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ABSTRACT

This paper reports free convection flow along a vertical flat plate with conduction variation on
magneto hydrodynamic (MHD) effects. The governing equations with associated boundary
conditions reduce to local non-similarity boundary layer equations for this phenomenon are
converted to dimensionless forms using a suitable transformation. The transformed non-linear
equations are then solved using the implicit finite difference method together with Keller-box
technique. Numerical results of the velocity and temperature profiles, skin friction and surface
temperature profiles for different values of the magnetic parameter, the Prandtl number and the
conduction variation parameters are presented graphically. Detailed discussion is given for the
effect of the aforementioned parameters.

Keywords: Flat plate, Electrically conducting fluid, Natural convection, Conduction
variation

1. Introduction

Electrically conducting fluid flow in presence of MHD and heat conduction problems are
important from the technical point of view and such types of problems have received
much attention by many researchers.

Model studies of the free convection flows have earned reputations because of their
applications in geophysical, geothermal and nuclear engineering problems. Pozzi and
Lupo [1] investigated the coupling of conduction with laminar convection along a flat
plate. Pop et al. [2] investigated the conjugate mixed convection on a vertical surface in
porous medium. Gebhart [3] investigated the effect of dissipation natural convection.
Takhar and Soundalgekar [4] studied the dissipation effects on MHD free convection flow
past a semi-infinite vertical plate. Khan [5] investigated the conjugate effect of
conduction and convection with natural convection flow from a vertical flat plate and in
an inclined square cavity. Mamun [6] studied the effects of conduction and convection on
magnetohydrodynamic flow with and without viscous dissipation from a vertical flat
plate. Hossain [7] analyzed the viscous and Joule heating effects on MHD free convection
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flow with variable plate temperature. Rahman et al. [8] investigated the effects of
temperature dependent thermal conductivity on MHD free convection flow along a
vertical flat plate with heat conduction. Rahman and Alim [9] analyzed numerical study
of MHD free convective heat transfer flow along a vertical flat plate with temperature
dependent thermal conductivity. Alim et al. [10] analyzed the Combined effect of viscous
dissipation & joule heating on the coupling of conduction & free convection along a
vertical flat plate. Alim et al. [11] investigated Joule heating effect on the coupling of
conduction with MHD free convection flow from a vertical flat plate. Chowdhury and
Islam [16] analyzed MHD Free Convection Flow of Visco-elastic Fluid past an Infinite
Porous Plate. Alam et al. [17] studied viscous dissipation effects on MHD natural
convection flow over a sphere in the presence of heat generation. Islam et al. [18]
assessed Effects of thermal conductivity of fluid on free convection flow along a vertical
flat plate with transverse conduction.

The present study is to incorporate the idea of the effects of conduction variation on MHD
free convection boundary layer flow along a vertical flat plate.

2. Mathematical formulation of the problem

We consider a steady two-dimensional laminar natural convection flow of an electrically
conducting, viscous and incompressible fluid along a vertical flat plate of length l and
thickness b (Figure-1). It is assumed that the temperature at the outer surface of the plate
is maintained at a constant temperature Tb, where Tb > T, the ambient temperature of the
fluid. In this work y -axis i.e. normal direction to the surface and x -axis is taken along
the flat plate. The coordinate system and the configuration are shown in Fig.-1.

Fig. 1: Physical model and coordinate system

The governing equations of such laminar flow with MHD and also thermal conductivity
variation along a vertical flat plate under the Boussinesq approximations
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)](1[   TTb , where  and T are the density and temperature respectively
outside the boundary layer. For the present problem for continuity, momentum and energy
equations take the following forms
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Here  is coefficient of volume expansion. The temperature dependent thermal

conductivity, which is used by Rahman [8] as follows )](1[   TT ff  (4)

Where  is the thermal conductivity of the ambient fluid and  is a constant, defined as
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The non-dimensional governing equations and boundary conditions can be obtained from
equations (1) - (3) using the following dimensionless quantities
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where l is the length of the plate, Gr is the Grashof number,  is the dimensionless
temperature.

Now from equations (1)-(3), we get using the following dimensionless equations
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parameter. The corresponding boundary conditions (5) then take the following form
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is the conduction variation parameter. The described problem is

governed by the conduction variation parameter P.

To solve the equations (8) and (9) subject to the boundary conditions (10) the following
transformations are proposed by Merkin & Pop [12]
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here  is the similarity variable and  is the non-dimensional stream function which
satisfies the continuity equation and is related to the velocity components in the usual way
as
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Moreover, h (x,) represents the non-dimensional temperature. The momentum and
energy equations are transformed for the new co-ordinate system. At first, the velocity
components are expressed in terms of the new variables for this transformation. Thus the
following equations
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where prime denotes partial differentiation with respect to . The boundary conditions as
mentioned in equation (10) then take the following form
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From the process of numerical computation, in practical point of view, it is important to
calculate the values of the surface shear stress in terms of the skin friction coefficient.
This can be written in the non-dimensional form as Molla et al. [13]
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where ])/([ 0 yw yu is the shearing stress. Using the new variables described in

(6), the local skin friction coefficient can be written as
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In practical point of view, it is important to calculate the values of the surface
temperature. The numerical values of the surface temperature are obtained from the
relation. This can written in the non-dimensional form as
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3. Numerical Solution

This paper investigates the effect of conduction variation on electrically conducting fluid
in natural convection flow along a vertical flat plate with MHD. The set of equations (12)
and (13) together with the boundary conditions (14) are solved by applying implicit finite
difference method with Keller-box elimination scheme [14], which is well documented by
Cebeci and Bradshaw [15] and widely used by Keller and Cebeci and Hossain.
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4. Results and discussion

The main objective of the present study is to analyze the effect of conduction variation
due to temperature on free convective flow along a vertical flat plate in presence of strong
magnetic field. In this simulation the values of the Prandtl number Pr are considered to be
0.73, 1.00, 1.50, 2.00 and 2.50 that corresponds to hydrogen, steam, water, methyl
chloride and sulfur dioxide respectively.

The velocity and the temperature profiles obtained from the solutions of equations (12)
and (13) are depicted in Figures 2 to 4. Also the local skin friction and the surface
temperature obtained from the solutions of equations (16) and (17) are depicted in Figures
5 to 7. Numerical computation are carried out for a range of magnetic parameter M =
0.02, 0.20, 0.40, 0.60, 0.80 and conduction variation parameter P = 0.10, 0.16, 0.22, 0.28,
0.35.

The effect of magnetic parameter M on the velocity and temperature profiles against η
within the boundary layer with Pr = 1.73 and P = 0.10 are shown in Fig. 2(a) and 2(b),
respectively. It is seen from Fig. 2(a) that the velocity decreases within the boundary layer
with the increasing values of M. On the other hand temperature increases within the
boundary layer with the increasing values of M. It means that the velocity boundary layer
and the thermal boundary layer thickness expand inversely for large values of M.

Fig. 3(a) and 3(b) illustrate the velocity and temperature profiles against η for different
values of Prandtl number Pr with M = 0.10 and P = 0.10. From Fig. 3(a), it can be
observed that the velocity decreases as well as its position moves toward the interface
with the increasing Pr. From Fig. 3(b), it is seen that the temperature profiles shift
downward with the increasing values of Pr. It means that the velocity boundary layer and
the thermal boundary layer thickness expand clearly in same way for large values of Pr.

In Figures 4(a) and 4(b) describe the velocity and temperature profiles against η for
different values of conduction variation parameter P with M = 0.10 and Pr = 1.73. From
Fig. 4(a), it can be observed that the velocity decreases as well as its position moves
outward the interface with the increasing values of P. From Fig. 4(b), it is seen that the
temperature profiles also the same as increasing within the boundary layer. It means that the
velocity boundary layer and the thermal boundary layer thickness decrease for large values
of P from 0.10 to 0.35. There is an inverse trend is found in velocity boundary layer.

Figure 5(a) and Figure 5(b) illustrate the effect of the magnetic parameter on the local
skin friction coefficient Cfx and surface temperature distribution (x, 0) against x with Pr
= 1.73 and P = 0.10. It is seen from Figure 5(a) that the skin friction increases
monotonically along the upward direction of the plate for a particular value of M. It is
also seen that the local skin friction coefficient decreases for the increasing values of M.
From Figure 5(b), it can be seen that the surface temperature increases due to the
increasing value along the positive x direction for a particular M. It is also observed that
the surface temperature decreases for increasing values of M. This means that there is an
inverse case exists between skin friction and surface temperature which is remarkable.

Figure 6(a) and Figure 6(b) deal with the effect of Prandtl number Pr on the skin friction
and surface temperature against x with M = 0.10 and P = 0.10. It can be observed from
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Figure 6(a) that the skin friction decreases monotonically for a particular value of Pr. It
can also be noted that the skin friction decreases for the increasing values of Pr. From
Figure 6(b), it can be seen that the surface temperature increases due to the increasing
along the positive x direction for a particular value of Pr. This means that there is an
inverse case exists between skin friction and surface temperature which is mentionable.

The variation of the skin friction and surface temperature for different values of P with M
= 0.10 and Pr = 1.73 at different positions are illustrated in Figures 7(a) and 7(b),
respectively. Skin friction decreases for increasing values of P. It can also be noted from
Figure 7(a) that the skin friction increases monotonically for a particular value of P. Again
Figure 7(b) shows that the surface temperature increases for increasing values of P. We
observe from the profiles of skin friction and surface temperature that they are opposite.

Fig. 2(a) Velocity and (b) Temperature profiles against η for different values of M with Pr = 1.73 and P = 0.10.

Fig. 3(a) Velocity and (b) Temperature profiles against η for different values of Pr with M = 0.10 and P = 0.10.
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Fig. 4(a) Velocity and (b) Temperature profiles against η for different values of P with M = 0.10 and Pr =1.73.

Fig. 5(a) Local skin friction coefficient and (b) Surface temperature distribution against x for different values
of M with Pr = 1.73 and P = 0.10.

Fig. 6(a) Skin friction coefficient and (b) Surface temperature against x for different values of Pr with M =
0.10 and P = 0.10.
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Fig. 7(a) Skin friction and (b) Surface temperature against x for different values of P with M = 0.10 and Pr = 1.73.

5. Comparison of the results

Table 1 and Table 2 depict the comparisons of the present numerical results of the skin
friction Cfx and the surface temperature )0,(x with those obtained by Pozzi and Lopo[1]
and Merkin and Pop[12] respectively. Here, the magnetic parameter M and conduction
variation parameter P are ignored (i.e. M = 0 and P = 0) and the Prandtl number Pr =

0.733 with 5

1

x is chosen. It is clearly seen that there is an excellent agreement among
the present results with the solutions Pozzi and Lopo[1] and Merkin and Pop[12].

Table 1: Comparison of the present numerical results of skin friction coefficient Cfx with Prandtl number Pr =
0.733, M = 0 and P = 0, against x.

Cfx

5

1

x
Pozzi and Lupo [1] Merkin and Pop [12] Present work

0.2 0.051 0.051 0.033

0.3 0.105 0.105 0.033

0.4 0.172 0.172 0.170

0.7 0.430 0.430 0.423

0.8 0.530 0.530 0.528

0.9 0.635 0.635 0.633

1.0 0.741 0.745 0.748

1.1 0.829 0.859 0.857

1.2 0.817 0.972 0.972
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Table 2: Comparison of the present numerical results of surface temperature (x, 0) with Prandtl number
Pr = 0.733, M = 0 and P = 0, against x.

(x, 0)

5

1

x
Pozzi and Lupo [1] Merkin and Pop [12] Present work

0.2 0.310 0.310 0.260

0.3 0.413 0.413 0.260

0.4 0.493 0.493 0.481

0.7 0.651 0.651 0.651

0.8 0.684 0.686 0.687

0.9 0.708 0.715 0.716

1.0 0.717 0.741 0.742

1.1 0.699 0.762 0.763

1.2 0.640 0.781 0.781

6. Conclusion

The effects of the conduction variation on MHD free convective flow along a vertical flat
plate have been studied in this paper. From the present investigation the following
conclusions may be drawn:

The velocity within the boundary layer increases for decreasing values of M, Pr and P.
There exists an inverse trend in velocity profiles for P.

The temperature within the boundary layer increases for increasing values of M and
decreases for increasing values of Pr and P.

The skin friction coefficient decreases for the increasing values of M, Pr and P.
Mentionable effect is found in skin friction coefficient for M, Pr and P which are all
decreasing.

An increase in the values of Pr and P leads to an increase in surface temperature. On the
other hand, this decrease for increasing values of M. Remarkable effect is found in
surface temperature for Pr and P which are almost similar but inverse with M.
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