
GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 35 (2015) 41-55 

AN ALGORITHMIC TECHNIQUE FOR SOLVING NON-

LINEAR PROGRAMMING AND QUADRATIC 

PROGRAMMING PROBLEMS 
 

H. K. Das
1
 and M. Babul Hasan 

Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh  
1
Corresponding author:  hkdas_math@du.ac.bd 

 

Received 05.09.2014                    Accepted 28.03.2015 

 

ABSTRACT 

In this paper, we improve a combined algorithm and develop a uniform computer 

technique for solving constrained, unconstrained Non Linear Programming (NLP) and 

Quadratic Programming (QP) problems into a single framework. For this, we first review 

the basic algorithms of convex and concave QP as well as general NLP problems. We 

also focus on the development of the graphical representations. We use 

MATHEMATICA 9.0 to develop this algorithmic technique. We present a number of 

numerical examples to demonstrate our method. 
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Programming, Computer Algebra 

 

1. Introduction 

In the literature of operation research a linearly or nonlinearly constrained and unconstrained 

problem with a linear or nonlinear objective functions has many applications; this is often viewed 

as a discipline in and of itself. NLP is a mathematical technique for determining the optimal 

solutions to many business problems. Because of its usefulness in production planning, financial 

and corporate planning, health care and hospital planning of QP & NLP problems have attracted 

considerable research and interest in recent years. It has become an important branch of operation 

research and has a wide variety of applications in such areas as the military, economics, 

engineering optimization and management sciences (Nash and Sofer 1996 ). There is an extremely 

diverse range of practical applications. Ayoade[1]said in his paper that “It is impossible to develop 

a single algorithm that will solve all optimization problems efficiently and as such a number of 

methods have been developed”. Unlike the simplex method and basis matrix for LP, no single 

algorithm is available to solve all these different types of problems. So, our focus is to develop a 

uniform algorithm and its uniform computer technique that will be able to solve different type of 

NLP and QP problems into a single framework. However, recently there are several researchers 

who worked on the computer development of different types of NLP problems.  In 2012, Datta & 

Hasan[6,7] developed computer technique for the Lagrange method and Karush-Kuhn-Tucker 

Method. Later, in 2013, Das and Hasan [4] developed a generalized computer technique for 
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solving unconstrained NLP problems. Recently, in 2014, Das, Saha & Hasan [5] have studied on 

the 1-D Simplex Search and showed some merits and demerits in 1-D methods through numerical 

experiments. But all of them are silent about QP problems and the uniform computer technique. In 

this paper, we combine those computer techniques with some modifications and then developed a 

uniform computer technique for solving NLP and QP problems. Now-a-days, the world is being 

ruled by the fastest. So, we must try to finish our job as fast as we can. Moreover, hand calculation 

is very tough and time consuming for analyzing the NLP and QP problems with large number of 

variables and constrains. In this paper, our aim is to develop a uniform method whereas; one does 

not need to be confused about the type of the NLP problems.  

We now consider the general optimization problem to minimize or maximize the objective 

function under unconstraint, nonlinear equality or inequality type constraints. The objective of this 

research is to evaluate the performance of some existing algorithms for solving NLP and QP 

problems. For reviewing the existing algorithm we need to develop its computational technique.  It 

is extremely difficult to state that one method is definitely superior to another method without 

analytical or numerical experimental investigation. On the other hand, in this research, we find the 

prescribed paper [4, 5, 6, 7] which is successful in particular type of NLP problems and so we have 

modified this algorithm into a single framework successfully by developing a new computer 

technique. Finally, we develop a computer technique for those types of NLP problems. It is 

important that all the test examples come with an optimal solution obtained by analytical or 

numerical experimental investigation. For this reason, we have evaluated the performance of all 

the algorithms by the computational way in attempting to solve a set of test problems. 

The rest of the paper is organized as follows. In Section 2, we briefly discuss some existing 

methods with its merits and demerits on consideration to this paper. In Section 3, we develop an 

algorithmic technique and its computer coding for solving NLP and QP problems using 

MATHEMATICA [8, 13]. We have shown the steps of the algorithm and program in a table so that 

it can be visualize instantly what method is applied there. In Section 4, we present the 

comparisons, results and discussion among the selected test problems (TP). 

 

2. Existing Methods 

In this section, we focus on the some existing methods for solving NLP and QP with its merits and 

demerits in the real world problems. We then discuss precisely the formulation of different type of 

NLP problems.  We also briefly discuss the formulation of QP and NLP problems which has 

shown the necessity for developing a uniform technique. 

2.1 One Dimensional Method of NLP [H. K. Das 4, 5] 

In this section, we discuss the 1-D simplex search methods for finding the optimum solutions and 

also present two flowcharts of Choo & Kim two phase method in H. K. Das & Hasan [4]. 
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2.1.1 Choo & Kim 1-D Simplex Search  

In 1987 this method was proposed by Choo and Kim which is one of the most robust and efficient 

1-D direct search methods which had been analyzed in H. K. Das and Hasan [3, 4]. 

i.  This method can start with any two points and converges to the optimum solution. 

ii.  With appropriate parameters, this algorithm can be made to behave equivalent to some of 

the most efficient 1-D search methods. 

2.1.2 Powels 1-D Simplex Search   

In here, we summarize the “Powels” 1-D simplex search method which is given as follows: 

i. Particular attention was given to the contribution of theoretical analysis. 

ii. Reviews some of the most successful methods for unconstrained, constrained and non 

differentiable optimization calculations. 

2.1.3 Golden Section & Fibonacci Search  

In this section, we summarize the method of “Golden Section” search method. In 1953 “Golden 

section” and “Fibonacci search” was developed by Kiefer which is given as follows: 

i. Find the extremum of a unimodal function over an interval without using derivatives. 

ii. Golden section narrows the range of values and it is based on the golden ratio. 

iii. If the interval is not optimal then the method will be failand needs much iteration. 

2.1.3 Nelder and Mead (NM) Method  

In 1965 Nelder and Mead methods were proposed by Nelder and Mead which discuss as follows: 

i.  It designed for unconstrained optimization without using gradients. 

ii. Operation of this method is to rescale on the local behavior of the function by using four 

basic procedures: 1. Reflection 2. Expansion 3. Contraction 4. Shrinking 

2.2  Karush-Kuhn-Tucker Method [6] 

Karush-Kuhn-Tucker (KKT) conditions for the nonlinear program with its merits and demerits. 

Let    be a real valued function of   variables defined by                     

and                 be a set of right hand side constants of (1). If either                  

or some                             ; or both are non-linear, then the problem of 

determining the n-type                 which makes   a maximum or minimum and satisfies 

the following conditions, is called a general NLP problem such that 

 

http://en.wikipedia.org/wiki/Jack_Kiefer_%28mathematician%29
http://en.wikipedia.org/wiki/Extremum
http://en.wikipedia.org/wiki/Golden_ratio
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g
1
 (x1, x2, …, xn) {, ≥ or = }b1 

g
2
 (x1, x2, …, xn) {, ≥ or = }b2 

…              …          …            …     (1) 

…              …          …            …  

g
m
 (x1, x2, …, xn) {, ≥ or = }bm 

where      are real valued functions of   variables              and                   

1. This method can be used to solve NLP’s in when all the constraints are not equal. 

2. This method fails when the constraints are equal. 

In the following , a theorem (a table) is given to visualize the standard form of KKT that we have 

used in our algorithm.  

Theorem 1:   

Assume that                            are differentiable functions satisfying certain 

regularity condition. Then    (  
    

       
 
) can be an optimal solution for the NLP only 

if there exist   equations such that all the following KKT conditions are satisfied. (Wayne L. 

Winston [14] 

 
Table 1: Standard Form of KKT 

 

1.   

   
 ∑   

   

   

 
       

2. 
  

 (
  

   
 ∑  

   

   

 

   

)    

3.     
        for              

4.   [    
     ]    for              

5.   
     for              

6.       for              

2.3 Lagrange’s Method [7] 

The Lagrange’s has been discussed on the following way: 

1.  Lagrange multipliers can be used to solve NLP’s in which all the constraints are equal.  

2. To solve equal constraints we associate a multiplier    with the i-th constraint. 

In general construction, we focus on way of recognition an optimal solution for NLP problem with 

equality constraints. Lagrange multipliers can be used to solve such problems. We consider NLP’s 

of the following types: 
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Max (or Min):                     

        s/t,                       

                                      (  ) 

                                      

To solve     , we associate a multiplier     with the i-th constraint in      and hence Lagrangian 

                                               ∑   [   
   
   

                 ]                 

Then we attempt to find a point   ̅   ̅      ̅    ̅  ̅        ̅   that maximizes (or 

minimize)                                 In many situations   ̅   ̅    ̅    

will solve     . Suppose that      is a maximization problem. If                         

maximizes    then at                                

   
  

   
                         

Here  
  

   
 is the partial derivative of   with respect to     This shows that   ̅   ̅      ̅   will 

satisfy the constraints in     .  

To show that   ̅   ̅      ̅   solves       let  ́   ́        ́  be any point that is in     ’s 

feasible region. Since  ̅   ̅      ̅    ̅  ̅        ̅   maximizes  , for any numbers  

 ́   ́        ́   

we have,   

   ̅   ̅      ̅    ̅  ̅        ̅    ( ́   ́        ́   ́   ́        ́  )      

Since   ̅   ̅      ̅   and   ́   ́        ́   are both feasible in    , the terms in 

we have,   

   ̅   ̅      ̅    ̅  ̅        ̅    ( ́   ́        ́   ́   ́        ́  )      

Since   ̅   ̅      ̅   and   ́   ́        ́   are both feasible in    , the terms in 

    involving the     are all zero, and now     becomes  

     ̅   ̅      ̅      ́   ́        ́  . 

Thus,   ̅   ̅      ̅   does solve    . In short, if   ̅   ̅      ̅    ̅  ̅        ̅   shows 

the unconstrained maximization problem    Maximize                                

Then   ̅   ̅      ̅   solves     .We know that for   ̅   ̅      ̅    ̅  ̅        ̅   to 

solve     is necessary that at   ̅   ̅      ̅    ̅  ̅        ̅     

                                   
  

   
 

  

   
  

  

   
 

  

   
 

  

   
     

  

   
 0…          . 
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Theorem 2: 

Suppose      is a maximization problem. If                is a concave function and each 

                 is a linear function, then any point   ̅   ̅      ̅    ̅  ̅        ̅    

satisfying     will yield an optimal solution   ̅   ̅      ̅    to     

The above theorem      gives conditions implying that any point 

  ̅   ̅      ̅    ̅  ̅        ̅    that satisfying     will yield an optimal solution  

  ̅   ̅      ̅   to                      [  ]  

Theorem 3: 

Suppose      is a minimization   problem. If                is a convax function and each 

                 is a linear function, then any point   ̅   ̅      ̅    ̅  ̅        ̅    

satisfying     will yield an optimal solution   ̅   ̅      ̅    to  
  .Even if the hypothesis of 

these theorems fail to hold, it is possible that any point satisfying     will solve     Wayne L. 

Winston [14]. 

2.4  Swarup’s Simplex Type Method for Solving QP [10, 12] 

The iterative procedure for the solution of a QP problem by Swarup’s Simplex Type Method can 

be summarized as follows: 

1. It is applicable only special type of QP. 

2. Adding slack variables                 to the constraints of (1), we have 

(QPI): Maximize                 

 Subject to:     ,     where               are defined. 

3. Optimality Condition :The value of the objective function we will improve If  ̂    

    (     
 )    (     

 )    (     
 )(     

 )    where     ̂  
 

4. The solution can be improved until      for all            when ever all      for 

all            at a simplex table, 

              Where,           (     
 )    (     

 )    (     
 )(     

 ) 

The solution becomes optimal and the process terminates. 

Criterion1: (Choice of the entering variable). 

Criterion 2: (Choice of the outgoing variable). 

To develop a uniform method by implement the existing methods, we have modified or extended 

the existing methods for solving all type of NLP and QP problems in a single framework.  In Table 

2, we are going to present the Necessary and Sufficient conditions of the optimality for the NLP 

problems. 
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Table 2. Necessary and Sufficient conditions for optimality 

 

Problem Type Necessary Conditions for 

Optimality 

Also Sufficient If: 

One-variable unconstrained   

  
   

     concave 

Multivariable unconstrained   

   
                

     concave 

Constrained, nonnegative 

constraints only 

  

   
                

     (Or ≤ 0 if       

     concave 

General Constrained Problem Karush-Khun-Tucker conditions      concave and     
 

 convex   

         

 

3. Algorithmic Technique 

In here, we first develop a uniform algorithm for solving NLP and QP problems and we then 

develop a code using programming language MATHEMATICA [7,12]. 

3.1 Uniform Algorithmic Technique For Solving NLP and QP 

In this section, we combine relevant existing algorithms for solving NLP and QP problems. In our 

method firstly we separate the type of the NLP problems and then combine the different type of 

existing NLP problems. The whole algorithm steps proceed as follows: 

Step1: Input number of variables (v), number of inequality constraints (vv), number of equality 

constraints (vvv). 

Step 2: If number of variables v=1, number of inequality constraints vv=0, number of equality 

constraints vvv=0 then go to the following Step. 

Step 3: Finding the optimum interval using the following Sub Steps. 

Sub-Step 1: Select ant two points b1 and w1 such that f(w1) ≥  f(b1). Set k =1.  

Sub-Step 2: Contraction: c = b1 + β(w1 – b1). If f(c)  f(b1) then set m = b1, h = c, s = w1 and stop. 

Otherwise go to Sub-step 3. 

Sub-Step 3: Reflection: rk = bk + α(bk – wk).  

Sub-Step 4: If f(rk) ≥ f(bk) then go to Sub-Step 5.  

Expansion: ek = bk + (α+ ) (wk + bk). If f(ek) >  f(rk) then set wk+1 = bk, bk+1 = rk, rk+1 = ek, k = k + 1 

and go to Sub-Step 5. Otherwise set wk+1 = bk, bk+1 = rk, k = k + 1 and go to Sub-Step 3.  

Sub-Step 5: Set h = bk if f(wk)  f(rk) then set m = wk, s = rk and stop and go to step-4. Otherwise set 

m = rk, s = wk and go to the step 3. 

Step 4: To find the optimal solution    ̅  of the NLP we use the value m = rk, s = wk and follow the 

following Sub-Steps. 
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Sub-Step 1: Set k=0 and go to Sub-Step 2.  

Sub-Step 2: Reflection: let rk = hk + α(hk – mk).  go to Sub-Step 3. 

Sub-Step 3: If f(rk) ≥ f(hk) then go to Sub-Step 5. 

Expansion: ek = hk + (α+ ) (hk + mk). If f(ek) >  f(rk) then go to sub-step 4. Otherwise let hk+1 = ek, 

mk+1 = rk, sk+1 = sk, k = k + 1 and go to Sub-Step 2. 

Sub-Step 4: If f(rk) ≥ f(hk) then let hk+1 = ek, mk+1 = rk, sk+1 = sk, k = k + 1 and go to Sub-Step 2. 

Otherwise, let hk+1 = rk, mk+1 = ek, sk+1 = hk, k = k + 1  and go to Sub-Step 2.  

Sub-Step 5: Contraction: if f(rk) ≥ f(mk) then let hk+1 = hk, mk+1 = rk, sk+1 = mk, k = k + 1 and go to 

Sub-Step 2. Otherwise, we let ck = hk + β(mk – hk). If f(ck)  f(hk) then let  hk+1 = hk, mk+1 = ck, sk+1 = 

rk, k = k + 1 and go to Sub-Step 2. Otherwise, we let hk+1 = ck, mk+1 = hk, sk+1 = mk, k = k + 1 and go 

to Sub-Step 2. 

Sub-Step (6): Stop and optimal solution find. 

Step 5: If number of variables v≥2, number of inequality constraints vv=0, number of equality 

constraints vvv=0 then go to the following Sub-Step. 

Sub-Step 1:   Select   and any initial trial solution   . Max        ,        . 

 Sub-Step 2: Express              as a function t by setting     
    

  

   
      and 

Sub-Step 3: Using the one dimensional search procedure find        s.t. 

 (          )is maximized over      

Sub-Step 4: Calculate       at new    If           i.e. If  
  

   
      then stop. 

Step 6: If number of variables v ≥ 1, number of inequality constraints vv≠0, number of equality 

constraints vvv=0 then go to the following Sub-Step. 

Sub-Step 1: Input number of constraints (n), number of variables (m) and the unknowns as 

                objective function (f) and the constraints       1 2     ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    in term of 

unknowns. 

Sub-Step 2:  Input mm, for maximization input 0  for minimization input 1  

Sub-Step 3: Define “Lagrange”. If mm = 0 set     ∑      
   
   else set     ∑     

   
   . 

Sub-Step 4: Set eqs of        1 2    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
  

   
   1 2    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    

Sub-Step 5: Sol = Solve [eqs]. 

Sub-Step 6: Discard the solutions from sol for which gi > 0 or ui < 0. 

Sub-Step 7: Print feasible solution sol. 

Sub-Step 8: Calculate objective function value for each elements of sol. 
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Sub-Step 9: For mm = 0 find maximum value of objective functions and their corresponding index 

or mm = 1 find minimization value of objective functioins and their corresponding  index. 

Sub-Step 10: Print solution corresponding to index and the objective functional value.If not, go to 

step 7. 

Step 7: If number of variables v ≥ 1, number of inequality constraints vv≠0, number of equality 

constraints vvv ≠ 0 then go to the following Sub-Step. 

Sub-Step 1: Input number of variables (m), number of constraints (n), the unknowns  

as {x1, x2, x3, …, xn}, objective function (f). 

Sub-step 2: For maximization input zero (0) and for minimization input  one (1). 

Sub-Step 3: If o = 0; set     ∑      
   
    else set     ∑      

   
   Sub-Step 4  : Solve 

  

   
 

  for j = 1, … m  and solve  
  

   
    for i = 1, …, n. 

Sub-Step 5: Set sol in functional (f). 

Sub-Step 6: Print solution and objection functional value. 

Stop. 

3.2 Program Organization 

In this section, we introduce a uniform computer technique and we will use five module functions 

MODIFIED[PHASE0_], PHASE[1_], MA[GRADIENT_], VOGOB[KT_] and MAA[Lag_]. 

The main module function is main [unconcons_] which call all the module functions.  

3.2.1 Unique Computer Techniques 

For any new technique, sometimes it comes urgency to make programming code to verify lots of 

different test problems whether the method is subject to generalized or not. Considering this notion 

in care, we just want to view the programs coded by us using the programming language 

MATHEMATICA corresponding to our unique algorithm.  

In the current section, we develop a generalized code for solving NLP problems using 

MATHEMATICA [7] corresponding to the algorithm in Section 3.1. Our develop computer 

technique is not presented here for the page limitation. But, if the readers are interest to observe the 

reliability of our developed code then please contact with authors via editor. 

3.3 Programming Input and Output Organization 

In the current section, we will present the programming input and output information and how to 

build up the graphical representations of the NLP problems. 

3.3.1 Programming Input 

Our input information corresponding to the program in Section 3.2.1 to evaluate the performance 

of the unique algorithm in Section 3.1 and our developed code is visualized in this section. The 
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following table is the input of the module function. If we run the coded program by pressing the 

“Enter” from the Key board then we will get the following "Local kernel Input" box. 

On the screen of Local kernel Input (LKI), it shows that number of variables, number of inequality 

constraints, number of equality constraints. We consider the example 5 where variables are in the 

form {x1, x2} and constraints are given in the form           .  

 
Table 3. Coding Input Information. 

 

Module Functions Fig 1: Local Kernel Input Box 

MODIFIED[PHASE0_] 

PHASE[1_] 

MA[GRADIENT_] 

VOGOB[KT_] 

MAA[Lag_] 

main [unconcons_] 
 

 

3.3.2 Programming Output 

In this paper, we not only summarize the existing methods but also develop a uniform computer 

technique which can solve all type of NLP and QP problems. The Input and output information of 

a number of test problems is given below. We also show the workability of our technique. To 

observe the differences between our technique and the existing techniques, we solve the same 

problem which was given in Table 3 and obtain the same solutions. The main difference is that 

those methods can solve only particular type of problems but our technique works for all NLP and 

QP problems.  

For considering brevity throughout this paper, we have chosen some selected test problem (TP) in 

the following from the problem list in Section 4.1. 

Test Problem Number 1 

Input 

main[unconcons] 

Output 

Final solution is given below:  
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After 35 iterations it gives the solution approximate to (1,1) and the optimal value approximate to 1. 

Test Problem Number 2 

Input 

main[unconcons] 

Output: 

No. of Iteration in modified phase 0 is 1 and No. of Iteration in phase 1 21. Total iteration is 22 

whaereas if we use the Cho & Kim Phase 0 and Phase1 then the total iteration is 34. 

Test Problem Number 3 

After 21th iteration we get the approximate result is as (0,0,0) with the optimal value 0. 

Test Problem Number 4 

 

 

 

 

 

 

 

 

 

Fig. 2: Graphical representation of TP : 4 
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Test Problem Number  7 

Outline of Graphical Representation, we have used the following steps to construct the graphical 

representation of Fig.3 in which way we can visualize the feasible region of the NLP problems. 
 

<<Graphics `FilledPlot` 

h1=x1+x2+x3+x4-1; 

sol=Solve[h10,x2] 

 {{x21-x1-x3-x4}} 

g1=sol[[1,1,2]] 

 1-x1-x3-x4 

{o1,o2}={2,1}; 

os=0; 

f=(-4/3)x1+(-8/3)x2-4x3-10x4+2x1^2+ 4x2^2+6 x3^2 (1/2)x4^2; 

Solve[fos,x2] 

         f1=%[[1,1,2]] 

fig1=FilledPlot3D[{0,g1},{x1,0,4},{x3,0,4},{x4,0,4},Fills{{1,2},GrayLevel[.5],GrayLevel[.5],GrayLevel[.5]}] 

 FilledPlot3D[{0,1-x1-x3-x4},{x1,0,4},{x3,0,4},{x4,0,4},Fills{{1,2},GrayLevel[0.5],GrayLevel[0.5],GrayLevel[0.5]}] 

m=-1/D[g1,x1]/.x1o1;Solve[x2-o2m(x1-o1),x2]/.x12; 

n1=m(x1-o1)+o2 

fig2=Plot[{g1,f1,n1},{x1,4,10},PlotStyle{RGBColor[1,0,0]},PlotStyle{RGBColor[0,0,1]},AspectRatioAutomatic] 

Show[{fig1,fig2,Graphics[Circle[{o1,o2},.3]]},PlotRange{0,10},AspectRatioAutomatic] 

Fig. 3: Graphical representation of TPN: 7 
 

 

 

 

 

 

 

The shaded region and the small circle represent the feasible region and the solution point 

respectively. 

4. Comparison and Discussion 

The following representative test problems are used to assess the existing algorithms and our 

unique computer technique. The analytical properties of these functions can be found in the cited 

reference. 

4.1 Results and Discussions 

The efficiency of our technique claimed from the very beginning in this paper is exhibited in the 

following through numerical experiment with a number of test problems. Here we give a number 

of numerical examples to show the efficiency of the different techniques.  
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Example: 1 This numerical example is taken from H. K. Das and Hasan [4]. 

Consider the functions Maximization: g = 2x1x2 + 2x2 – x1
2
 – 2x2

2
. 

Example: 2 This numerical example is taken from  H. K. Das, Saha and Hasan [5]. 

Suppose that the function to be maximized is f(x) = 62x
2
 – 28x – 4 and choose the initial interval in 

arbitrarily. 

Example: 3  This numerical example is taken from  H. K. Das and Hasan [4]. 

Maximization:                              starting with initial solution (1,1,1). 

Example :4  This numerical example is taken from Hasan [10]. 

Maximization:                                

Subject-to,         ,         ,           ,             

Example: 5 This numerical example is taken from  Datta  and Hasan [6]. 

Maximization:               
    

  

Subject to,           , 3          

                            

Example: 6 This numerical example is taken from  Datta  and Hasan [6]. 

Minimization:            
 

 
   

    
       

Subject to,                         

Example: 7  This numerical example is taken from  Datta  and Hasan [7]. 

Maximize                
    

    

subject-to,          ,         

Example: 8 This numerical example is taken from H. K. Das & Hasan [4]. 

Find the optimal solution to Max        . s/t.       with in an initial length of 0.8. 

 
Table 4. Optimality of the Test Problems(TP) 

 

Test Problem 

Number 

Optimality 

Type 

Number of 

variables 

Initial 

Value 

Optimal  

solution 

Optimal 

value 

1 Maximize 2             1 

2 Maximize 1 No           

3 Maximize 3 No (0,0,0) 0 

4 Maximize 3 No (1,1,1/2) 75/2 

5 Maximize 2 No (
  

  
 
  

  
)     

   
 

6 Minimize 2 No       3/2 

7 Minimize 2 No (2,1) 0 

8 Maximize 1 No  4 27  5  2 . 
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In the above Table 4, we have seen that we have taken various types of problems to demonstrate 

our technique. For this, we had to modify or extended the existing methods.  

4.2 Time Comparison 

In this section, we present a time comparison chart to show the efficiency of our algorithmic 

technique. We have used the following computer configuration: 

Processor: Intel(R) Pentium(R) Dual CPU E2180@2.00GHZ 2.00GHZ,  Memory (RAM):1.00 GB 

and the System type: 32-bit operating system.  In briefly, Time Consuming: =TC. The following 

table has showed that our technique can solve various types of NLP problems. For solving NLP 

problems with “≥ type” or “= type” constraints, one needs to solve that problem by Two-phase or 

Big-M simplex method for solving QP problems which is clumsy and time consuming. But in our 

technique, one does not need to be confused about the type of the NLP and QP problems. 

 
Table 5. Accuracy of our Computer technique 

 

TPN Existing methods 

Iteration 

Our 

Iteration 

Manual Coding Time Command 

Time 

1 35 35 TC 0.21 0.219 

2 Failed 19 TC 0.13 0.14 

3 21 21 TC 0.221 0.233 

4 Algorithmic steps(AS) AS TC 0.121 0.243 

5 AS AS TC 0.102 0.212 

6 AS  TC 0.113 0.187 

7 AS AS TC 0.212 0.243 

8 AS AS TC 0.50 0.101 

We prepare this paper on the basis of existing methods but new work is given with its modification 

through computer algebra. We use modified phase of Choo & Kim, Golden section, Gradient 

Search method, Lagrangian multipliers and Khun Tucker Conditions. To our knowledge, there is 

no code which can solve any NLP problems in a single framework. Finally, we have shown from 

the above table 5 that our technique is successful than the other existing methods. 

 

5. Conclusion 

In this paper, we improved a combined algorithm and developed its computer technique for 

solving NLP and QP problems. We also focused on the development of the graphical 

representations of NLP problems. We demonstrated our technique with unconstrained NLP and 

linearly or non-linearly constrained NLP & QP problems. We observed that the results obtained by 

our algorithmic technique are completely identical with that of the other methods which are 

laborious and time consuming.  
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