

Let U be a non-zero square closed Lie ideal of a 2-torsion free prime ring R and f a generalized derivation of R with the associated derivation d of R. If f acts as a homomorphism and as an anti-homomorphism on U, then we prove that d=0 or $U \subset Z(R)$, the centre of R.

Keywords: Prime ring, Lie ideal, Generalized derivation

1. Introduction

Let us consider R to be an associative ring with centre Z(R) throughout the article.

A ring R is said to be 2-torsion free if 2x = 0 with $x \in R$, then x = 0. A ring R is called a prime ring if for any $x, y \in R$, xRy = 0 implies x = 0 or y = 0.

In a ring R, the symbol [x, y] is known as the commutator of x and y, which is defined by [x, y] = xy - yx, where $x, y \in R$. Two useful basic commutator identities are:

$$[xy, z] = x[y, z] + [x, z]y$$
 and $[x, yz] = y[x, z] + [x, y]z$.

An additive subgroup U of R is said to be a Lie ideal of R if $[u,r] \in U$ for all $u \in U$ and $r \in R$. A Lie ideal U of R is called a square closed Lie ideal if $u^2 \in U$ for all $u \in U$.

An additive mapping $d: R \to R$ is said to be a derivation if d(xy) = d(x)y + yd(x) for all $x, y \in R$. An additive mapping $f: R \to R$ is called a generalized derivation if there is a derivation $d: R \to R$ such that f(xy) = f(x)y + yd(x) holds for all $x, y \in R$.

Let S be a non-empty subset of R and f a generalized derivation of R. If f(xy) = f(x)f(y) [resp. f(xy) = f(y)f(x)] for all $x, y \in S$, then f is said to act as a homomorphism [resp. as an anti-homomorphism] on S.

The notion of generalized derivation was introduced by Bresar [4] and several characterizations of generalized derivation were obtained by B. Hvala [6] and T. K. Lee [7]. In [2], Bell and Kappe prove that if a derivation acts as a homomorphism and as an anti-homomorphism on a non-zero

74 Paul & Chakraborty

ideal I of a prime ring R, then d = 0. Asma, Rehman and Shakir [1] extend this result to a square closed Lie ideal, whereas Rehman [8] proves the same result for generalized derivations.

In this article, we extend the main result of [8] to square closed Lie ideals by using the similar arguments to get the following result.

Theorem 1.1 Let $U \neq 0$ be a square closed Lie ideal of a 2-torsion free prime ring R, and f a generalized derivation of R with the associated derivation d of R.

- (i) If facts as a homomorphism on U, then d = 0 or $U \subset Z(R)$.
- (ii) If f acts as an anti-homomorphism on U, then d = 0 or $U \subset Z(R)$.

2. Main Results

We begin with the following two lemmas (established earlier) which are needed to accomplish the desired proof of our Theorem 1.1.

Lemma 2.1 ([3], Lemma 4) Let $U \not\subset Z(R)$ be a Lie ideal of a 2-torsion free prime ring R and $a,b \in R$ such that aUb = 0. Then a = 0 or b = 0.

Lemma 2.2 ([3], Lemma 5) Let $U \neq 0$ be a Lie ideal of a 2-torsion free prime ring R and $d \neq 0$ a derivation of R such that d(U) = 0. Then $U \subset Z(R)$.

The following useful result plays an important role to reach the goal.

Lemma 2.3 If $U \neq 0$ is a Lie ideal of a 2-torsion free prime ring R such that [U,U] = 0, then $U \subset Z(R)$.

Proof. For all $u \in U$ and $x \in R$, we have

$$[u,[u,x]] = 0 \tag{1}$$

Replacing x by xy with $y \in R$, and using (1), we obtain

$$0 = [u, x[u, y] + [u, x]y]$$

$$= x[u, [u, y]] + [u, x][u, y] + [u, x][u, y] + [u, [u, x]]y$$

$$= 2[u, x][u, y].$$

Since R is 2-torsion free, we get

$$[u, x][u, y] = 0$$
 (2)

for all $u \in U$ and $x, y \in R$.

Putting yz for y in (2) with $z \in R$, and using (2), we obtain

$$[u,x]y[u,z] = 0$$
 for all $u \in U$ and $x, y, z \in R$.

Thus, we have [u, x]R[u, z] = 0.

So, [u,x] = 0 or [u,z] = 0 for all $u \in U$ and $x,z \in R$ (by the primeness of R).

In both the cases, we see that $U \subset Z(R)$. \Box

We are now in a position to prove our main result in the following way.

Proof of Theorem 1.1 Let us assume that $U \not\subset Z(R)$.

Since U is a square closed Lie ideal, we have

$$uv + vu = (u + v)(u + v) - u^2 - v^2 \in U$$
 for all $u, v \in U$.

Also, we get $uv - vu \in U$ for all $u, v \in U$.

So, $2uv \in U$ for all $u, v \in U$.

Therefore, $4(uvw) = 2(2uv)w \in U$ for all $u, v, w \in U$.

(i) If f acts as a homomorphism on U, then we obtain

$$f(4uvw) = f(2(2uv)w) = 4f(uv)w + 4uvd(w)$$

= 4(f(u)f(v)w+uvd(w)) (3)

for all $u, v, w \in U$.

On the other hand,

$$f(4uvw) = f(2u(2vw)) = 4f(u)f(vw)$$

= 4(f(u)f(v)w+f(u)vd(w)) (4)

for all $u, v, w \in U$.

Comparing (3) and (4), and using the 2-torsion freeness of R, we get

$$f(u)vd(w) = uvd(w)$$
,

which yields

$$(f(u)-u)vd(w) = 0 (5)$$

for all $u, v, w \in U$.

Thus, we have (f(u)-u)Ud(w)=0 for all $u,w\in U$.

In view of Lemma 2.1, we obtain that

$$f(u)-u=0$$
 for all $u \in U$ or $d(w)=0$ for all $w \in U$.

If d(w) = 0 for all $w \in U$, then by Lemma 2.2, we have d = 0 or $U \subset Z(R)$.

Since $U \subset Z(R)$, we get d = 0.

76 Paul & Chakraborty

On the other hand, if f(u) - u = 0 for all $u \in U$, then we have

$$f(u) = u \tag{6}$$

for all $u \in U$.

Replacing u by 2uv in (6) for $v \in U$, and using the 2-torsion freeness of R, we get

$$uv = f(uv) = f(u)v + ud(v) = uv + ud(v)$$
 for all $u, v \in U$.

Thus, we have ud(v) = 0 for all $u, v \in U$.

Therefore, Ud(v) = 0 for all $v \in U$.

Since $[U,R] \subset U$, we obtain [U,R]d(v) = 0 for all $v \in U$.

This yields, URd(v) = 0 for all $v \in U$.

Because $U \neq 0$ and R is prime, we have d(v) = 0 for all $v \in U$.

Thus, by Lemma 2.1, we get d = 0 or $U \subset Z(R)$. The fact $U \not\subset Z(R)$ forces d = 0.

(ii) Let us suppose that f acts as an anti-homomorphism on U. Then we have

$$f(u)v + ud(v) = f(v)f(u) = f(uv)$$
(7)

for all $u, v \in U$.

Putting 2uv in place of u in (7), and using (7), we obtain

$$uvd(v) = f(v)ud(v) \tag{8}$$

for all $u, v \in U$.

Substituting 2wu for u in (8), we get

$$wuvd(v) = f(v)wud(v) \tag{9}$$

for all $u, v, w \in U$.

Multiplying (8) by w on the left, we have

$$wuvd(v) = wf(v)ud(v)$$
(10)

for all $u, v, w \in U$.

Comparing (9) and (10), we obtain

$$[w, f(v)]ud(v) = 0 \tag{11}$$

for all $u, v, w \in U$.

In view of Lemma 2.1, we get

$$[w, f(v)] = 0$$
 for all $v, w \in U$ or $d(v) = 0$ for all $v \in U$.

If d(v) = 0 for all $v \in U$, then by Lemma 2.2, we find d = 0 or $U \subset Z(R)$, and hence d = 0, since $U \subset Z(R)$.

On the other hand, if

$$[w, f(v)] = 0 \tag{12}$$

for all $v, w \in U$, then upon replacing v by 2vw in (12), and using (12), we have

$$v[w, d(w)] + [w, v]d(w) = 0$$
(13)

for all $v, w \in U$.

Again, substituting 2uv for v in (13) for $v \in U$, and using 2-torsion freeness of R, we get

$$0 = uv[w,d(w)] + [w,uv]d(w)$$

$$= uv[w,d(w)] + u[w,v]d(w) + [w,u]vd(w)$$

$$= u(v[w,d(w)] + [w,v]d(w)) + [w,u]vd(w).$$

= [w,u]vd(w), by using (13).

Thus, we obtain

$$[w,u]Ud(w) = 0 \tag{14}$$

for all $u, w \in U$.

Applying Lemma 2.1 in (14), we find that

$$d(w) = 0$$
 for all $w \in U$ or $[w, u] = 0$ for all $u, w \in U$.

If [w,u] = 0 for all $u, w \in U$, the in view of Lemma 2.3, it follows that $U \subset Z(R)$, which is a contradiction to the fact that $U \not\subset Z(R)$. So, we have d(w) = 0 for all $w \in U$.

By using Lemma 2.2, we have d = 0 or $U \subset Z(R)$.

Since $U \not\subset Z(R)$, we conclude that d = 0. \Box

REFERENCES

- [1] A. Asma, N. Rehman and A. Shakir, (2003), *On Lie ideals with derivations as homomorphisms and anti-homomorphisms*, Acta Math. Hungar., 101(1–2): 79-82.
- [2] H. E. Bell and L. C. Kappe, (1989), Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar., 53(3-4):339-346.
- [3] Bergen, I. N. Herstein and J. W. Kerr, (1981), *Lie ideals and derivations of prime rings*, J. Algebra, 71: 259-267.
- [4] M. Bresar, (1991), On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J., 33:80-93.
- [5] I. N. Herstein, (1969), Topics in Ring Theory, University of Chicago Press, Chicago.
- [6] B. Hvala, (1998), Generalized derivations in prime rings, Comm. Algebra, 26(4): 1147-1166.
- [7] T. K. Lee, (1999), Generalized derivations of left faithful rings, Comm. Algebra, 27(8): 4057-4073.
- [8] N. Rehman, (2004), On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Mat., 39(59): 27-30.