
GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 35 (2015) 41-55

AN ALGORITHMIC TECHNIQUE FOR SOLVING NON-

LINEAR PROGRAMMING AND QUADRATIC

PROGRAMMING PROBLEMS

H. K. Das
1
 and M. Babul Hasan

Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh
1
Corresponding author: hkdas_math@du.ac.bd

Received 05.09.2014 Accepted 28.03.2015

ABSTRACT

In this paper, we improve a combined algorithm and develop a uniform computer

technique for solving constrained, unconstrained Non Linear Programming (NLP) and

Quadratic Programming (QP) problems into a single framework. For this, we first review

the basic algorithms of convex and concave QP as well as general NLP problems. We

also focus on the development of the graphical representations. We use

MATHEMATICA 9.0 to develop this algorithmic technique. We present a number of

numerical examples to demonstrate our method.

Keywords: Constrained, Unconstrained, Optimization, Non Linear Programming, Quadratic

Programming, Computer Algebra

1. Introduction

In the literature of operation research a linearly or nonlinearly constrained and unconstrained

problem with a linear or nonlinear objective functions has many applications; this is often viewed

as a discipline in and of itself. NLP is a mathematical technique for determining the optimal

solutions to many business problems. Because of its usefulness in production planning, financial

and corporate planning, health care and hospital planning of QP & NLP problems have attracted

considerable research and interest in recent years. It has become an important branch of operation

research and has a wide variety of applications in such areas as the military, economics,

engineering optimization and management sciences (Nash and Sofer 1996). There is an extremely

diverse range of practical applications. Ayoade[1]said in his paper that “It is impossible to develop

a single algorithm that will solve all optimization problems efficiently and as such a number of

methods have been developed”. Unlike the simplex method and basis matrix for LP, no single

algorithm is available to solve all these different types of problems. So, our focus is to develop a

uniform algorithm and its uniform computer technique that will be able to solve different type of

NLP and QP problems into a single framework. However, recently there are several researchers

who worked on the computer development of different types of NLP problems. In 2012, Datta &

Hasan[6,7] developed computer technique for the Lagrange method and Karush-Kuhn-Tucker

Method. Later, in 2013, Das and Hasan [4] developed a generalized computer technique for

42 Das & Hasan

solving unconstrained NLP problems. Recently, in 2014, Das, Saha & Hasan [5] have studied on

the 1-D Simplex Search and showed some merits and demerits in 1-D methods through numerical

experiments. But all of them are silent about QP problems and the uniform computer technique. In

this paper, we combine those computer techniques with some modifications and then developed a

uniform computer technique for solving NLP and QP problems. Now-a-days, the world is being

ruled by the fastest. So, we must try to finish our job as fast as we can. Moreover, hand calculation

is very tough and time consuming for analyzing the NLP and QP problems with large number of

variables and constrains. In this paper, our aim is to develop a uniform method whereas; one does

not need to be confused about the type of the NLP problems.

We now consider the general optimization problem to minimize or maximize the objective

function under unconstraint, nonlinear equality or inequality type constraints. The objective of this

research is to evaluate the performance of some existing algorithms for solving NLP and QP

problems. For reviewing the existing algorithm we need to develop its computational technique. It

is extremely difficult to state that one method is definitely superior to another method without

analytical or numerical experimental investigation. On the other hand, in this research, we find the

prescribed paper [4, 5, 6, 7] which is successful in particular type of NLP problems and so we have

modified this algorithm into a single framework successfully by developing a new computer

technique. Finally, we develop a computer technique for those types of NLP problems. It is

important that all the test examples come with an optimal solution obtained by analytical or

numerical experimental investigation. For this reason, we have evaluated the performance of all

the algorithms by the computational way in attempting to solve a set of test problems.

The rest of the paper is organized as follows. In Section 2, we briefly discuss some existing

methods with its merits and demerits on consideration to this paper. In Section 3, we develop an

algorithmic technique and its computer coding for solving NLP and QP problems using

MATHEMATICA [8, 13]. We have shown the steps of the algorithm and program in a table so that

it can be visualize instantly what method is applied there. In Section 4, we present the

comparisons, results and discussion among the selected test problems (TP).

2. Existing Methods

In this section, we focus on the some existing methods for solving NLP and QP with its merits and

demerits in the real world problems. We then discuss precisely the formulation of different type of

NLP problems. We also briefly discuss the formulation of QP and NLP problems which has

shown the necessity for developing a uniform technique.

2.1 One Dimensional Method of NLP [H. K. Das 4, 5]

In this section, we discuss the 1-D simplex search methods for finding the optimum solutions and

also present two flowcharts of Choo & Kim two phase method in H. K. Das & Hasan [4].

An Algorithmic Technique for Solving Non-linear Programming 43

2.1.1 Choo & Kim 1-D Simplex Search

In 1987 this method was proposed by Choo and Kim which is one of the most robust and efficient

1-D direct search methods which had been analyzed in H. K. Das and Hasan [3, 4].

i. This method can start with any two points and converges to the optimum solution.

ii. With appropriate parameters, this algorithm can be made to behave equivalent to some of

the most efficient 1-D search methods.

2.1.2 Powels 1-D Simplex Search

In here, we summarize the “Powels” 1-D simplex search method which is given as follows:

i. Particular attention was given to the contribution of theoretical analysis.

ii. Reviews some of the most successful methods for unconstrained, constrained and non

differentiable optimization calculations.

2.1.3 Golden Section & Fibonacci Search

In this section, we summarize the method of “Golden Section” search method. In 1953 “Golden

section” and “Fibonacci search” was developed by Kiefer which is given as follows:

i. Find the extremum of a unimodal function over an interval without using derivatives.

ii. Golden section narrows the range of values and it is based on the golden ratio.

iii. If the interval is not optimal then the method will be failand needs much iteration.

2.1.3 Nelder and Mead (NM) Method

In 1965 Nelder and Mead methods were proposed by Nelder and Mead which discuss as follows:

i. It designed for unconstrained optimization without using gradients.

ii. Operation of this method is to rescale on the local behavior of the function by using four

basic procedures: 1. Reflection 2. Expansion 3. Contraction 4. Shrinking

2.2 Karush-Kuhn-Tucker Method [6]

Karush-Kuhn-Tucker (KKT) conditions for the nonlinear program with its merits and demerits.

Let be a real valued function of variables defined by

and be a set of right hand side constants of (1). If either

or some ; or both are non-linear, then the problem of

determining the n-type which makes a maximum or minimum and satisfies

the following conditions, is called a general NLP problem such that

http://en.wikipedia.org/wiki/Jack_Kiefer_%28mathematician%29
http://en.wikipedia.org/wiki/Extremum
http://en.wikipedia.org/wiki/Golden_ratio

44 Das & Hasan

g
1
 (x1, x2, …, xn) {, ≥ or = }b1

g
2
 (x1, x2, …, xn) {, ≥ or = }b2

… … … … (1)

… … … …

g
m
 (x1, x2, …, xn) {, ≥ or = }bm

where are real valued functions of variables and

1. This method can be used to solve NLP’s in when all the constraints are not equal.

2. This method fails when the constraints are equal.

In the following , a theorem (a table) is given to visualize the standard form of KKT that we have

used in our algorithm.

Theorem 1:

Assume that are differentiable functions satisfying certain

regularity condition. Then (

) can be an optimal solution for the NLP only

if there exist equations such that all the following KKT conditions are satisfied. (Wayne L.

Winston [14]

Table 1: Standard Form of KKT

1.

 ∑

2.

 (

 ∑

)

3.
 for

4. [
] for

5.
 for

6. for

2.3 Lagrange’s Method [7]

The Lagrange’s has been discussed on the following way:

1. Lagrange multipliers can be used to solve NLP’s in which all the constraints are equal.

2. To solve equal constraints we associate a multiplier with the i-th constraint.

In general construction, we focus on way of recognition an optimal solution for NLP problem with

equality constraints. Lagrange multipliers can be used to solve such problems. We consider NLP’s

of the following types:

An Algorithmic Technique for Solving Non-linear Programming 45

Max (or Min):

 s/t,

 ()

To solve , we associate a multiplier with the i-th constraint in and hence Lagrangian

 ∑ [

]

Then we attempt to find a point ̅ ̅ ̅ ̅ ̅ ̅ that maximizes (or

minimize) In many situations ̅ ̅ ̅

will solve . Suppose that is a maximization problem. If

maximizes then at

Here

 is the partial derivative of with respect to This shows that ̅ ̅ ̅ will

satisfy the constraints in .

To show that ̅ ̅ ̅ solves let ́ ́ ́ be any point that is in ’s

feasible region. Since ̅ ̅ ̅ ̅ ̅ ̅ maximizes , for any numbers

 ́ ́ ́

we have,

 ̅ ̅ ̅ ̅ ̅ ̅ (́ ́ ́ ́ ́ ́)

Since ̅ ̅ ̅ and ́ ́ ́ are both feasible in , the terms in

we have,

 ̅ ̅ ̅ ̅ ̅ ̅ (́ ́ ́ ́ ́ ́)

Since ̅ ̅ ̅ and ́ ́ ́ are both feasible in , the terms in

 involving the are all zero, and now becomes

 ̅ ̅ ̅ ́ ́ ́ .

Thus, ̅ ̅ ̅ does solve . In short, if ̅ ̅ ̅ ̅ ̅ ̅ shows

the unconstrained maximization problem Maximize

Then ̅ ̅ ̅ solves .We know that for ̅ ̅ ̅ ̅ ̅ ̅ to

solve is necessary that at ̅ ̅ ̅ ̅ ̅ ̅

 0… .

46 Das & Hasan

Theorem 2:

Suppose is a maximization problem. If is a concave function and each

 is a linear function, then any point ̅ ̅ ̅ ̅ ̅ ̅

satisfying will yield an optimal solution ̅ ̅ ̅ to

The above theorem gives conditions implying that any point

 ̅ ̅ ̅ ̅ ̅ ̅ that satisfying will yield an optimal solution

 ̅ ̅ ̅ to []

Theorem 3:

Suppose is a minimization problem. If is a convax function and each

 is a linear function, then any point ̅ ̅ ̅ ̅ ̅ ̅

satisfying will yield an optimal solution ̅ ̅ ̅ to
 .Even if the hypothesis of

these theorems fail to hold, it is possible that any point satisfying will solve Wayne L.

Winston [14].

2.4 Swarup’s Simplex Type Method for Solving QP [10, 12]

The iterative procedure for the solution of a QP problem by Swarup’s Simplex Type Method can

be summarized as follows:

1. It is applicable only special type of QP.

2. Adding slack variables to the constraints of (1), we have

(QPI): Maximize

 Subject to: , where are defined.

3. Optimality Condition :The value of the objective function we will improve If ̂

 (
) (

) (
)(

) where ̂

4. The solution can be improved until for all when ever all for

all at a simplex table,

 Where, (
) (

) (
)(

)

The solution becomes optimal and the process terminates.

Criterion1: (Choice of the entering variable).

Criterion 2: (Choice of the outgoing variable).

To develop a uniform method by implement the existing methods, we have modified or extended

the existing methods for solving all type of NLP and QP problems in a single framework. In Table

2, we are going to present the Necessary and Sufficient conditions of the optimality for the NLP

problems.

An Algorithmic Technique for Solving Non-linear Programming 47

Table 2. Necessary and Sufficient conditions for optimality

Problem Type Necessary Conditions for

Optimality

Also Sufficient If:

One-variable unconstrained

 concave

Multivariable unconstrained

 concave

Constrained, nonnegative

constraints only

 (Or ≤ 0 if

 concave

General Constrained Problem Karush-Khun-Tucker conditions concave and

 convex

3. Algorithmic Technique

In here, we first develop a uniform algorithm for solving NLP and QP problems and we then

develop a code using programming language MATHEMATICA [7,12].

3.1 Uniform Algorithmic Technique For Solving NLP and QP

In this section, we combine relevant existing algorithms for solving NLP and QP problems. In our

method firstly we separate the type of the NLP problems and then combine the different type of

existing NLP problems. The whole algorithm steps proceed as follows:

Step1: Input number of variables (v), number of inequality constraints (vv), number of equality

constraints (vvv).

Step 2: If number of variables v=1, number of inequality constraints vv=0, number of equality

constraints vvv=0 then go to the following Step.

Step 3: Finding the optimum interval using the following Sub Steps.

Sub-Step 1: Select ant two points b1 and w1 such that f(w1) ≥ f(b1). Set k =1.

Sub-Step 2: Contraction: c = b1 + β(w1 – b1). If f(c)  f(b1) then set m = b1, h = c, s = w1 and stop.

Otherwise go to Sub-step 3.

Sub-Step 3: Reflection: rk = bk + α(bk – wk).

Sub-Step 4: If f(rk) ≥ f(bk) then go to Sub-Step 5.

Expansion: ek = bk + (α+ ) (wk + bk). If f(ek) > f(rk) then set wk+1 = bk, bk+1 = rk, rk+1 = ek, k = k + 1

and go to Sub-Step 5. Otherwise set wk+1 = bk, bk+1 = rk, k = k + 1 and go to Sub-Step 3.

Sub-Step 5: Set h = bk if f(wk)  f(rk) then set m = wk, s = rk and stop and go to step-4. Otherwise set

m = rk, s = wk and go to the step 3.

Step 4: To find the optimal solution ̅ of the NLP we use the value m = rk, s = wk and follow the

following Sub-Steps.

48 Das & Hasan

Sub-Step 1: Set k=0 and go to Sub-Step 2.

Sub-Step 2: Reflection: let rk = hk + α(hk – mk). go to Sub-Step 3.

Sub-Step 3: If f(rk) ≥ f(hk) then go to Sub-Step 5.

Expansion: ek = hk + (α+ ) (hk + mk). If f(ek) > f(rk) then go to sub-step 4. Otherwise let hk+1 = ek,

mk+1 = rk, sk+1 = sk, k = k + 1 and go to Sub-Step 2.

Sub-Step 4: If f(rk) ≥ f(hk) then let hk+1 = ek, mk+1 = rk, sk+1 = sk, k = k + 1 and go to Sub-Step 2.

Otherwise, let hk+1 = rk, mk+1 = ek, sk+1 = hk, k = k + 1 and go to Sub-Step 2.

Sub-Step 5: Contraction: if f(rk) ≥ f(mk) then let hk+1 = hk, mk+1 = rk, sk+1 = mk, k = k + 1 and go to

Sub-Step 2. Otherwise, we let ck = hk + β(mk – hk). If f(ck)  f(hk) then let hk+1 = hk, mk+1 = ck, sk+1 =

rk, k = k + 1 and go to Sub-Step 2. Otherwise, we let hk+1 = ck, mk+1 = hk, sk+1 = mk, k = k + 1 and go

to Sub-Step 2.

Sub-Step (6): Stop and optimal solution find.

Step 5: If number of variables v≥2, number of inequality constraints vv=0, number of equality

constraints vvv=0 then go to the following Sub-Step.

Sub-Step 1: Select and any initial trial solution . Max , .

 Sub-Step 2: Express as a function t by setting

 and

Sub-Step 3: Using the one dimensional search procedure find s.t.

 ()is maximized over

Sub-Step 4: Calculate at new If i.e. If

 then stop.

Step 6: If number of variables v ≥ 1, number of inequality constraints vv≠0, number of equality

constraints vvv=0 then go to the following Sub-Step.

Sub-Step 1: Input number of constraints (n), number of variables (m) and the unknowns as

 objective function (f) and the constraints 1 2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ in term of

unknowns.

Sub-Step 2: Input mm, for maximization input 0 for minimization input 1

Sub-Step 3: Define “Lagrange”. If mm = 0 set ∑

 else set ∑

 .

Sub-Step 4: Set eqs of 1 2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 1 2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Sub-Step 5: Sol = Solve [eqs].

Sub-Step 6: Discard the solutions from sol for which gi > 0 or ui < 0.

Sub-Step 7: Print feasible solution sol.

Sub-Step 8: Calculate objective function value for each elements of sol.

An Algorithmic Technique for Solving Non-linear Programming 49

Sub-Step 9: For mm = 0 find maximum value of objective functions and their corresponding index

or mm = 1 find minimization value of objective functioins and their corresponding index.

Sub-Step 10: Print solution corresponding to index and the objective functional value.If not, go to

step 7.

Step 7: If number of variables v ≥ 1, number of inequality constraints vv≠0, number of equality

constraints vvv ≠ 0 then go to the following Sub-Step.

Sub-Step 1: Input number of variables (m), number of constraints (n), the unknowns

as {x1, x2, x3, …, xn}, objective function (f).

Sub-step 2: For maximization input zero (0) and for minimization input one (1).

Sub-Step 3: If o = 0; set ∑

 else set ∑

 Sub-Step 4 : Solve

 for j = 1, … m and solve

 for i = 1, …, n.

Sub-Step 5: Set sol in functional (f).

Sub-Step 6: Print solution and objection functional value.

Stop.

3.2 Program Organization

In this section, we introduce a uniform computer technique and we will use five module functions

MODIFIED[PHASE0_], PHASE[1_], MA[GRADIENT_], VOGOB[KT_] and MAA[Lag_].

The main module function is main [unconcons_] which call all the module functions.

3.2.1 Unique Computer Techniques

For any new technique, sometimes it comes urgency to make programming code to verify lots of

different test problems whether the method is subject to generalized or not. Considering this notion

in care, we just want to view the programs coded by us using the programming language

MATHEMATICA corresponding to our unique algorithm.

In the current section, we develop a generalized code for solving NLP problems using

MATHEMATICA [7] corresponding to the algorithm in Section 3.1. Our develop computer

technique is not presented here for the page limitation. But, if the readers are interest to observe the

reliability of our developed code then please contact with authors via editor.

3.3 Programming Input and Output Organization

In the current section, we will present the programming input and output information and how to

build up the graphical representations of the NLP problems.

3.3.1 Programming Input

Our input information corresponding to the program in Section 3.2.1 to evaluate the performance

of the unique algorithm in Section 3.1 and our developed code is visualized in this section. The

50 Das & Hasan

following table is the input of the module function. If we run the coded program by pressing the

“Enter” from the Key board then we will get the following "Local kernel Input" box.

On the screen of Local kernel Input (LKI), it shows that number of variables, number of inequality

constraints, number of equality constraints. We consider the example 5 where variables are in the

form {x1, x2} and constraints are given in the form .

Table 3. Coding Input Information.

Module Functions Fig 1: Local Kernel Input Box

MODIFIED[PHASE0_]

PHASE[1_]

MA[GRADIENT_]

VOGOB[KT_]

MAA[Lag_]

main [unconcons_]

3.3.2 Programming Output

In this paper, we not only summarize the existing methods but also develop a uniform computer

technique which can solve all type of NLP and QP problems. The Input and output information of

a number of test problems is given below. We also show the workability of our technique. To

observe the differences between our technique and the existing techniques, we solve the same

problem which was given in Table 3 and obtain the same solutions. The main difference is that

those methods can solve only particular type of problems but our technique works for all NLP and

QP problems.

For considering brevity throughout this paper, we have chosen some selected test problem (TP) in

the following from the problem list in Section 4.1.

Test Problem Number 1

Input

main[unconcons]

Output

Final solution is given below:

An Algorithmic Technique for Solving Non-linear Programming 51

After 35 iterations it gives the solution approximate to (1,1) and the optimal value approximate to 1.

Test Problem Number 2

Input

main[unconcons]

Output:

No. of Iteration in modified phase 0 is 1 and No. of Iteration in phase 1 21. Total iteration is 22

whaereas if we use the Cho & Kim Phase 0 and Phase1 then the total iteration is 34.

Test Problem Number 3

After 21th iteration we get the approximate result is as (0,0,0) with the optimal value 0.

Test Problem Number 4

Fig. 2: Graphical representation of TP : 4

52 Das & Hasan

Test Problem Number 7

Outline of Graphical Representation, we have used the following steps to construct the graphical

representation of Fig.3 in which way we can visualize the feasible region of the NLP problems.

<<Graphics `FilledPlot`

h1=x1+x2+x3+x4-1;

sol=Solve[h10,x2]

 {{x21-x1-x3-x4}}

g1=sol[[1,1,2]]

 1-x1-x3-x4

{o1,o2}={2,1};

os=0;

f=(-4/3)x1+(-8/3)x2-4x3-10x4+2x1^2+ 4x2^2+6 x3^2 (1/2)x4^2;

Solve[fos,x2]

 f1=%[[1,1,2]]

fig1=FilledPlot3D[{0,g1},{x1,0,4},{x3,0,4},{x4,0,4},Fills{{1,2},GrayLevel[.5],GrayLevel[.5],GrayLevel[.5]}]

 FilledPlot3D[{0,1-x1-x3-x4},{x1,0,4},{x3,0,4},{x4,0,4},Fills{{1,2},GrayLevel[0.5],GrayLevel[0.5],GrayLevel[0.5]}]

m=-1/D[g1,x1]/.x1o1;Solve[x2-o2m(x1-o1),x2]/.x12;

n1=m(x1-o1)+o2

fig2=Plot[{g1,f1,n1},{x1,4,10},PlotStyle{RGBColor[1,0,0]},PlotStyle{RGBColor[0,0,1]},AspectRatioAutomatic]

Show[{fig1,fig2,Graphics[Circle[{o1,o2},.3]]},PlotRange{0,10},AspectRatioAutomatic]

Fig. 3: Graphical representation of TPN: 7

The shaded region and the small circle represent the feasible region and the solution point

respectively.

4. Comparison and Discussion

The following representative test problems are used to assess the existing algorithms and our

unique computer technique. The analytical properties of these functions can be found in the cited

reference.

4.1 Results and Discussions

The efficiency of our technique claimed from the very beginning in this paper is exhibited in the

following through numerical experiment with a number of test problems. Here we give a number

of numerical examples to show the efficiency of the different techniques.

An Algorithmic Technique for Solving Non-linear Programming 53

Example: 1 This numerical example is taken from H. K. Das and Hasan [4].

Consider the functions Maximization: g = 2x1x2 + 2x2 – x1
2
 – 2x2

2
.

Example: 2 This numerical example is taken from H. K. Das, Saha and Hasan [5].

Suppose that the function to be maximized is f(x) = 62x
2
 – 28x – 4 and choose the initial interval in

arbitrarily.

Example: 3 This numerical example is taken from H. K. Das and Hasan [4].

Maximization: starting with initial solution (1,1,1).

Example :4 This numerical example is taken from Hasan [10].

Maximization:

Subject-to, , , ,

Example: 5 This numerical example is taken from Datta and Hasan [6].

Maximization:

Subject to, , 3

Example: 6 This numerical example is taken from Datta and Hasan [6].

Minimization:

Subject to,

Example: 7 This numerical example is taken from Datta and Hasan [7].

Maximize

subject-to, ,

Example: 8 This numerical example is taken from H. K. Das & Hasan [4].

Find the optimal solution to Max . s/t. with in an initial length of 0.8.

Table 4. Optimality of the Test Problems(TP)

Test Problem

Number

Optimality

Type

Number of

variables

Initial

Value

Optimal

solution

Optimal

value

1 Maximize 2 1

2 Maximize 1 No

3 Maximize 3 No (0,0,0) 0

4 Maximize 3 No (1,1,1/2) 75/2

5 Maximize 2 No (

)

6 Minimize 2 No 3/2

7 Minimize 2 No (2,1) 0

8 Maximize 1 No 4 27 5 2 .

54 Das & Hasan

In the above Table 4, we have seen that we have taken various types of problems to demonstrate

our technique. For this, we had to modify or extended the existing methods.

4.2 Time Comparison

In this section, we present a time comparison chart to show the efficiency of our algorithmic

technique. We have used the following computer configuration:

Processor: Intel(R) Pentium(R) Dual CPU E2180@2.00GHZ 2.00GHZ, Memory (RAM):1.00 GB

and the System type: 32-bit operating system. In briefly, Time Consuming: =TC. The following

table has showed that our technique can solve various types of NLP problems. For solving NLP

problems with “≥ type” or “= type” constraints, one needs to solve that problem by Two-phase or

Big-M simplex method for solving QP problems which is clumsy and time consuming. But in our

technique, one does not need to be confused about the type of the NLP and QP problems.

Table 5. Accuracy of our Computer technique

TPN Existing methods

Iteration

Our

Iteration

Manual Coding Time Command

Time

1 35 35 TC 0.21 0.219

2 Failed 19 TC 0.13 0.14

3 21 21 TC 0.221 0.233

4 Algorithmic steps(AS) AS TC 0.121 0.243

5 AS AS TC 0.102 0.212

6 AS TC 0.113 0.187

7 AS AS TC 0.212 0.243

8 AS AS TC 0.50 0.101

We prepare this paper on the basis of existing methods but new work is given with its modification

through computer algebra. We use modified phase of Choo & Kim, Golden section, Gradient

Search method, Lagrangian multipliers and Khun Tucker Conditions. To our knowledge, there is

no code which can solve any NLP problems in a single framework. Finally, we have shown from

the above table 5 that our technique is successful than the other existing methods.

5. Conclusion

In this paper, we improved a combined algorithm and developed its computer technique for

solving NLP and QP problems. We also focused on the development of the graphical

representations of NLP problems. We demonstrated our technique with unconstrained NLP and

linearly or non-linearly constrained NLP & QP problems. We observed that the results obtained by

our algorithmic technique are completely identical with that of the other methods which are

laborious and time consuming.

mailto:E2180@2.00GHZ

An Algorithmic Technique for Solving Non-linear Programming 55

REFERENCE

[1] Ayoade K., Numerical Experiments with One Dimensional Non-linear Simples search, Computers &

Operations Research, 18, (1991), pp.497-506.

[2] Charnes, A. and W.W. Cooper, Programming with fraction functions, Naval Research Logistics

Quarterly, 9, (1962), pp.181-186.

[3] Choo E. and C. Kim, One dimension simplex search, Computer and Operations Research, 14, (1987),

pp.47-54.

[4] Das H.K. and M. Babul Hasan, A Generalized Computer Technique for Solving Unconstrained Non-

Linear Programming Problems, Dhaka University Journal of Science, 61(1), (2013), pp.75-80.

[5] Das H. K., T. Saha and M. Babul Hasan, A Study on 1-D Simplex Search and its Numerical

Experiments through Computer Algebra, Dhaka University Journal of Science, 62(2), (2014), pp. 96-

102.

[6] Datta B. K. and M Babul Hasan, A computer oriented Lagrange method for Solving Non-Linear

Programming Problems, Dhaka University Journal of Science, 59(1), (2011), pp. 71-75.

[7] Datta B. K. and M. Babul Hasan, A Code for Solving Non-Linear Programming Problems, Dhaka

University Journal of Science, 59(1), (2011), pp. 25-31.

[8] noD, eneEDE , meirnS S intuhDE mEahES , werarM-lhuu,nEM noas mrD sarDehSeo SrSihDetoD,n.C,

(2001).

[9] Jenson D. L. A. J. King, A Decomposition method for QP, IBM SYSREMS JOURNAL, 31(1), (1992).

[10] Hasan M. Babul , A Technique for Solving Special Type Quadratic Programming Problems, Dhaka

University Journal of Science, 60(2), (2012), pp.209-215 .

[11] Sanders J.L, A Nonlinear Decomposition Principle, Operation Research, 13(2), (1965), pp.266-271.

[12] Swarup, K., Quadratic Programming” CCERO (Belgium), 8(2), (1966), pp.132-136.

[13] Wolfram, S. Mathematica, Addision-Wesly Publishing Company, Melno Park, California, New York,

(2000).

[14] Wayne L. Winston, Application and algorithms, Dexbury press, Belmont, California, U.S.A, (1994).

