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ABSTRACT 

Majumdar and Paul [3] introduced and studied a new radical E defined as the upper 

radical determined by the class of all rings each of whose ideals is idempotent. In this 

paper the authors continue the study further and also study the join radical and the 

intersection radical (due to Leavitt) obtained from E and the Jacobson radical J. These 

have been denoted by E + J and EJ respectively. The radical and the semisimple rings 

corresponding to E + J and EJ have been obtained. Both of these radicals coincide with 

the classical nil radical for Artinian rings. Important properties of these radicals and their 

position among the well-known special radicals have been investigated. It has been 

proved that E, EJ and E + J are non-hereditary. It has also been proved as an independent 

result that the nil radical N is not dual, i.e., N ≠ N. 

 

1. Introduction 

In [3] a radical E was introduced and studied. In this paper a further study of E has been made and 

certain unsolved problems regarding this radical have been settled. Moreover, two new radicals R1 

and R2 obtained with the help of E and J using Leavitt’s construction [4], have been studied. In 

particular it has been shown that E, R1, and R2 are three distinct non hereditary radicals each of 

which coincides with the classical radicals for rings with d.c.c. on left on right ideals.  

Also it has been shown that N is not a dual radical. Here J is the Jacobson radical, N the nil radical 

of Koethe. We have followed the terminology and the notations of Divinsky [1] except that we 

write radical for radical property. 

*There is an unfortunate mistake in the title of [3]. It has been corrected in the reference. The first 

author expresses regret for the mistake. 

2. Let C denote the class of rings A such that, for every ideal I of A. I
2
 = I, and let, P denote the 

class of all prime rings. Let D = C  P. It was shown in [3] that C and D determine the same upper 

radical which we denote by E.  

It was shown in Proposition 3.1 ([3]) that L  E  G, where L and G are the Levitzki radical and 

the Brown-McCoy radical respectively. Hence E coincides with the classical radical rings with 

d.c.c. (see Theorem 13, [1]). It was also shown that 
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(i) L ≠ E, 

(ii) G ≠ E, 

(iii) B  E, (B is the Baer lower radical) 

(iv) E  V, (V is the upper radical determined by the class of all simple non-nilpotent rings) 

(v) E  N, (its proof was not, however, complete) 

(vi) E and J are independent of each other, J being the Jacobson radical. 

There we could not decide whether  

(a)  E is hereditary, 

(b)  B < E, 

(c)  E < V, 

(d)  E < N, 

In this paper, we shall settle the first two of these questions. Also we shall give a complete proof of 

(v) (mentioned above) in [3]. 

We consider the following example: 

Example 2.1 

Let F be a field and Let A be a vector space on F with a basis {, }. Define multiplication in A by 

the table: 

.   

   

   

Then A is a ring whose ideals are A, F and 0. Since A
2
 = F ≠ A, and (A/F)

2
 = 0 ≠ A/F, A is E-

radical. But F is a simple ring with (F)
2 

= F. So F is E-semisimple. Hence E is nonhereditary. 

Since B and N are special radicals both of these are hereditary, and so, E ≠ B and E ≠ N. Since A 

is N-semisimple, E  N. 

Thus we have thus proved: 

Theorem 2.1 

(i) E is non-hereditary, 

(ii) B < E, 

(iii) E  N. 

This theorem answers the questions (a) and (b) of section 2 in the affirmative and gives a complete 

proof of (v). 

3. In this section we digress and prove that the nil radical is not dual. 

Theorem 3.1 

N < N, i.e. N is not a dual radical. 
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Proof: Let A be the ring of all rational numbers of the form 2x/(2y + 1) where x and y are integers 

with (x, 2y + 1) = 1 (see [1], Example 10). A is obviously N-semisimple. 

Let I be any non-zero ideal of A and Let n be the smallest positive integer such that 2
n

x/(2y + 

1)I, for some odd integer x. Let i =2
n
(2z + 1)/(2y + 1)I, for some integers y and z such that (2z + 

1, 2y + 1) = 1. 

We note that (2z +1)2
n 

 = (2y+1)iI and so, 2.2
n 

 = [2/(2z + 1)](2z + 1).2
n
I. Since (2, 2z + 1) = 1 

there exist integers  and  such that 2 + (2z + 1) = 1 and so 2
n
 = 2.2

n
 + (2z + 1).2

n
I. 

Therefore, 2
n
A  I. 

Also, for each iI 

       i = 2
n
/(2u + 1), for some integers u and v with (u, 2v + 1) = 1. 

         = 2
n - 1

.2u/(2v + 1)2
n - 1

.A.  

Thus, 2
n
.A  I  2

n - 1
.A.   

Also, for each non-negative integer n, 2
n
A is an ideal of A. Therefore, it follows that A is 

subdirectly reducible and that every non-trivial homomorphic image of A is nil. Thus, A cannot be 

mapped homomorphically onto a subdirectly irreducible ring with a nil semisimple heart. So A is 

N radical. 

Hence N ≠ N and the proof is complete. 

4. Radicals EJ and E + J 

It has been shown in [3] the radical E and J are independent of each other, i.e., neither of E and J 

contains the other. Hence both E  J and E  J are distinct and are different from both E and J. 

Thus the intersection radical EJ and the join radical, LEJ, the lower radical determined by E  J, 

are two distinct radicals different from both E and J. We denote EJ by R1 or EJ and LEJ by E + J 

or R2. We first note the following: 

(i) EJ and E + J coincide with the classical nil radical for rings with d.c.c. on left or right ideals. 

Since both E and J lie between D and T, where D is the lower radical determined by all nilpotent 

rings which are nil radicals of rings with d.c.c. on left ideals, and T is the upper radical determined 

by all matrix rings over division rings, it follows that both EJ and E + J too lie between D and T. 

Hence by Theorem 13 of [1] both EJ and E + J coincide with the classical nil radical. 

2. EJ and E + J are non-hereditary 

The ring A in example 2.1 has d.c.c on left ideals. Hence the radicals EJ and the E + J radicals of A 

and F are the same as the E = radicals of A and F respectively. It thus follows that just like E, 

both EJ and E + J are non-hereditary. 

The radical rings and the semisimple rings with respect to the radicals EJ and E + J are described 

below: 
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1) EJ-radical rings 

It is clear from the definition of EJ the radical rings are precisely the rings which cannot be 

mapped homomorphically onto a non-zero ring in CP where P is the class of all primitive rings. 

Thus, the EJ-radical rings are precisely those whose non-zero homomorphic images are neither 

primitive nor have each ideal idempotent. 

2) EJ-semisimple rings 

It follows from the construction of the intersection radical (EJ = E  J) of a ring A (see Leavitt [2]) 

that A is EJ-semisimple if and only if E(A)  J(A) = 0. 

To have an idea about the (E + J)-radical of A, we need a few results due to Majumdar ([3]). 

It has been shown by Majumdar and Saha ([4]) that, if a class C of rings satisfies certain properties 

called P1 and P2 which are described below, then the lower radical Lc and the corresponding 

radical Lc(A) for a ring A can be expressed in a way similar to that for the radical B(A) for A, where 

B is the Baer lower radical. Because we shall use this fact, we state here the relevant results 

without proof. We start with two definitions and a notation:  

Definition: A non-empty class C of rings is said to have property P if C is homomorphically 

closed, and is said to have property P2 if for every ring A and every nonzero ideal I of A, A has no 

non-zero C-ideal implies I has no non-zero C-ideals. 

Notation: Let C be a non empty homomorphically closed class of ring, and let A be a ring. Let A 

be the sum of all C-ideals of A. For an ordinal β > 2 and not a limit ordinal, define Aβ to be the 

ideals of Aβ/Aβ-1 such that Aβ/Aβ-1 is the sum of all C-ideals of all C-ideals. of A/A and if  β < 2 is a 

limit ordinal, define Aβ = Aα (α<β) Thus Aα exists for each ordinal . Then there is a smallest 

ordinal  such that A + 1 = A. We denote A by AC. 

We next state the useful results: 

(a) Theorem 4.1 

Let C be a non-empty class of rings satisfying conditions P1 and let A be a ring. Then A is the 

intersection of all ideals Qi of A such that A/Qi has no non-zero C-ideals. 

(b) Theorem 4.2 (see [4]) 

Let C be a non-empty class of rings satisfying conditions P1 and P2. Then the class R of all rings 

such that A = Ac for some rings A, is a radical. 

Also Rc(B) = Bc for every ring B with properties P1 and P2. 

(c) Theorem 4.3 (see [4]) 

Let C a non-empty class of rings satisfying conditions P1 and P2, Then Rc = Lc is the lower radical 

determined by C. 
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(d) Theorem 4.4 

If C is a non-empty class of rings with conditions P1 and P2, then a ring A is Lc-semisimple if and 

only if A has no zero C-ideals. 

The last theorem is a direct consequence of Theorem 4.2, Theorem 4.3 and the definition of Ac. 

We are now ready to discuss the (E + J)-radical rings and the (E + J)-semisimple rings. 

(3) (E + J)-radical rings 

We readily see that if R1 and R2 are two radicals, then R1  R2 = RR1R2 and so, the (LR1R2)-radical 

of a ring A is AR1R2. Thus the (E + J)-radical of a ring A is AEJ and so, the (E + J)-radical rings 

are precisely the rings A such that A = AEJ. 

(4) (E + J)-semisimple rings 

By Corollary 4.4, a ring A is LR1R2 semisimple if and only if A has no non-zero R1R2 ideals i.e., 

if and only if A is both R1-semisimple and R2-semisimple. Hence we have. 

The (E + J)-semisimple ring are precisely the rings A which are both E-semisimple and J-

semisimple i.e., S(E + J) = S(E)  S(J) = The class of all those subdirect sums of primitive rings 

each non-zero ideal of which can be mapped onto a nonzero ring in D. (or equivalently in C). Here 

S(R) denotes the semisimple class of a radical R. 
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